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An extension of the Lefebvre-Daudey method of building self­
-consistent localized MO's for closed-shell systems by use of the 
perturbation theory is given for open-shell systems. By avoiding 
the eigenvalue problem, and then the diagonalization process, a 
convenient set of SCF MO's is build so that the results of the 
Configuration Interaction calculations can be qualitatively under­
stood from a chemical point of view. An application to the ortho­
meta- and para-xylylenes is given. 

INTRODUCTION 

The ortho- meta- and para-xylylenes can be considered as resulting from 
the interaction of a benzene ring with two methylene groups in ortho- meta­
or para-positions. This kind of systems can be studied by purely topological 
methods such as Q.D.M.P.T.1•2 (Quasi Degenerate Many-Body Perturbation 
Theory) and N.0.0.N.3 (Natural Orbital Occupation Number) or by Valence­
-Bond wave functions4• It is well known2•3 that in the ortho- and para-systems 
the singlet state is lower than the triplet while in the meta- the triplet state 
is lower than the singlet. 

F1or a study by Configuration Interaction method of the singlet-triplet 
energy difference of these systems two kind of M.0.'s can be used to build 
ground and excited state d'eterminants: 

- The first set is made of the canonical delocalized SCF M.O.'s of xylyl­
enes araising from the usual Hartree-Fock variational method. The main 
problem with the use of these orbitals results from their complete delocalizat­
ion over the radical centers and the benzene ring; then it is difficult to give 
a chemical interpretation of the Configuration Interaction calculations. 

- A second set of M.0.'s is made of the localized orbitals which can be 
chosen by purely chemical intuition: the benzene ring occupied and vacant 
orbitals and the orbitals associated with the two methylene groups; after nor­
malization this set of orbitals can be used to build the ground and the excited 
state determinants. Although it is easy to give a chemical interpretation in 
these kind of determinants, the Configuration Interaction calculations does not 

* Presented at The IUP AC International Symposium on T heoretical Organic 
Chemistry, held in Dubrovnik, Croatia, August 30 - September 3, 1982. 
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converge rapidly due to the local character of the chosen orbitals; in practice 
one have to go, at least, to the fourth order terms to reach the convergence. 
On the other hand a perturbation expansion beyond the second order cannot 
be easily understood in a qualitatively manner. Therefore the conceptual 
advantage of the use of the perturbation theory is lost. Therefore we need a 
convenient set of semilocalized M.0.'s which allows fastly convergent Con­
figuration Interaction calculations. 

For this purpose we shall build S.C.F. M.O.'s by a perturbational method. 
The starting orbitals of the S.C.F. process will be totally localized on the ben­
zene ring or on the two methylene fragments; by avoiding the eigenvalue 
problem, and then the diagonalization process5 >6 we hope to preserve at the 
end of the S.C.F. process the identity of the initially chosen orbitals. 

THE OPEN-SHELL SELF CONSISTENT PERTURBATIONAL METHOD 

A . Method 
Many years ago Lefebvre5 proposed to use the perturbation theory to 

calculate SCF M.0.'s instead of the variational theory in the traditional Hart­
ree-Fock method. A few years later Daudey6 used the Lefebvre theory in order 
to obtain SCF M.0.'s for a closed-shell system close to the initial guess of 
orbitals; furthermore he demonstrated how one can determine directly self­
-consistent localized M.0.'s for a closed shell system. 

Following the Lefebvre-Daudey method one can build7 a set of SCF M.O.'s 
<P/, </Jp' and '{[Ji* for an open-shell system starting from an initial guess of 
M.0.'s <P;, <PP and '{[J/ in the following manner: 

<I>{= <Pi + ~ cip <Pp + ~ cii* <Pt <I> 
p j• 

<Pp'= <Pp-~ cip <Pi + ~ cpi* <Pi* (2} 
i j• 

<P/' = <P(- ~Ci{ <Pi - ~ Cp/ <PP (3} 
i p 

where i, p and j* index correspond to the doubly occupied, partially occupied 
and vacant M.0.'s respectively. 

