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We have considered skeletal forms for topological (conjugated) 
biradicals and have examined alternative structural classification 
schemes for them. In particular, we have looked more closely at 
the classification proposed by Herndon and Ellzey, based on the 
multiplicity of the zero eigenvalue and have examined all acyclic 
forms having 12 or fewer carbon atoms, and all cyclic forms having 
8 or fewer carbon atoms. Whlle the present work does not con­
tribute to resolving the controversy as to which type of biradical 
can be expected to have the singlet, and which the triplet ground 
state, it provides the possibility of grouping compounds of the same 
expected ground state and thus allows the deduction of similar 
properties for members of the same group. Hence, definitive theo­
retical or experimental results obtained for a new standard species 
can then be applied to a wider body of biradicals. Examination 
of the distribution of »unpaired« spin density and the character 
of bonds which have a constant body type (so-called essentially 
single or essentially double CC bonds) provided guidance for deriv­
ing a number of rules for the construction of larger topological 
biradical forms by the combination (as fragments) of smaller-sized 
biradicals or other molecular fragments. 

INTRODUCTION 

Classification as an operation can be used in structural chemistry in <>rder 
to predict novel compounds with certain desired properties. Classification is 
used widely in data reduction, for example in cluster analysis and pattern 
recognition, where it is tied to empirical parametrization and hence is devoid 
of much of the structural background. In this paper we reconsider the use 
and role of classification, but insist on structural criteria as the only legitimate 
source for the grouping of molecular systems. We will give particular con­
sideration to biradicals of conjugated hydrocarbons. Structural factors of inte­
rest here are graph-theoretical invariants and these themselves will belong to 

* Presented at The IUP AC International Symposium on Theoretical Organic 
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two groups: (1) basic graph invariants (independent of the chemical model as­
sumed) and (2) invariants based on a model which reflects the chemical approach 
(or simplification) to a structure. In the first group we include concepts such 
as paths, circuits, conjugated circuits, Kekule structures, et., as long as they 
are viewed as mathematical constructions. In the second group we have con­
cepts such as NBMO's (non-bonding molecular orbitals), the characteristic 
polynomial interpreted as the secular determinant, and other concepts used in 
the Hiickel molecular orbital (HMO) approach, or parametrized on certain 
SCF MO calculations. In each case a definitive model is involved. 

Conjugated biradicals are molecular systems with two electrons in de­
generate frontier n-orbitals, or in frontier n-orbitals which are very close to 
each other in energy so that the difference in orbital energies can be overcome 
by the loss of energy accompanying decoupling of paired electrons. Some 
biradicals are very stable molecules, such as, for example, the Tschitschibabin 
hydrocarbon biradical. More commonly they are of interest as intermediates 
in thermal2 and photochemical3 reactions. Some pyrolytic reactions are sup­
posed to occur via biradical intermediates.4 In addition, biradicals emerge in 
various theoretical considerations, for instance in structure-resonance theory.5 

CLASSIFICATION SCHEMES 

We have some freedom of choice in selecting the invariants on which a 
classification is to be based. In addition, one can use several classification cri­
teria simultaneously to break up the population of objects into very many 
subgroups. We will examine here a few alternatives, and will finally con­
centrate on one particular classification criterion which appears to be the 
most relevant for differentiation of biradicals. Firstly, one can classify bi­
radicals (but also other compounds) into acyclic, cyclic, bicyclic, etc., simply by 
inspecting their molecular skeletons. One continues by inspecting cycles present 
in a molecule and by distinguishing benzenoid radicals (consisting of fused 
benzene rings) and other structures. Depending on whether the cycles and 
rings are even or odd (i. e. having an even number of carbon atoms, or having 
an odd number of carbon atoms) one arrives at alternant (bipartite) and non­
-alternant (non-bipartite) biradicals. Within HMO such classification is already 
important because of the observations of Coulson and Rushbrooke6 on the 
distribution of orbital levels, which is symmetric for the former class. All this 
has been known £or :some time; nevertheless it was only relatively recently 
that Herndon and Ellzey7 recognized an additional important classification 
factor: the multiplicity of the zero eigenvalue. However, Dewar and Longuet­
-Higgins8 were first to point out the importance of the multiplicity of the 
zero eigenvalue. For example, in Figure 1 we show several derivatives of the 
azulene skeleton which are biradicals, but which belong to two substantially 
different classes. 

