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Avoided crossings and conical intersections of adiabatic po
tential energy surfaces are considered. Defects of the adiabatic 
representation at conical intersections are ascribed to an improper 
expansion of a continuous molecular wavefunction over a locally 
discontinuous set of functions. The purpose of diabatic states in 
this context is to regularize the adiabatic representation. A novel 
variational definition of diabatic states is introduced, and a simple 
general algorithm for an adiabatic-diabatic transformation is de
rived. 

INTRODUCTION 

The significance of adiabatic potential energy surfaces for chemistry in 
general, and for organic chemistry in particular, is well recognized. However, 
only well-behaved potential surfaces are commonly considered. Their distinct 
features are local minima and saddle points interpreted as stable molecular 
structures and transition states respectively. Only recently more attention 
has been paid to dynamically very significant avoided crossings of potential 
energy surfaces.1-4 True surface crossings (conical intersections) are seldomly 
discussed,5- 8 except in the very special context of the Jahn-Teller effect,9 

although they are very common in triatomics and polyatomics.10.11 

Since avoided and true intersections are related to the break-down of the 
adiabatic Born-Oppenheimer approximation, difficulties are often encountered 
in the theoretical treatment of nuclear motion.4 These difficulties are parti
cularly serious at conical intersections where nonadiabatic coupl!ing becomes 
infinite.8 On the other hand, results of atomic am.d molecular scattering expe
riments reveal that adiabatic potential energy ·surfaces do not provide an 
optimal representation for a description of molecular scattering, since the 
system passes from one potential surface to another in the region of avoided 
crossing.3•4 As a more natural representation Lichten1 introduced the concept 
of diabatic states, i. e. states dominated by a well defined electronic configu
ration which tends to be conserved in the scattering process. How to determine 
diabatic states and related diabatic potential energy surfaces remained, howe
ver, an open problem, which attracted subsequently very much attention,2,s,13-21 
but was not satisfactorily solved. 

In order to reach a better understanding of the theoretical difficulties 
springing from the adiabatic representation we shall closely examine assum-
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ptions and common practices !in solving the molecular Shrodinger equation. 
Finally, a recently proposed22 very general variational scheme for generating 
diabatic states from adiabatic ones will be presented. 

ADIABATIC REPRESENTATION 

In the attempt to solve the molecular Schrodinger equation 

A 

H lJlr (q, Q) == Er lJlr (q, Q) (1) 

where q and Q stand for electronic and nuclear coordinates, the molecular 
wavefunction lJ' r ( q, Q) is usually deve1'oped in a complete set of known ele
ctronic functions { <pk (q, Q)} : 

lJlr (q, Q) == ~ ; kr (Q) Pk (q, Q) 
k 

The set {<pk ( q, Q)} defines a representation. 

(2) 

Among infinitely many representations one should choose that one which 
simplifies the original problem as much as 'Possible. Good results are usually 
obtained in the adiabatic representation, defined by the set { <pk ( q, Q)} which 

A A A 

diagonalizes the electronic part of the Hamiltonian, Rel (q, Q) = H -TQ: 

A 

H"' (q, Q) Pk (q, Q) == ck (Q) Pk (q, Q) (3) 
A 

Nuclear coordinates Q appear here only as parameters while T0 stands for 
the nuclear kinetic energy operator. Eigenvalue ek (Q), as a function of 
nuclear coordinates Q, represents the adiabatic potential energy surface of 
the »electronic state« <pk (q, Q). This terminology springs form the very 
drastic Born-Oppenheimer approximation in which expansion (2) is trun
cated to a single leading term. In this highly successful approximation ek (Q) 
1ndeed defines a potential field governing the vibrational motion of nuclei 
about the equilibrium configuration. Furthermore, even if this approximation 
becomes invalid for certain values of nuclear coordinates Q, it provides a 
reference model and terminology for discussing the non-adiabatic effects. 

Somewhat less drastic is the two-state approximation in which the 
molecular wavefunction in eq. (2) is truncated to only two leading terms: 

lJlr (q, Q) "°' ;{ (Q) P1 (q, Q) + ;2r (Q) P2 (q, Q) (4) 

Since nuclear and electronic motion are here inseparable, such states are 
usually called vibroni.c. 