In eq. (1), (2) and (3) the mixing coefficients Cip, Ci/ and Cp/ are supposed 
to be small. Then using these modified M.O.'s '{[J/, <Pp' and <P{' one can build 
a ground state, determinant, <P0'. 

or (4a} 

<Po' = II <<P1 + ~ clp <Pp + ~ C1i* <P/) <<P2 + ~, Czp <Pp + ~ Czi* <Pi*) .. . 
p j• p j• 

... (<Pi + ~ cip <Pp + ~Ci/> ... <<Pp - ~ cip <Pi + ~ Cp/ <Pi*) .. · II (4b) 
p j• i j• 

Because coefficients Cip, Ci/ and Cp/ supposed to be small one can neglect 
in eq. (4b) the terms of an order higher than order two with respect to these 
coefficients; developping the determinant (4b) leads to: 

<Po'= 11 <P1 <P2 · · · <Pi··· <Pp· .. 11 + 11 <~ clp <Pp> <P2 ···<Pi··· <Pp··· II + · · · + 
p 

+ 11 <P1 <P2 · · · <~ cip <Pp>··· <Pp··· II + · · · + 11 <P1 <P2 · · · <Pi···<-~ cip <Pi)··· II + 
p i 
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+ II <~ C1j* <P/) <P2 ···<Pi· · · <Pp··· II + · · · + 11 <P1 <P2 · · • <~ cii* 
j • j• 

<Pi*) · ·· <Pp ··· II + · · · + 11 <P1 <P2 · · · <Pi · ·· <~ cpj* <P/) . • • II + . . . (5) 
j * 

The 2nd .. . 4th determinants are zero ; after factorization of the other 
determinants, the relation (5) becomes: 

or 

<Po' = II </JI <P2 • • · </Ji · · · </JP ··· II + ~ ~ Ci/ II 
i j• 

<Pl <P2 • .. <Pt .. . <Pp . . · II + ~ ~ c pj* II <Pl <P2 . .. <Pi .•. <Pt .. · Ii (6a) 
p j• 

</Jo'= <Po + ~ ~ Ci/' <Pi-+j • + ~ ~ Cpi* <PP-+j• (6b) 
i j • p j • 

where "l>o and <Pi-+i*, <P P-+i* represents ground and excited state determinants 
respectively. 

The coefficients in eq. (1), (2), (3) and (6b) are chosen as (see be1ow): 

c ,, - Fi( 
ij' -

Ei- cj* 

c ip = 
F ip 

(7) 
ci - <p 

c ·* = 
Fp/ 

PJ <p- c/ 

where s and F are the diagonal and off-diagonal elements of the Fock matrix 
in the M.0.'s basis. 

At each SCF cycle the new set of M.0.'s Pp', Pp' and ll/J ' i* which is 
obtained from the previous one (<Ph <Pp and i<P/) by means of eq. (1), (2) and 
(3) is orthonormalized by a mixed Lowdin-Smith procedure7 • The same pro­
cess is the repeated until convergency is reached i. e. until the following 
relations are fulfilled 

Ffj] = Ffj_+
1
> = 0 ) 

F~n) = F~n+ l) ~ 0 
ip ip 

FC~>. = F c~:- 1> = 0 
Pl Pl 

(8) 

where n represents the nth iterative cycle. 

As it can be demonstrated8 when the mixing coefficients and the conver­
gence conditions are given by relations (7) and (8) respectively then eq. (6b) 
corresponds to the first order correction of the ground state determinant, <P0 , 

by all the monoexcited state determinants, <P i-+i* and <PP-+i* , in the frame­
work of the Nesbet approximation9 for the open-shell systems. 

The whole SCF perturbative proces has been tailored so as: 
(i) to avoid the mixing of M.O.'s with the same occupation number. In 

particular we need to avoid the mixing of the singly occupied orbitals which 
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are in general degenerate or quasi-degenerate in an open-shell system and 
then have a tendancy to mix together. 

