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The main known mathematical results (in the form of 32 the­
orems and 5 conjectures) about benzenoid systems are collected. 
A few new results (seven theorems) are proved. Seven unsolved 
problems are also pointed out. 

The paper contains results on the basic properties of ben­
zenoid graphs, on the number of Kekule structures and on Clar's 
resonant sextet formulas. 

INTRODUCTION 

Benzenoid systems are the geometric figures obtained by arranging con­
gruent regular hexagons in a plane, so that i;wo hexagons are either disjoint 
or have a common edge. Benzenoid systems must (by definition) be super­
imposable with a hexagonal (graphi:te) lattice. Hence the perimeter of a ben­
zenoid system can be viewed as a cycle on the hexagonal lattice. In the lite­
rature benzenoid systems are sometimes called polyhexes or hexagonal animals. 
or hexagonal systems. 

Throughout the present paper we shall assume that the benzenoid systems 
have no holes, i.e. that they divide the plane into an (infinite) external region 
and a certain number of internal regions, all of which must be regular hexa­
gons. Consequently, cora:nnulenes (kekulene etc.) and related compounds are· 
out of the scope of the present work. It should be mentioned, however, that 
a great part of the results which are collected here do not hold (or, at least, 
need substantial modifications) if benzenoid systems with holes were included 
into the consideration. 

A benzenoid system is a natural mathematical representation of a ben-­
zenoid hydrocarbon. Therefore, benzenoid systems are .. of certain interest for 
theoretical chemistry. Topological properties of benzenoid systems are of con­
siderable importance in various quantum mechanical models of the electronic· 
structure of benzenoid hydrocarbons, especially in resonance theory, Hilckel 
molecular orbital theory, Clar's aromatic sextat theory and the theory of 
conjugated circuits. From the references cited it will become evident that thi:s . 
topic has a relatively long history in theoretical organic chemistry. Never-

* Presented in part at the IUP AC International Symposium on Theoretical 
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theless, the great majority of the presently known results has been obtained 
1quite recently. 

For review of topological properties of benzenoi:d hydrocarbons see ref. 1. 
A benzenoid system can be viewed as a graph. Then we speak about ben­

zenoid graphs. Throughout this paper we will always refer to the graph­
-theoretical representation of benzenoid systems and, consequently, we will 
use a pertinent graph-theoretical terminology. 

Our notation will be the fullowing. A benzenoid graph will be denoted 
by B. It has n vertices, Vi, v 2, ••• , Vn, and m edges. The edge connecting the 
vertices Vr and V 5 will be labelled by ers· The number of hexagons in B is h. 
·The number of Kekule structures in the corresponding benzenoid hydrocarbon 
will be denoted by K = K (B). This is, on the other hand, equal to the number 
of perfect matchings1 of the graph B. 

A benzenoid graph B is cata-condensed if no three hexagons of B have 
a common vertex. Otherwise, B is peri-condensed. A cata-condensed benzenoid 
graph B is said to be non-branched if every hexagon of B has at most two 
neighbours. Otherwise, B is a branched cata-condensed benzenoid graph. 

An ordered h-tuple (Si, S2, ••• , Sh) of symbols L and A can be associated 
with every non-branched cata-condensed benzenoid graph B. If the i-th hexagon 
of B is annelated in a linear mode (resp. angular mode), we set Si = L (resp . 
.Si = A), i = 2, ... , h - 1. In addition we define S1 = Sh = L. Such an h-tuple 
will be called the L,A-sequence of the benzenoid graph B and will be denoted 
by LA (B). 

In the following we will present the main (but certainly not all) known 
mathematical properties of benzenoid graphs (without proof), together with 
a few new results (with proof). We will also point out several unsolved pro­
blems and conjectures. 

BASIC PROPERTIES 

A benzenoid graph B fa bipartite and planar. It may contain cycles of size 
·6, 10, 12, 14, 16, 18 etc. Its vertices have degree two or three. 

The vertices of B which lie on the perimeter are called external. All other 
vertices are said to be internal. Let the number of internal vertices of B be 
denoted by ni. 

1. T h e o r e m2
•3 

A benzenoid graph is cata-condensed if and only if, ni = 0. 