Figure 1. Biradicals derived from azulene skeleton which have apparent structural similarity 
yet belong to two substantially distinctive biradical types 
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By looking at Figure 1 one cannot, without further analysis, classify the­
structures, unless one is aware of the criterion used and unless one performs 
the necessary check. Figure 1 illustrates that superficially similar structures­
may behave quite differently and apparent forms for molecular structures 
(biradicals here) may be misleading. Once we know the criterion for clas­
sification we still have to make the necessary manipulations in order to find' 
out the answer. In the case of the azulene derivatives in Figure 1, using, as 
suggested by Herndon and Ellzey, the multiplicity of the zero eigenvalue as 
the basis for classification, we still have to find if we have a single zero 
eigenvalue or a doubly degenerate one. This can be done in many ways.9•10 

In this paper we discuss the classification of topological biradicals, based_ 
on the multiplicity of the zero eigenvalue. Before engaging in the development 
of suitable schemes for classification and construction of biradicals let us 
emphasize that the graph-theoretical approach can only distinguish two (or­
more) classes; it cannot predict properties. The best approach then is to con­
sider a few (or even a single) representative members of the class as a standard. 
and to adjust the parametrization accordingly. 

There has been some disagreement in the past about predictions of pro­
perties of members of each of the two classes. For instance, Mestechkin and 
Vysotskii,11 using a variant of MO known as UHF MO LCAO, predicted the 
biradicals shown in Figure 2 to be in the triplet state, while Herndon anci 
Ellzey7 predicted them to be singlet species. 

Figure 2. Biradicals which are predicted to be in a triplet state by UHF MO scheme, are­
predicted as singlets by several other MO models. VB theory also confirms spin singlet of' 

these biradicals 

Similar systems have also been predicted to be spin singlets, in many in­
stances by use of the PPP and Hubbard models.12- 14 In addition, ab initio 
calculations15 and VB theory14•16 also verify the spin singlet for these structures 
in all cases tested. All these MO and VB results are in clear disagreement 
with the results of the UHF MO LCAO approach.11 Since it is generally 
accepted that the UHF procedure artificially favours higher spin states by 
about 25 kcal/mole, the ground state of structures in Figure 2 is likely to 
be singlet. We have emphasized 'likely' not in <>rder to indicate that the matter 
should be reconsidered (which indeed may happen), but to stress that in this 
paper we do not take sides or contribute to resolving the dilemma. We are 
concerned with recognizing the structural factors which eventually decide if 
a molecule belongs to the first or to the second class, viewing the zero eigen­
value as the criterion for classification. If, and when, it is beyond any doubt 
that the molecules in Figure 2 are biradicals with a singlet spin state, then we 
could indicate other molecules which are also expected to be spin singlets. If 
it happens that the present prevailing support for the singlet state is shown 
to be doubtful, such a finding will not affect our classification. Only the 
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.standards which suggests properties for the class as a whole will have to be 
-revised accordingly. 

ACYCLIC TOPOLOGICAL BIRADICALS 

Topological biradicals cannot have Kekule valence forms. If one attempts 
'to construct a valence formula two non-adjacent carbon atoms remain "isolated". 
'These "isolated" carbon atoms are sites of unpaired electrons and their pre­
.sence will be indicated by a dot. The illustration in Figure 3 shows an acyclic 
:system with six possible valence-type structures, the sites for the unpaired 
'electrons being at terminal vertices and on one of the central carbon atoms. 

Acyclic systems are necessarily alternant and the distribution of "dots" 
in Figure 3, summarized in the bottom diagram, happens to coincide with the 
·customary division of carbon atoms in alternants into "starred" and "unstar­
red".17 In other acyclic conjugated biradicals we find that some of the "star­
red", which are available, are not used arnd that unpaired electrons may also 
-occupy "unstarred" sites. In analysis of biradicals it appears that one should 
focus attention on unpaired electrons, rather than on the standard "starred" 
- "unstarred" partition of atoms, since the former are the essential component 
of such systems. In Figure 4 we show all biradicals havirng eight and fewer 
·carbon atoms, while in Figure 5 we have listed al acyclic conjugated biradicals 
having ten carbon atoms. 