A VOIDED POTENTIAL CROSSING IN DIA TOMICS 

To simplify the analysis we shall temporarily discuss only di.atomics 
with a single internuclear coordinate Q = R. In this case the original Schro
dinger equation (1) reduces in the two-state approximation to the following 
coupled equations for the amplitudes ~kr (Q): 

(

A A ) TR + c1 (R) + G (R) F (R) 

-~ (R) ~ R + c2 (R) + G (R) 

(5) 
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Here /\ marks differential operators. The non-adiabatic terms G (R) and 
F (R) are given by 

fi,2 
G (R) = - [f (R)]2, 

2µ 

A fi,2 d 
F(R) = -f(R) dR' 

µ 
(6) 

where µ is the reduced mass. They depend on a single non-adiabatic coupling 
function f (R) defined by 

d f (R) = J <p1 (q, R)-<p2 (q, R) dq 
dR 

(7) 

This function plays the central role in discussing the Born-Oppenheimer 
approx:imat1on and its break-down reflected in the non-adiabatic effects. 

If the electronic wavefunctions <pi (q, R) and <pz (q, R) vary slowly with 
,, R everywhere, f (R) in eq. (7) may be neglected. This justifies the Born-Oppen

heimer approximation. However, if the electronic wavefunctions suddenly 
change their character in a certain domain of R, then f (R) in this domain 
will not be negligible and equations (5) remain coupled. The fact that the 

A 

generated coupling operator F (R) is a differential operator causes difficulties 
in the numerical treatment of these equations. Closer inspection reveals also 
that the adiabatic potential curves, which exhibit an avoided crossing in the 
critical region of R, often do not provide an optimal representation for the 
description of scattering processes. For example, the CsBr molecule dissociates 
into the ionic channel23 although the adiabatic potential curve would imply 
its dissocrat1on into neutral atoms. In this case the non-adiabatic coupling 
function f (R) is large in the avoided crossing region. It has the role of a 
switching function between two adiabatic potential curves. 

In CsBr dissociation the system follows the ionic potential curve ignoring 
the adiabatic non-crossing rule in diatomics.24

•
25 If this ionic potential curve 

is interpreted as one basic entity, and covalent curve as another enti'ty, no 
switching functions are required to describe CsBr dissociation. Such electronic 
states, which are dominated by a well-defined configuration (i. e. ionic, or 
covalent), and which do not obey the adiabatic non-crossing rule for diatomics, 
were named diabatic by Lichten.1 

Quite generally, the two-state approximation in any (unspecified) repre
sentation leads to the following coupled equations 

( ~ Q + H11 (:) + G (:) H12 (Q) + .; (Q)) (~I (Q)) = E (. ~I (Q)) (S) 

H 12 (Q) - F (Q) T Q + H22 (Q) + G (Q) ~2 (Q) ~2 (Q) 

where 
A A 

Hkz (Q) =I 'Pk* (q, Q) W' (q, Q) <Pz (q, Q)dq =<<Pk [ H"' \ P1) (9) 

A 

where G (Q) and F (Q) are non-adiabatic terms. 

If H12 (Q) vanishes, the representation is adiabatic. The representation is 
A 

diabatic if F (Q) is negligibly small. Diabatic states are often defined by the 
A 

requirement that F (Q) vanish.26•2•15•16 While in diatomics this requirement 



378 J. HENDEKOVIC 

may be justified, in polyatomics additional constraints appear which are 
rarely fulfilled. 27•28 In the general multi-state case this "requirement is certainly 
too strong.29 

TRUE POTENTIAL SURFACE CROSSING IN POLYAOTMICS 

In polyatomics, where the potential non-crossing rule does not hold, 
defects of the addiabatic representation are more serious then in diatomics.24,25,5 

1. At the crossing point electronic wavefunctions are discontinuous. 
2. At the crossing point non-adiabatic coupling functions f(Q) are infinite. 
3. Along a path around the crossing point electronic wavefunctions change 

the sign. 