(ii) to follow in a simple and concise manner the evolution of the M.O.'s 
along the SCF procedure. Indeed as it can be seen from eq. (1), (2) and (3) 
in each SCF cycle each M.0. is obtained from the previous one mixed with 
a small fraction of the others M.0.'s. By avoiding the traditional eigenvalue 
problem and then the diagonalization process the final SCF M.O.'s - as in 
the Lefebvre-Daudey method - have a strong memory of the starting in the 
initial guess M.0.'s. 

However this perturbational method needs a careful choice of the initial 
guess of M.0.'s so that the mixing coefficients Cip, Ci{ and Cp/ be actually 
small i n the perturbational development. Most often, these conditions can be 
satisfied by choosing as initial guess, a set of orbitals which are localized 
or quasi-localized in well chosen molecular fragments; these molecular frag­
ments can be determined from on chemical intuition grounds. 

B. Application to Xylylenes 
Bl . Minimal Basis Calculations in the ab Initio Level 

Because the initial guess orbitals are crucial for the final M.0.'s in the 
SCF perturbational method we have chosen them in the following manner: 
The eight n-orbitals of each xylylene i:somer are the six canonical delocalized 
n-MO's of the benzene ring plus two P, atomic orbitals for each methylene 
group. The a-orbitals are the canonical a-M.0 .'s obtained by a preliminary 
Hartree-Fock variational calculation for each xylylene isomer. The whole set 
of these orbitals is then orthonormalized by a s-'/, process. 

In the above set of orbitals each xylylene isomer is considered as a pure 
diradical system with a single electron in each P, atomic orbital: therefore 
these two orbitals are, in the beginning, the two N.B.M.0.'s (Non-Bonding 
M.0.'s). At the end of the SCF perturbative process each N.B.M.O. contains 
- as was expected by the theory - only one P, atomic orbital plus some 
delocalized tails on the benzene ring. These delocalized tails are the conse­
quence of the interaction (see next paragraph) ·of each P, orbital with the 
occupied and vacant orbitals of the benzene ring fragment. 

Our calculations show further that the main rearrangements of the guessed 
orbitals occur in the first iterative SCF cycle; the remaining cycles lead to 
small numerical refinements. This is specific to the n-electron systems and 
can be also observed in the traditional variation methods when Hiickel type 
orbitals are used in the initial guess. 

B2. Rationalization of the ab Initio Results at the Hiickel Level 
As the first SCF cycle for the n-electrons of the xylylenes has a decisive 

role in the final results one can use the Hiickel approximation to understand 
this. At this level of approximation the M.0.'s of the benzene ring can be 
given by the simple and well known analytical expressions 10 for a 4 N + 2 
cyclic polyene. 

By using these expressions one can obtains analy tical expressions for the 
mixing coefficients Ci/, Cip and Cp{ given by eq. (7); further by making the 
corresponding trigonometrical summations in eq. (2) one can obtains for the 
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NBMO's, for example, the following expressions (given here before normali­
zation): 

(9) 

CB q==---sm-J q-q0 )i \ - +sm-\q-(q0 ) 2 \ 
KN . :n [ N . :n ] 

' 2(JN 2 2 2 

(10) 

CA,q and Cs,q are the L.C.A.O. coefficients in the qth A.O. of the 4 N + 2 poly­
lene in the A and B N.B.M.0.'s respectively; 

Pz1 and Pz2 are the two methylene Pz A.O.'s; 

(q0 ) 1 and (q0 )i are the numbers of the two A.0.'s of the 4 N + 2 polyene in 
which the Pz1 and p.2 A.O.'s are lying; 

KN is a constant which depends on the size of the 4 N + 2 polyene 
A 

KN== < iJj q
0 

\ h (l) \ Pz, > + ~ ~ Bk, Bkq
0 

(iJJ q
0 

Pz, \ iJj q
0 

<P) + (cJiq
0 

P Z1 

k v 

A 

here h (1) is the monoelectronic operator and Bkv, Bkq
0 

are respectively the 
LCAO coefficients in the <t>. and <t> q

0 
A.0.'s of the kth doubly occupied M.O. 

of the 4 N + 2 polyene. 

