Topological Resonance Energies of Thiocoumarins*

Albin Jurić** and Nenad Trinajstić

The Rugjer Bošković Institute, P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia

Received August 30, 1982

Topological resonance energies of thiocoumarin, thiochromone, and related systems are reported. Theoretical predictions indicate that systems in which the benzene ring retains to great extent its aromatic structure are much more stable than the corresponding quinonoid isomers.

In the present note1 the topological resonance energy, TRE, model2-4 is applied to thiocoumarin, thiochromone, and related structures. All studied structures are given in Figure 1.

Figure 1. Studied molecules

* Presented in part at The IUPAC International Symposium on Theoretical Organic Chemistry, held in Dubrovnik, Croatia, August 30—September 3, 1982.

** Permanent Address: SOUR »UNICEF«, RO Institute, P.O.B. 78, 78001 Banja Luka, Bosnia and Herzegovina, Yugoslavia.
While coumarin (2H-1-benzopyran-2-one) is a molecule with a long and exciting history,5-8 thiocoumarin has been studied to a much less extent.9-11 Similarly, all thio systems in Figure 1 are also not well known molecules. This is surprising because thiocoumarin, thiochromone, their derivatives, and related structures have many interesting and useful physico-chemical, biological, and pharmaceutical properties and have found wide applications in chemical and pharmaceutical industry.12-25

Aromatic stability of coumarin, chromone (4H-1-benzopyran-4-one), and its derivatives has been discussed by a number of researchers.1,6,26-29 However, there is no work, to our knowledge, in which the resonance energies of thiocoumarins are reported and their aromatic stabilities discussed. Therefore, we decided to study thiocoumarin, thiochromone, and related molecules by means of topological resonance energy approach which has shown previously, with certain limitations,34 to be a quite reliable method for predicting aromaticity in various conjugated systems.3,4,29-40

Topological resonance energies of molecules 1–16 have been calculated using the following formula

$$\text{TRE} = \sum_{j=1}^{N} h_j (x_j - x_{jac})$$

where x_j and x_{jac} represent the Hückel spectrum of a given molecule and the spectrum of the corresponding acyclic polynomial,2,3 respectively, while h_j ($j = 1, 2, \ldots, N$) are the orbital occupancy numbers. N is the number of π centers in a given molecule. The parameters for heteroatoms are taken from work by Hess and Schaad.41,42 Numerical work is carried out in a way described elsewhere.43

We have also calculated the TRE per electron, TRE(PE), values of thiocoumarins since we wanted to find out how these molecules compare to benzene. Because they are larger systems than benzene, we compared their TRE(PE) values to that one of benzene ($\text{TRE(PE)} = 0.046$).

TRE(PE) values are calculated from the formula,

$$\text{TRE (PE)} = \frac{\text{TRE}}{N (\pi)}$$

where $N (\pi)$ is the total number of π electrons in the molecule. Note, for many heteroconjugated systems $N (\pi) \neq N$, because some π centers are populated with one π-electron, and others with two.

There are, of course, other possibilities open for normalizing TRE.44,45 If TRE(PE) is accepted as a convenient normalised form of TRE, the threshold values for aromatic, non-aromatic, and anti-aromatic compounds are as follows:

(i) aromatic compounds: $\text{TRE(PE)} > 0.01$

(ii) non-aromatic compounds: $\text{TRE(PE)} = 0.00$

(iii) anti-aromatic compounds: $\text{TRE(PE)} < -0.01$

Numerical values of TRE and TRE(PE) for thiocoumarins are reported in the Table.
TRE OF THIOCOUMARINS

TABLE I

Topological Resonance Energies of Thiocoumarins

<table>
<thead>
<tr>
<th>Compound</th>
<th>TRE</th>
<th>TRE (RE)</th>
<th>% of benzene character</th>
<th>Reference to the preparative work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.2436</td>
<td>0.0203</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.2676</td>
<td>0.0223</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.2388</td>
<td>0.0197</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.2655</td>
<td>0.0221</td>
<td>48.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.2302</td>
<td>0.0192</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.2644</td>
<td>0.0220</td>
<td>48.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.2348</td>
<td>0.0195</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.2539</td>
<td>0.0220</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.2553</td>
<td>0.0213</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.2805</td>
<td>0.0234</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.2590</td>
<td>0.0216</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.2300</td>
<td>0.0233</td>
<td>50.7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.0903</td>
<td>0.0075</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.1005</td>
<td>0.0088</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0865</td>
<td>0.0072</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.1161</td>
<td>0.0089</td>
<td>19.7</td>
</tr>
</tbody>
</table>

* Compounds are listed in Figure 1.

From the Table we see that the thio-derivatives of coumarin (1), thiocoumarins, and thio-derivatives of chromone (5), thiochromones, are all aromatic compounds. Experimental evidence supports this result.\(^\text{11}\) Therefore, the substitution of oxygen by sulphur does not cause destabilization of the system. However, the aromatic stability of thiocoumarins and thiochromones is only half that of the benzene ring stability. The meaning of this result is that the benzene ring in the thiocoumarins and thiochromones is distored to a certain extent.

Thio-derivatives of 3H-2-benzopyran-3-one (14–16) are much less stable than thio-derivatives of coumarin and chromone. While thiocoumarins and thiochromones are stable and have TRE(PE) values in the range of 0.019–0.023, compounds 14–16 should be much less stable with TRE(PE) values in the range 0.007–0.009. They are quinonoid structures in which the benzene ring is very much distorted. Therefore, it is not surprising that compounds 14–16 are not reported as yet.

Acknowledgement. We thank Professor L. Klasinc for helpful discussions. We also thank the referees for their suggestions and comments.

REFERENCES

1. This work is the fourth part of a series Topological Resonance Energies of Biologically Active Conjugated Systems. The third part is P. Ilić, B. Mohar, J. V. Knop, A. Jurić, and N. Trinajstić, J. Heterocyclic Chem. 19 (1982) 625.
SAŽETAK

Topologijske rezonancijske energije tiokumarina

A. Jurić i N. Trinajstić

Izračunane su topologijske rezonancijske energije tiokumarina, tiokromona i srodnih struktura. Teorijska predviđanja ukazuju na veću stabilnost struktura u kojima benzenski prsten zadržava svoju aromatičku strukturu u odnosu na odgovarajuće kinoidne izomere.