2. Th eorem4 

Let n2 and n3 be the number of vertices of degree two and three, respect­
ively, in the benzenoid graph B. Then, 

:and consequently, 

3. Theo rem5 

n2 = 2h + 4-ni, 

n 3 = 2 (h-1), 

n = n2 + n3 = 4 h + 2 - ni, 

m = n + h- 1 = 5 h + 1-ni. 

The graph B has 2 h + 4 - ni external vertices of degree two and 2 h -
- 2 - ni external vertices of degree three. Hence the perimeter of B contains 
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4 h + 2 - 2 ni vertices. At least six edges of the perimeter connect a pair of 
bivalent vertices. 

4. Theo rem6 

There exist benzeinoid graphs having any number of vertices, except for 
n < 6, n = 7, 8, 9, 11, 12 and 15. 

5. Theo r em6 

The parameters n and h in a benzenoid graph vary within the ranges 

2 h + 1 + { v' 12 h - 3} ::;;; n ::;;; 4 h + 2, 

{(n-2)/4}::;;; h::;;; n + 1-{(n + v'6n)/2}, 

where { x} denotes the smallest integer being greater than or equal to x. All 
values of n and h within the above ranges occur in benzenoici systems. 

£. Theo re m7 

In the interior of every (4 k + 2)-membered cycle, k ~ 1, the number 
of vertices is even (or zero). In the interior of every (4 k)-membered cycle, 
k ~ 3, there is an odd number of vertices. 

Let e be an edge of a benzenoid graph B. If the graph B0 = B-e, obtained 
by deletion of the edge e from B, is also a benzenoid graph, then we will 
say that B is e-transformable to B0• 

7. Theorem 
A benzenoid graph B has a Hamiltonian cycle if and only if B is either 

cata-condensed or e-transformable (in one or more steps) to a cata-condensed 
benzenoid graph. 

Proof 
Since by Theorem 1 all vertices of a cata-condensed benzenoid graph are 

external, they all lie on the perimeter and thus the perimeter of a cata-con­
densed system is a Hamiltonian cycle. 

Oonsider now the case when B ds pel'i-condensed. If B is e-transformable 
to a cata-condensed benzenoid graph B0, then the perimeter of BO is the 
Hamiltonian cycle of B. This proves the »if« part of Theorem 7. 

If B has a Hamiltonian cycle, then this cycle can be viewed as the peri­
meter of some cata-condensed benzenoid graph B0• The graph B differs from 
B0 by having only some additional edges. The deletion of these edges from 
B is just the required e-transformation. This proves the »only if« part of 
Theorem 7. 

It can be also demonstrated that the Hamiltonian cycle of a benzenoid 
graph (provided it exists) is unique. 

Let <P (B, x) be the characteristic polynomial and a (B, x) the matching 
(or acyclic) polynomial of B. These polynomials can be written in the form 

and 

[n/2] 
P (B, x) = ~ (-1)" q (B, k) x"-2

" 

[n/2] 
a (B, x) = ~ (-1)" p (B, k) xn-2

• . 

k=O 
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Then the coefficients q (B, k) and p (B, k) are non-negative for all values of k. 

8. Th e o r e m3•8•9 

q (B, 1) = p (B, 1) = m, 

q (B, 2) = p (B, 2) = [(n + h - 2)2 - n - 7 h + 6]/2, 

q (B, 3) = p (B, 3) + 2 h, 

q (B, 4) = p (B, 4) + 2 h 2 + 2 h (n - 15) + 2 n + 4. 

9. Theo r em9 

q (B, k) = 0 if and only if p (B, k) = 0. 

10. T h e o r e m9 

q (B, k) ~ p (B, k) for all values of k. 

The (unique) non-branched cata-condensed benzenoid graph whose L,A­
-sequence is (L, L, ... , L) is called the linear polyacene graph. 

11. Conj e ct u re 
Among cata-condensed benzenoid graphs with equal number of hexagons, 

the liinear polyacene graph has minimal q (B, k) and p (B, k) values for all k. 

Closed analytical formulas for the eigenvalues (i. e. the zeros of the chara­
cteristic polynomial) of linear polyacene graphs were obtained by Coulson10• 

Analytical formulas for the eigenvalues of other calsses of benzenoid graphs 
are not known. 