The differential overlap of the NBMO's, crucial to the Configuration 
Interaction analysis, is proportional to the products of eq. (9) by eq. (10); the 
investigation of this products gives: 

when ( qoh and ( qoh are 

both odd (stared) 

or both even (unstared) 

wpen ( qoh and ( qoh are 

) 

~ 0 when q =even (unstared) 

CAq X Csq 

= 0 when q = odd (stared) 

even and odd ~unstared and stared) 
CAq X Csq = 0 for each q 

The above relations reflect the alternant character of the xylylene sy­
stems; they show also that each xylylene isomer can be vi,sualized as the 
superposition of two benzyl radicals. It should be noticed here that this kind 
of N.B.M.O. can be also obtained11 by a n/4 rotation of the HOMO and LUMO 
canonical MO's of xylylenes; however in this case the origin of the N.B.M.O.'s 
cannot be given. 
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THE CONFIGURATION INTERACTION CALCULATIONS FOR THE SINGLET-TRIPLET 
ENERGY DIFFERENCE 

As it is well known12,13 perturbation theory allows the direct calculation 
of the energy difference between the ground and the excited states. For the 
direct calculation of the singlet-triplet energy difference Malrieu has pro-

A 

posed13,14 a Nesbet-Eipstein barycentric partition of the exact, Hex, hamiltonian 

A A A 

Hex= Ho+ V 
with 
A A 

Ho = Eo [ I S > < S I + I T > < T I ] + L [ < <Pk I Hex ·I <Pk > I <Pk > < '<l>k I ] 
<t>k 

where I S > and I T > are the zero order singlet and triplet wave functions 
respectively; 

Eo is the barycentric zero order energy; 

<Pk are all the excited state determinants. 

Under the above partition of the exact hamiltorrian the energy diffe­

rence, L\ E ~2~ T · of the singlet-triplet state in the second order is given13,14 by 

A A 

< <[>I I Hex I pk > < pk I Hex I <f>2 > 
M~2._T = 2 ~ ________ A ___ ___ _ 

<t>k Eo - < <Pk I Hex I <Pk > 
(11) 

where 

TABLE 

Compound 
OR THO- META- PARA--------- ev ev ev 

Contribution 

Exchange + 0.0301 + 1.6197 + 0.0263 

Super Exchange - 1.5010 - 0.0001 -1.7386 

Double (on Dynamic) · 
Spin-Polarization - 1.2263 + 1.1367 - 1.2311 

Doubly Excitations + 0.0640 -0.2978 -0.0107 

Charge Transfert 
A,B~j* - 0.0056 . -0.8802 -0.0117 

Charge Transfert 
i~A,B -0.0132 -0.9628 -0.0090 

SUM - 2.6520 + 0.6155 -2.9749 

where the plus sign means that the corresponding contribution favors the triplet state and 
the minus favors the singlet state; 

A and B are the two N .B .M.O.'s; 
i and j• are the occupied and vacant M.O.'s. 
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The main advantage of formula (11) is that it can give in a simple and concise 
manner the contribution of each excited state determinant in both the singlet 
and triplet zero order states. 

The final results are given in the table. The full analysis of these results 
will be given in a forthcoming paper. 

CONCLUSION 

The SCF perturbative process gives, as expected by the theory, N.B.M.O.'s 
which have a strong memory of the initial guess orbitals; furthermore the 
use of these orbitals in the Configuration Interaction Calculations of the 
singlet-triplet energy difference gives a satisfying convergence even to second. 
order. 
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SAZETAK 

Perturbacijske samouskladene o'rbitale za sisteme s otvorenom ljuskom. 
Primjena na ksililene 

P. Karafiloglou 

Prikazano je prosirenje Lefebvre-Daudeyeve metode izgradnje samouskladenih 
lokaliziranih MO za sisteme sa zatvorenom ljuskom, pomocu perturbacijske teorije, 
na sisteme s otvorenom ljuskom. Uklanjanjem problema vlastitih vrijednosti i pro­
cesa dijagonalizacije izgraden je pogodan set samouskladenih MO tako da se rezultati 
dobiveni metodom konfiguracijskih interakcija mogu kvalitativno sagledati s kemij­
skog aspekta. Predocena je primjena na orto-, meta- i para-ksililene. 