Since the adiabatic electronic wavefunctions are essentially discontinuous 
at the potential crossing point they should not be used as basis functions in 
the expansion of the molecular wavefunction, eq. (2). Instead, one should 
find two well-behaved functions spanning the same twodimensional manifold 
as two locally degenerate adiabatic wavefunctions. In general, keeping resulting 
functions orthogonal, the new functions I <1>1 ( q, Q)) and 1! <1>2 ( q, Q)) are given 
by a 2 X 2 Q-dependent orthogonal transformaUon.26•27•9•8 

( 
I <Pl (q, Q))) = (cos e (Q) - sine (Q) ) ( I <fJ1 (q, Q))) 

I <P2 (q, Q)) sine <Q) cos e <Q) ! cp2 (q, Q)) 
(10) 

Since there are infinitely many ways to choose the continuous functions 
I <1>1 (q, Q)) and I <1>2 (q, Q)) in a given 2-dimensional manifold, one may impose 
an additi:onal requirement to make the choice unique. Diabatic functions, 
dominated by well-defined configurations, and coinciding with adiabatic 
wavefunctions at the dissociation limit, would certainly represent a physically 
significant choice. Thus, one should find such 6 (Q) in the complete space 
of nuclear coordinates Q, which generates diabatic functions by the transfor
maHon (10). fo the avoided crossing problem of diatomics several schemes 
for the adiabatic-diabatic transformation were proposed,6,15•16,1s-2o but they are 
neither general enough nor ·sufficiently suited for the problem of conical 
intersections in polyatomics. In the next two sections we shall present the 
recently proposed22 general variational method for the adiabatic-diabatic tran
sformation. 

VARIATIONAL DEFINITION OF DIABATIC STATES 

Accepting Lichten's original concept of diabatic states1 as states dominated 
by certain simple electronic configuration (ionic, covalent, single-determinant, 
etc.) the problem is - how to extract such two orthogonal states from a given 
2-dimensional manifold of adiabatic wavefunctions? 

A:s a first step, of heuristic value only, let us consider two »perfect« 
orthogonal diabatic states I <1>1) and I <1>2), each given by a single Slater deter
mi:nant in a certain orbital basis set. Suppose that two »adiabatic« states I <pi) 
and I qJ2 ) are produced by a 2 X 2 orthogonal transformation 

(11) 

Suppose further that the recorded »adiabatic« states are expressed in a certain 
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unnatural orbital basis set, in which they have a large number of configuration 
interaction components. How to recover the original single-determinant »dia
batic« states from this record? Clearly, one should find an inverse transfor
mation of (11), as in eq. (10), by changing the angle e until one of the resulting 
functions ti <P) is recognized to be a Slater determinant. However, how to 
recognize a Slater determinant I <P) if it is expressed (in an unnatural orbital 
set) by thousands of CI components? This can be done by finding the natural 
spin-orbitals Zu. of I <P) and their occupation nubers Yu. from the relevant 
reduced density matrix30 (with c,/ an electron creation operator): 

~ R,_w z," = Y .. Zµo;> R,w = <<P I cµt c, I i/J) (12) 
II 

If all nonvanishing occupati:on numbers Yu. are equal to one, the function I <P) 
is a Slater determinant. 

Although this procedure solves the problem of finding diabatic states in 
our model case, it cannot be applied to a more realistic situation when the 
diabatic states are not »perfect« pure configurations. An algorithm is required 
which would generate diabatic states of the best possible structure in a given 
manifold. Again, our simple model of two Slater determinants will help to 
find such an algorithm. 

Recall that our »diabatic« (single-determinant) states are identified by 
inspecting the occupation numbers of their natural spi:n-orbitals. What happens 
to the ocoupati:on numbers if one mixes a little these two Slater determinants? 
The sum of the occupation numbers does not change since it equals the 
number of electrons, ~Yu. = N. However, the sum of squared occupation 

a 
numbers diminishes. Namely, ~ Ya.2 ;::::; N, since y .. 2 ;::::; y" for all 0 ;::::; Yu. ;::::; 1, and 

a: 
it reaches the maximum value N for a Slater determinant. Thus, in our model 
case one may generate »diabatic« states by requiring that the sum of squared 
occupation numbers of their natural spin-orbitals be the largest possible. 

This variati:onal procedure may be applied also to more general adiabatic 
states. It will tend to transform them into vectors which are dominated by 
one or several pure configurations - to the extent permitted by the original 
manifold. States obtained by this variational procedure will be called diabatic. 

TWO-DIMENSIONAL MANIFOLD 

The crossing or avoided crossing of only two adiabatic potential surfaces 
represents the most common case of the break-down of the Born-Oppenheimer 
approximation. Mulbiple surface crossi<ng could be treated as a sequence of 
twosurface problems. 