• • • 

~-~~ 
Jl ~/· 1 A# Jl #'-# 

·"r~ ·"l~ ·'T'7 
• 

Figure 3. Valence-bond type structures for 2,3-dimethylhexatriene biradical. The last structure 
shows sites available for unpaired electrons 

In both sets of diagrams we have indicated with a visible black circles those 
carbon atoms which share the density of unpaired n-electrons. A close look 
at Figure 4 and Figure 5 reveals important differences between various 
structures. For example, in the case of C10 biradicals we may have as few as 
four, and as many as six carbon sites participating in delocalization of unpaired 
spins.18 It seems that such differences in overall behavior deserve close exa­
mination. Clearly some parts of the molecular skeleton are "inactive" and in 
order to see better the similarities and differences between biradicals in 
Figure 4 and Figure 5, we will construct new graphic forms to represent them. 
The recipe for construction of these new graphic representation of biradicals 
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:Figure 4. All acyclic biradicals having four to eight carbon atoms. The sites of unpaired 
electron densities are shown as dark circles (»dots•) 

is as follows: Select as vertices only "dotted" carbon atoms and connect them 
in they are separated by a path -of length two. Thus, for each graph in 
Figure 4 and Figure 5, a simpler graph may be derived. These new and simpler 
graphs are shown in Figure 6. 
{)bserve that these new graphs, named daughter graphs, may be discon­
·nected -or may have a single component. In addition, several structures lead 
to the same daughter graph. Thus, the daughter graphs may serve for finer 
'Classification of acyclic conjugated biradicals. The connected daughter graphs 
"Correspond to biradicals that have attained the maximal number of delocalizat­
ion sites for unpaired electron density for the relevant part of the skeleton. 
{)n the other hand, in disconnected graphs such sites are fewer than the 
maximum possible, or, even if the maximal number has been achieved, the 
:sites do not belong to the same bipartite class. 

The occurence of a smaller number of different daughter graphs for 
biradicals than the original number of biradicals considered makes possible 
a classification of the biradicals into fewer groups. Observe that we can clas­
sify biradicals having a different number of carbon atoms by this scheme. 
Thus, for example, 
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Figure 5. All acyclic biradicals having ten carbon atoms. The sites of unpaired electron 
densities are shown as dark circles (•dots«) 
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A 0 0 

e.g.:~ 

Figure 6. Daughter graphs derived from the corresponding parent acyclic graphs. The daughter 
graphs indicate the delocalization of unpaired spin density 

all have a common daughter graph: two disconnected K2 units.19 This is a 
significant property of the classification: It appears to be sufficiently general,. 
independent of the size, and, as we shall see later, also independent of the­
cyclic character of the structure. It is desirable therefore to investigate the· 
classification scheme in more detail and for this purpose we selected acyclic 
biradicals with 12 carbon atoms. There are 95 acyclic biradicals with 12 carbon 
atoms. In all there are 551 acyclic graphs with 12 vertices,20 but when one· 
excludes those of valency greater than 3 and excludes those which correspond 
to polyenes, and those which correspond to higher radicals (e.g. tetraradicals), 
one is left with only 95 biradical structures, the skeletal forms of which are 
depicted in Figure 7. 
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II . group: On-2 = 5 