Concluding tMs section we would like to point out two fundamental 
problems in the theory of benzenoid systems. The definiHon ·of a benzenoid 
system given in the introduction has a metric (geometric) nature rather than 
a non-metric (topological) nature. 

12. Prob 1 em 
It is not known how to define benzenoid graphs by usiing exclusively 

graph-theoretical notions. 
This problem has been considered in ref. 11. 

13. Prob 1 em 
How many benzenoid systems (with a given number of hexagons) e:xiist? 
Harary offers US $ 100 for the solution of this difficult enumeration 

problem12• 

NUMBER OF KEKUL:E STRUCTURES 

For various methods for the enumeration of Kekule structures in benzenoid 
systems see refs. 1,13-15. 

14. Theoremia 
If B is a benzenoid graph, then 

K (B) · K (B-vr-vs) = K (B-vr-v5) 2 + ~ K (B-Z)2, 

z 
where Z is a cycle of B and the summation goes over all cycles of B, containing 
the edge ers• 
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15. Theorem16 

If B is a benzenoid graph, then B has either no Kekule structures or the 
number of Kekule structures is greater than one. In addition, if K (B) = 2, 
then B is the benzene graph. 

16. T h e o r e m 5 

If B has Kekule structures, then every edge of B connecting a pair of 
bivalent vertices corresponds to a double bond in at least one Kekule structure. 

17. Theo 'rem17 

If B rs Cata-condensed, then 

h + 1 ,,;;; K (B) ,,;;; 2h-t + 1. 

The left-hand side of the above inequality provides the best possible lower 
bound for the number of Kekule structures of cata~condensed systems. 

A simple recursive method for the enumeration of Kekule structures in 
cata-condensed benzeno1d graphs (both branched and non-branched) have been 
developed by Gordon and Davison1B. 

18. T he o r e m1B 

The number of Kekule structures of a non-branched cata-condensed 
benzenoid system is fully determined by its L,A-·sequence. 

19. Th e o re mis,19 

If LA (B) = (Si, S2, . .. , Sh), then K (B) is equal to the first component of 

the two~dimensional vector M1 M2 • •• Mh( ~ ), with the matrices Mh i = 1, ... , h 

being defined as 

11) if Si= L 

and 

~) if Si= A . 

20. Theo rem 
The L,A-sequences (L,L,L, ... , L,L) and (L,A,A, ... , A,L) determine the 

minimal and the max:imal K-value of a non-branched cata-condensed ben­
zenoid graph with h hexagons. 

Proof 
Note first that for x and y being arbitrary numbers, x;;?: y, 

(~ 
Consequently, for (Si, S2, ... , Sh) being an arbitrary S,A-sequence, 

~) ( ~ )· 
'Theorem 20 follows now immediately from Theorem 19. 
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21. Theo re m18 If LA (B) = (L,L,L, .. ., L,L), then 

K (B) = h + 1. 

If LA (B) = (L,A,A, ... , A,L) then 

K (B) = 2-c1i+2> [(1 + yl5)1i+2 - (1- v 5)h+2]/V5. 

Additional interesting combinatorial formulas for the number of Kekule 
structures of vadous classes of benzenoid systems ca:n be found in refs.ts, 20- 23• 

22. Th e o r e m24 

If a benzenoid graph B possesses a linear polyacene fragment of length 
b, then K (B) is a linear function of the parameter b. 

23. Problem 
It is not known which benzenoid systems have Kekule structures. In other 

words, we need a relatively simple a:nd efficient graph-theoretical characteri­
zation of those benzenoid graphs for which K = 0. (According to Theorem 17, 
if K (B) = 0, then B must be perii-condensed.) 

24. Problem 
Which of the benzenoid systems (with a given number of hexagons) have· 

the maximal and minimal (but non-zero) numbers of Kekule structures? 

25. C o n j e c tu r e 
If K (B) = 3, then B is the napthalene graph. If K (B) = 4, then B is the 

anthracene graph. If K (B) = 5, then B is either the tetracene or the phenan­
threne graph. 