If I <pi) and I <pz) are two orthonormal adiabatic electronic wavefuncti:ons, 
the equivalent diabatic orthonormal states I <1>1) and I <1>2) are 1'ocally given 
by that 2 X 2 transformation, eq. (10), which maximizes the sum F of squared 
occupation probabilities of the natural spin-orbitals of the resulting diabatic 

·states: 
F = ~ [y"2 (1) + y._2 (2)] =max. (13) 

a 

From the defining equation (12) for the natural spin-orbitals using their 
orthogonality, we have 
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This gives 

or 
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r" (i) o"~ = ~ Z"" (i) Z,~ (i) Rµv (i), 
µv 

i = 1, 2 

F = ~ [Rµv2 (1) + Rµ/ (2)] =max. 
µv 

F = ~ [Rµv (1) + Rµv (2)] 2 
- 2 ~ Rµv (1) Rµv (2) =max. 

µv µv 

(14) 

(15) 

(16) 

It may be easily verified that R = R (1) + R (2) remains invariant on the tran
sformation (10). This matrix could be named the one-electron reduced density 
matrix of the manifold. Thus, from eq. (16) we obtain 

~ Rµv (1) Rµv (2) = min. (17) 
µv 

Expressing the reduced density matrices R of diabatic states in terms of 
reduced density and transition matrices e (ij) of the original adiabatic states, 

l?µv (ij) = (<pi I cµt cv I rp;) (18) 
we obtain 

with 
Aµv = l?µv (22) - l?µv (11), 

From eqs. (17) and (19) it follows that 

B µv = l?µv (12) + l?µv (21) 

~ [Aµv cos 2 61 + Bµv sin 2 61]2 = max. 
µv 

where 8 is a variational parameter. This gives 

A cos2 2 61 + B sin2 2 61 + C sin 4 61 = max. 
with 

(19) 

(20) 

(21) 

(22) 

(23) 

F'inally, the function in eq. (22) reaches its maximum for the following value 
E>o of e: 

tan (4 610 ) = 2 C/(A-B), (A-B)/cos (4 610 ) > 0. (24) 

This is equivalent to the equat1ons 

sin 4 610 = 2 C/a2, cos 4 610 = (A-B)/a2 (25) 

with 
a2 = 4 c2 + (A - B)2 (26) 

Requiring the continuity of 8 0 along any path around the conical intersection, 
equations (25) fully define this angle. This prescription determines completely 
the 2 X 2 adiabatic-diabatic transformation in eq. (10) for every nuclear con
figuration separately. 

The adiabatic-diabatic transformation (10) generates the following poten-
tial matrix 

( 
H11 H12 \ = (E: - 11 cos 2 0 
H21 H22 } - L1 sin 2 61 

-11sin261 ) 
E + L1 cos 2 e (27) 

expressed in terms of the adiabatic energies s1 and s2: 
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(28)> 

CONCLUSIONS 

The variational scheme for the 2 X 2 adiabatic-diabatic transformaUon,. 
discussed in this paper, represents a predse mathematical expression of. 
Lichten's original concept of diabatic states. This scheme is very general,. 
simple to apply, and equally valid for avoided and true adiabatic surface· 
crossings. It requires only one-electron reduced spin-density and transition 
matrices of relevant adiaibatic states, so that non-adiabatic coupling functions. 
need not be computed at all. 

In the resulting diabatic representation non-adiabatic coupling functions 
do not vanish exactly They should be, however, equally negligible as in the· 
domain where the Born-Oppenheimer approximation iis valid. 
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SAZETAK 

Varijacijski pristup dijabatskim stanjima 

J. Hendekovic 

Razmotrena su izbjegnuta krifanja i koniena presijecanja ploha adijabatske 
potencijalne energije. Defekti adijabatske reprezentacije na konienim presjecima 
pripisani su nepravilnom razvoju kontinuirane molekulske valne funkcije s pomocu 
skupa lokalno diskontinuiranih funkcija. Svrha dijabatskih stanja u ovom kontekstu 
jest uredenje adijabatske reprezentacije. Uvedena je nova varijacijska definicija 
dijabatskih stanja i izveden je jednostavan opci algoritam za adijabatsko-dijabatsku 
transformaciju. 