Ill . group : On-2 =6 
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IV. group: On-2 = 7 
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VI. group : a n-2 = 9 
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~~~ 
~~~ 
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VII. group: a n _ 2 = 10 

VIII. group: a n _ 2 = 11 

IX. group : a n _ 2 = 12 

X. group: On-2 =14 
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XI. group: a n-2 = 15 

XII. group: an- 2 = 16 

Figure 7. All 95 acyclic biradicals having 12 carbon atoms grouped according to the coefficient 
an-2 of the characteristic polynomial 

The graphs i:n Figure 7 have been divided 'into groups with headings an_2 = 4, 
a0 _ 2 = 5, an_2 = 6, etc., because it was observed that they shown (1) some com­
mon structural features and then (2) that such classification coincides with the 
value ·of the coefficient an_2 of their characteristic polynomial.21 The common 
features of biradical graphs grouped together are even more clearly seen when 
we examine the corresponding daughter graphs shown in Figure 8. 
For example, all biradical graphs in the group an_2 = 4 have unpaired electron 
sites separated by a single carbon atom, and have two such units, this being 
clearly evidenced in the single common daughter graph. All biradical graphs 
in group an_2 = 5 have whole biradical electron density sites linked and attached 
to a remnant part which is triene. For higher an_2 numbers some apparent 
diversity in participating compounds is noticed. For an_2 = 6 the biradical 
part consists of two and three radical site units which are combined with a 
butadiene fragment or with two ethylene fragments . For a0 _ 2 = 7 we have, 
in addition, two different radical fragments : 

For higher an_2 coeficients the number of components is even greater, although 
a more careful inspection of Figure 8 reveals some common features in the 
daugther graphs: They all have the same numb.er of vertices for each a0 _ 2 

group which may or may not be different from the number of vertices in other 
a0 _ 2 groups and some similarity in their patterns of branching. 

Two questions are worth further examination: 

(1) Can one construct topological biradicals from simpler structures?; and 
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On.2=14 On-2 = 14 On-2 = 14 

On-2: 15 On-2 :15 On-2 = 15 

On-2 = 16 On-2 :16 

Figure 8. Daughter graphs depicting the degree of delocalization of the unpaired spin density 
in acyclic biradicals having 12 carbon atoms 

(2) Is there some structural interpretation for the subdivision -of the graphs 
into various an_2 groups? In order to answer the first question we will consider 
the group an_2 = 4. From Figure 7 we see that all biradicals in this group may 
be viewed as having been derived by substitution of two (equivalent) radical 
fragments of the type, 

y 
at the various sites of the two trienes, 

2 4 6 
~ 1 

3 5 
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If we assume the above numbering of carbon atoms, then only the following: 
di-substitutions are possible for the first triene: 

I: (1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,3); (2,4); (2,5); (3,3) 

Other combinations are ruled out due to the symmetry. Thus, for example,. 
combination (3,5) is equivalent to the combination (2,4) already used. For the­
second triene: 

II: (1,1); (1,2); (1,4); (1,5); (1,6); (2,4); (2,6); (6,6) 

Carbon atom 3 cannot be used because it already has a valency of three, 
while a combination such as (2,5), due to the symmetry of the skeleton, is, 
equivalent to (1,4). 

In all we have ten biradicals of the first substitution class, and eight_ 
biradicals of the second substitution class; a total of 18. A similar construction. 

Figure 9. C12 biradical forms with maximally delocalized unpaired spin densities ' 



430 J. V. KNOP ET AL. 

approach may be applied to other biradical forms. We see from Figure 7 that 
polyenes with n-4 carbon atoms lead to biradicals with an_2 = 4 and an_2 = 5 
and all possible biradical structures may be generated in this way. The 
above method of constructing biradical forms is of some interest. It is more 
€fficient than constructing all trees and then filtering out unqualified forms 
and it also allows the construction of a subclass of biradical forms. For 
instance, if we are hunting for biradical forms that have delocalized unpaired 
density, we find such a biradical in the case of an_2 = 11, an_2 = 14, a0 _ 2 = 15 
and a0 _ 2 = 16. Figure 9 shows these skeletal forms with maximally »delocali­
zed« unpaired spin density. 

They should be contrasted with several biradical forms which also have the 
maximal number of carbon atoms participating in delocalization of spin 
density, but which do not have these sites fully delocalized - as evinced by 
their daughter graphs which have two components (case a0 _ 2 = 12). 

On-2 = 5 K = 5 

On-2 = 7 K = 7 

Figure 10. Valence structures for several acyclic biradicals demonstrating the connections of 
an-2 with the number of Kekule-type valence structures 
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On - 2 = 8 K = 8 

~ ~ 

~ ~ 

Figure 10. {cont'd). ~ ~ 
Clearly, the classification of the topological biradicals based on the coef­

ficient a0 _ 2 appears to reflect considerable structural content and one wonders 