26. C o n j e c tu r e 
There is a finite number of benzenoid graphs for which 0 < K ~ 8. (It 

can be demonstrated that the number of benzenoid graphs for which K = 91 
is infinite.) 

27. Theorem25 

A benzenoid graph B has no Kekule structures if and only if B has an 
eigenvalue equal to zero, i. e. if <P (B, 0) = 0. 

28. T h e o r e m26 

Let A be the adjacency matrix of the benzenoid graph B. Then 

det A= (-1r12 K (B)2 

29. Theo re m 27- 30 

If Vr and Vs are adjacent vertices of B, then 

(K1)rs = K (B - vr - vs)/K (B). 

If Vr and Vs are not adjacent, then the above equation is not always fulfilled7• 

CLAR'S SEXTET FORMULAS 

The definition of Clar's sextet formulas of benzenoid hydrocarbons can 
be found in ref. 31. 
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Let B be a benzerroid graph and H 1, H2, • •. , Hh be its hexagons. We say 
that the hexagon H; is resonant in B if K (B - H;) >6 0. We say that the 
hexagons Hi, H 2, ••• , Hk are mutually resonant in B if they are mutually 
disjoint (i. e. no pair of hexagons has common vertices) and if K (B - H1 -

-Hi- . . . -Hk) >6 0. 

30. Theorem 
If the hexagons Hi, H 2, ••• , Hk are mutually resonant, then the hexagons, 

Hi, H 2, • •• , Hi, j < k, are also mutually resonant. 

Proof 
Since an isolated hexagon (i. e. the benzene graph) has two Kekule stru­

ctures, it follows from K (B - H 1 - • • . - Hk) >6 0 that K (B - H 1 - •• • - Hil 
must be greater than K(B-H1 - •• • -Hk) by at least 2k-i. Hence B-H1 -

- . .. - Hi has Kekule structures which means that the hexagons Hi, .. . , HJ 
are mutually resonant. 

31. Theorem 
If H; is not resonant, i. e. if K (B - Hi) = 0, then H; is not mutually 

resonant with any other hexagon. 

Proof 
Assuming K (B - H; - Hi) >6 0, and applying Theorem 30 we conclude· 

that K (B - H;) >6 0, a contradiction. 

32. Theorem 
The hexagons Hi, H 2, • • • , Hk are mutually resonant if and only if they 

are pairwise resonant. 

Pro o f 
The »only if« part of Theorem 32 follows immediately from Theorem 30. 

In order to prove the »if« part, note that when a hexagon H; is resonant in 
B, then some other hexagons cannot be mutually resonant with Hi. Let these 
hexagons be labelled by Hi> j EA; c {1, 2, ... , h}. These hexagons form a 
neighbourhood of the hexagon H;. All other hexagons of B which lie »outside« 
this neighbourhood are independent of H; in the sense that a hexagon H0 is. 
resonant in B if and only if it is resonant in B;, where Bi is the benzenoid 
graph containing the hexagons of B which lie »outside« of H;. 

Now if the hexagons Hi, . . . , Hk are pairwrse resonant, then they are also 
pairwise independent (in the above sense). But then they are mutually inde­
pendent and thus mutually resonant. 

This proves Theorem 32. 

33. Theorem 
If B has no Kekule structures, then no hexagon of B is resonant. 

Proof 
Since every hexagon itself has two Kekule structures, K (B - H;) >6 O' 

would imply K (B) >6 0, a contradiction. 
The number of Clar's formulas of B, containing k sextets, will be denoted 

by s (B, k). By definitiion31, s (B, 0) = 1 for all benzenoid graphs B. 
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34. Theo rem 
If B has a Hamiltonian cycle, then s (B, 1) = h. 

PT o of of this result is lengthy and is based on the fact that the deletion of a 
hexagon from B causes the decomposition of the Hamiltonian cycle of B into 
two parts, with 2 b and n - 6- 2 b vertices, each of which has a Kekule 
structure. (The case b = 0 can also occur and has to be considered separately.) 

Because of Theorem 7, the above result implies that all hexagons of a 
cata-condensed benzenoid system are resonant. 