if the relationship is even deeper. It is not difficult to see that in the case 
when a0 _ 2 = 4 all biradicals belonging to this group have four valence stru­
ctures. Similarly, biradical forms having an_2 = 5, as one can verify, can 
have five valence structures. One can continue and examine biradicals forms 
having an_2 = 6, 7, 8, etc., and thus can confirm that the corresponding number 
of valence structures is in all cases given by an_2• Several illustrative examples 
are given in Figure 10. 

CYCLIC TOPOLOGICAL BIRADICALS 

Cyclic topological biradicals fall into two classes: (a) alternant biradicals 
and (b) non-alternant biradicals. In order to determine where a given cyclic 
biradical should be classified, it is enough to see whether it contains at least 
one odd-membered cycle. In that case it belongs to the non-alternant biradicals. 
The above classification correlates well with the criterion based on the multi­
plicity of the zero eigenvalue. Thus, cyclic alternant biradicals have a zero 
eigenvalue of multiplicity two, while cyclic non-alternant biradicals have a 
zero eigenvalue of multiplicity one. This results is connected with the follow~ng: 
It can be shown that the cases with spin density only in non-adjacent sites, 
which resembles bipartite (alternant) structures, for which the same is true, 
have characteristic polynomials where an-! = 0. Thus, the smallest non-zero 
coefficient is an_2 which implies a doubly degenerate zero eigenvalue. On the 
other hand, the cases with adjacent spin density sites, which resembles non­
-bipartite (non-alternant) structures, are associated with characteristic poly­
nomials where an-! ;;.6 0, and consequently are associated with a zero eigen-
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Figure 11. All non-alternant cyclic biradicals having 8 or fewer carbon atoms. Structures in 
part (a) of the Figure have a single zero eigenvalue and no Kekule valence structures (proper 
biradicals), while those in part (b) have a single zero eigenvalue and have Kekule structures 

(biradicaloids) 

value of multiplicity one. In practice it is relatively easy to see if a biradical 
form can support adjacent or only non-adjacent spin density sites: one only 
has to examine a few (not even all) Kekule-type valence structures. With this 
observation it is not difficult to verify that the azulene biradical forms of 
Figure 1 belong to two different classes as already mentioned. As an example, 
all monocyclic and bicyclic non-alternant biradicals having 8 or fewer carbon 
atoms are shown in Figure 11. 

The structures in Figure 11 are divided into two groups: the first group is 
characterized by having K = 0, while the second group has K >'6 0. Structures 
characterized by a single zero eigenvalue and K = 0 are non-alternant »pro­
per« biradicals. However, structures typified by a single zero eigenvalues and 
K ,t. O exhibit partial biradical character and are sometimes called biradi­
caloids. 22- 26 
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As has already pointed out, cyclic alternant biradicals must have a doubly 
degenerate zero eigenvalue. Examples of monocyclic and bicyclic alternant 
biradical forms are presented in Figure 12. 
Structures in Figure 12 are also partitioned into two groups: 

(a) »proper« biradicals characterized by a doubly degenerate zero eigenvalue 
and K = 0, and 

(b) biradicaloids typified by a doubly degenerate zero eigenvalue and K ~ 0. 

The correspoding daughter graphs are given in Figure 13. 

Because two carbon radical sites may now be connected by more than a single 
path the daughter graphs of alternant cyclic biradicals show »double« con­
nections. 

(al 

9 

6 8 

(bl 

<> <So 
<>-<> 

Figure 12. Examples of alternant cyclic biradicals. Structures in part (a) of the Figure have 
doubly degenerate zero eigenvalue and no Kekule valence structures (proper biradicals), while 
those in part (b) have doubly degenerate zero eigenvalue and have Kekule structures (biradi-

caloids) 
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Figure 13. Daughter graphs of alternant cyclic biradicals 

SOME PROPERTIES OF BIRADICALS 

The classification discussed is based on the zero eigenvalue degeneracy 
and the Kekule structure count. By examining valence structures with radical 
points shown as dots we find that essentially we have two types of biradicals: 
those in which adjacent sites (at least in some parts of the skeleton) have 
non-zero unpaired electron spin density and those in which spin density is 
not in adjacent sites. It appears that the first class has a single zero eigenvalue, 
while the second has a doubly degenerate zero eigenvalue. This is certainly 
the case with all acyclic structures (which belong to the latter case) and 
monocyclic structures. In the case of bicyclic structures the observed regularity 
appears to be questioned by the biradicals given below, 

which, as is . evident, have K = 0, and for which one finds x 2 as a factor 
of the characteristic polynomial, although the distribution of unpaired spin 
density within the cyclic part of the structures allows non-zero contributions 
in adjacent sites. Hence, the above structures are exceptions, but the presence 
of two cyclic components calls for more careful characterization of the second 