The proof of Theorem 32 contains the basic ideas of the CLar graph 
concept32. If B is a benzenoid graph composed of the hexagons Hi, H2, ••• , Hh, 
then the Clar graph of B is the graph C (B) whose vertices are Hi, H2, ••• , Hh. 
Two vertices Hi and Hi are adjacent in C (B) if j E Ai, i = 1, 2, ... , h. 

35. Theo r e m32 

If k > 1, then s (B, k) is equal to the number of selections of k independent 
vertices in C (B). 

The sextet polynomial of B i:s31 

S(B) 

a (B, X) = ~ s (B, k) x•, 
i=1 

with S (B) denoting the maximal value of k for which s (B, k) ~ 0. 

36. Theo re m 31,ss 

If B is cata-condensed, then 

37. Theo re m31,34 

S(B) 

a (B, 1) = ~ s (B, k) = K (B). 
k =O 

If B is cata-condensed, then 

S(B) h 

a' (B, 1) = ~ ks (B, k) = ~ K (B - Hi). 
k=O i =l 

38. Pro bl em 

It is not known how to generalize the above two theorems to the case 
of peri-condensed benzenoid systems. 

39. T h e o r e m32,35 

If B is non-branched ca ta-condensed, then C (B) is the _line graph of a tree. 
If B is branched cata-condensed, then C (B) is not a line graph. 

The construction of the tree mentioned in Theorem 39 is based on the 
L,A-sequence of B. An interesting consequence of Theorem 39 is32 that if 
B is non-branched cata-condensed, then all the zeros of its sextet polynomial 
are real and negative numbers. 

40. Pro bl em 

It is not known which conditions must a graph fulfil in order to be the 
Clar graph of some benzenoid system. 
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41. Prob 1 em 
It is not known which peri-condensed benzenoid graphs have the property 

that their Clar graph is a line graph. It is also not known which sextet 
polynomials have real zeros. 

42. Theo re ms6,s1 

If B is a non-branched cata-condensed system with LA (B) = (L,A,A, ... , A, 
L), then 

(
h + 1-k) 

s (B, k) = ak = k 

where ak is the number of Kekule structures of B in which there are exactly 
2 k double bonds of the type C=CH. 

Few years ago Aihara38 observed that for a great number of benzenoid 
systems, the following statement holds. 

43. C o n j e c t u r e38 Let 
h 

F (B) = S (B) K (B) - 2 ~ K (B - Hi). 
i=l 

Then whenever s (B, S (B)) = 1, the function F (B) is equal to zero or, at 
least, small comparable to K (B). 

We demonstrate now that Aihara's conjecture is true under some special 
conditions and give support for its general validity . .A!ssuming that B is cata­
-condensed and using Theorems 36 and 37, we transform the function F (B) 
into the form 

F (B) = ~ [S (B) - 2 k] [s (B, S (B) - k) - s (B, k)], 
k 

with the summation going over all k, such that 2 k < S (B). According to 
the assumption in the conjecture, the relation 

s (B, S (B) - k) = s (B, k) 

is fulfilled for k = 0. If this equality holds for all values of k, i.e. if the 
coefficients ·of the sextet polynomial are symmetric, then F (B) = 0 and 
Aihara's conjecture is true. Clearly, the conjecture will be valid whenever 
the coefficients ·of the sextet polynomial are (at least) nearly symmetric. 

44. C o n j e c tu r e 
For all benzenoid graphs B there exists a constant k0 = k0 (B), such that 

s (B, k - 1) ~ s (B, k) for k ~ k 0 , 

s (B, k) ~ s (B, k + 1) for k ~ k0 • 
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SAZETAK 

Topoloska svojstva benzenoidnih sustava. XXI. Teoremi, hipoteze, nerijeseni problemi 

I . Gutman 

Prikupljeni su vafoiji poznati matematicki rezultati o benzenoidnim sustavima 
i izlozeni u obliku 32 teorema i 5 hipoteza. Dokazan je i stanovit broj novih rezul­
tata. Ukazano je na neke nerijesene probleme. 

Rad sadrfava rezultate o osnovnim svojstvima bezenoidnih grafova, o broju 
Kekuleovih struktura i o Clarovim sekstetnim formulama. 