class. The two bicyc1ic structures from above in fact differ from the rest in 
that erasure of the inner bond (making systems monocyclic) results in bira­
dicals of the class K = 0 and a single zero eigenvalue, while a similar opera­
tion on any of the remaining bonds, as well as on any of the remaining 
members, always produces a member of the same class. In other words, the 
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two bicyclic structures have spanning subgraphs19 which do not belong to· 
the same class. Hence, the structures have different properties and constitute 
a class in themselves. 

The graphs representing delocalization of unpaired spin density shown in 
Figure 7 have been grouped according to the value of the coefficient an_2 and, 
as one can verify, have an_2 valence forms for biradical structures. This finding, 
demonstrated on several C12 biradicals, is also true for biradical skeletal forms 
having fewer carbon atoms. Hence, if the coefficient an_2 is, for example, 4-
then, regardless of the number of carbon atoms, the skeletal form for the 
biradical will be one that can sustain four valence structures. Recognition of 
the »biradical« part and the »olefinic« part of the molecular skeleton is impor­
tant as it is one of the prime factors in the classification of biradicals that 
partitions structures into groups for which similar properties are expected. 
However, the same structural feature is of interest in the process of con­
struction of biradical forms. 

CONSTRUCTION OF BIRADICAL FORMS 

One of the advantages of chemical graph theory is its ability to generate 
structures of some anticipated class. By focussing attention on several stru­
ctural components and using the model of Ruckel, the (4m + 2) rule (which 
is generally valid even if the HMO model has limitations) one can derive con­
struction rules,27 for example, that insertion of four CC bonds into any single 
cycle will not change the Ruckel character of the structure (such as the 
pattern of orbital levels). In the same spirit we can now formulate a number 
of construction criteria for biradicals. Most of these may be recognized by 
close inspection of the reported biradical skeletons. 

We give below the set of construction rules that embrace proper biradicals 
and biradicaloids: 

(i) Acyclic biradicals with n carbon atoms can be constructed from acyclic 
biradicals with n-2 carbon atoms by attaching a K2, i.e. 0--0, 
fragment to any »dotted« carbon 

A----~-~ 
(ii) Tvo acyclic radicals or biradicals can be joined by linking any two 

»undotted« carbon atoms to produce a biradical with the maximum num­
ber of »dotted« carbon atoms. The coefficient a0 _ 2 of the new biradical 
is equal to the product of the coefficients an-t (an_2) for the two com­
ponent radicals (biradicals). 
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(iii) The olefinic C=C fragment can be attached to any »undotted« carbon 
atom of a proper biradical to produce a novel biradical form with a 
fragment with essentially single and double CC bonds. The coefficient 
a0 _ 2 is determined by the :form of the associated »proper« fragment. 

(iv) The olefinic C=C fragment can be inserted between two adjacent 
»undotted« sites of a pair of radicals or biradicals, i. e. it can link two 
radicals or biradicals, leading to a novel biradical structure. The coef­
ficient a0 _ 2 is given by the product of the coefficients an-1 (an-2) for the 
two radical (biradical) fragments. 

:(v;) The olefinic C=C fragment can link two radicals (biradicals) at the 
)>undotted« position by the same carbon atom. The coefficient an-2 of 
the composite biradical (tetraradical) is given as the product of the 
corresponding radical (biradical) coefficients a0 _ 1 (an_2). 

(vi) Larger olefinic fragments can be combined with biradical fragments 
using any of the available »Undotted« carbon sites. 

N--{ -
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(vii) Cyclization of an acyclic biradical by linking »dotted« and »undotted« 
carbon atoms produces a proper cyclic biradical. 

-
(viii) Cyclization of an acyclic biradical by linking two »undotted« carbon 

atoms produces a biradical. This operation does not change the value 
of an-2· 

A-A 
(ix) Cyclization of acyclic radicals by linking two »dotted« carbon atoms 

results in a new biradical structure which has all »dotted« ring carbon 
atoms and belongs to a subclass which is different from the parent 
structure. 

(x) Insertion of a linear chain with an even number of atoms into a cyclic 
structure does not change its biradical character. 

~+)-)--0 
(xi) The attachment of a linear chain with N = even, (N = number of atoms) 

to a (poly)cyclic structure will not alter its biradical character. 

(xii) 

--
The insertion of linear chains with N = even (N = number of atoms) 
as bridges in (poly)cyclic structures does not change the biradical cha­
racter of the generated structure. 
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~+2=--
(xiii) The attachment of an even-membered linear chain at any position on 

(4m)-annulene or on its polyene exocyclic derivative will not alter their 
biradicaloid character. 

D+=--

Q+2=-

§+= 

Some of the above results are given in a different way by Dohnert and 
KouteckY.13 

The significance of the recognition of »building« units and construction 
criteria is in their use in the derivation of structures having certain predeter­
mined structural requirements. For instance if one desires to derive all bira-



TOPOLOGICAL BIRADICALS 439 

dical forms that consist of two equal radical fragments with a separation of 
one CC double bond one can use the available rules to obtain all cases which 
will have coefficients an_2 = 4, an_2 = 9, etc., and within each such group one 
constructs or selects only structures complying with the requirement. In this 
way a number of structures which, for this purpose, are uninteresting, are 
avoided, thus increasing the efficiency of the search. 

DISCUSSION 

With the current expansion of chemistry, the problem of characterization, 
classification, ordering, etc., of structural forms is more important than might 
appear to a superficial observer. Over four million structures have already 
been registered, nevertheless, within any selected subgroup, a number of 
structures that are mathematically possible have not yet been observed. 
Computer programming of structures generates conceivable forms28, which 
then have to be further analyzed in order to select those most likely to be of 
interest in experimental chemistry. One needs selection rules or criteria, and 
one pragmatic approach is to require that »Candidate« structures be as »Si­
milar« as possible to naturally occuring substances.29 The definition ·of »simi­
larity« has yet to be specified, but the use of path codes has been shown to 
provide a useful criterion. Another approach - not yet properly developed -
is to search for ordering of structures. Again, the requirement for »ordering« 
rules has to be defined, and may vary from application to application. If one 
»strikes« at some rule that would order (or only partially order) desired stru­
ctures close to one another one again has a useful scheme for »filtering« 
structures and discarding undesirables. The important aspect of graph con­
struction is not an exhaustive construction of all possible graphs of a given 
size (although this is also important for some very special considerations30,31), 

but construction of forms having the desired qualities. Furthermore, if such 
a construction can be combined with derivation of the structures in some 
definite order, one achieves two goals in one step. Order for constructions was 
indicated as being an important component several years ago,32 however it 
seems that this has only recently been appreciated.33 ,34 It will depend on the 
algorithm used whether the derived structures are ordered or not. Of course, 
one has to recognize that different ordering schemes are possible, even 
desirable, if one is comparing experimental data. Our present construction of 
bi:radical forms has not been based on any ordering scheme. However, as 
a construction scheme, or set of rules it had an advantage which should be 
indicated as an alternative to what was discused above. Biradicals normally 
are not stable systems, and many forms may be viewed as transient forms 
of interest for the mechanism of chemical transformations. By being able to 
discern several structurally different classes of such biradical forms we are 
offering those involved in the analysis of mechanisms a basis for differentiation 
of alternatives. It is quite conceivable that a chemical transformation (rearran­
gement for instance) can be thought of as involving several non-equivalent 
intermediate steps. Depending on energetics, barriers, etc. some of these are 
more likely and some less likely, and one can imagine that the nature of the 
biradicals involved may be a critical factor here. It is beyond the scope of 
the present work to speculate or even attempt to suggest (or rank) forms, 
but such a project, using empirical data, may in the future arrive at useful 
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structural rules and indicate which type of radical is of more relevance for 
the chemical processes under consideration. Finally, biradicals are also of 
interest for the clarification of properties of large systems in which »parts« 
of the structure are weakly coupled. We have only mentioned the Tschitschi­
babin hydrocarbon, which raises the question: is the system to be viewed as 
»weakly« coupled radicals or as a single molecule (in which one Kekule type 
form allows coupling of unpaired spins)? Biradicals for which one can write 
the Kekule valence form have not been examined here in much detail, but 
they also allow considerable delocalization of the unpaired spin density and 
would have some common properties with the biradicals considered here -
such a delocalization is at least formally possible. Whether the spin density 
is localized ·or delocalized will be determined by e:x:periment. Once this is 
known the results for many related structures can be deduced from the 
graph-theoretical characteristics of the structure. 
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SAZETAK 

Kemijska teorija crtefa. V. 0 klasifikaciji topologijskih biradikala 

J. V. Knop, D. Plavsic, M. Randie i N . Trinajstic 

Predlozena je klasifikacija topologijskih biradikala (biradikaloida) koja se teme­
lji na mnogostrukosti nulte vlastite vrijednosti i na neposjedovanju (ili posjedovanju) 
Kekuleovih struktura. Izvedena su pravila za konstruiranje novih biradikala (bira­
dikaloida). 




