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The degree of structural complexity of cyclic molecules with
acyclic branches is quantitatively expressed by means of rules
based on the change in the sum of the topological distances, i. e. the
Wiener number, in the corresponding graphs. It is shown that these
topological rules are well reflected in the properties of isomeric
alkyl-benzenes.

INTRODUCTION

The central problem in theorctical chemistry is the deduction of mole-
cular properties from the structural features of molecules. In this the influence
of electronic and geometric factors is usually separately treated, i.e. one
discriminates between the electronic structure and the structure of the mole-
cular skeleton (or molecular constitution) as defined by the equilibrium state
of atomic nuclei.

There are several levels of information about the molecular structure. The
first level considers the connectedness (the atom-atom connectivity) or topo-
logy of a molecule. Most nearest-neighbours interactions are a consequence of
the connectivity in a molecule. This aspect of molecular structure is sometimes
called the primary structure of a molecule. The secondary structure of a
molecule concerns bond lengths and bond angles and it is commonly referred
to as the geometry of the system. The tertiary structure of a molecule results
from torsional energetics and it is usually referred to as the conformation of
the system.

Different methods compete in studying the dependence of properties on
molecular structure. Chronologically the first approach proposed was the in-
crement method, according to which each molecular fragment (an individual
atomic group, a bond, a ring, etc.) contributes to the total magnitude of mole-
cular properties. The most complete form of the increment method has been

* Presented at The IUPAC International Sympositi'm. on Theoretical Organic
Chemistry, held in Dubrovnik, Croatia, August 30 — September 3, 1982.
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developed by Tatevskii.!® The additive schemes for calculation of molecular
properties, however, have their limitations related to accuracy achieved as
well as to their applicability to molecular properties originating from inter-
molecular interactions, such as melting and boiling points, vapour pressure,
etc. The very basis of the approach, that individual structural fragments always
make the same contribution to various molecular properties, is also debatable.
In many cases a complicated combination of individual structural elements
means a new quantity that is not reducible to the sum of individual contribut-
ions. The last argument has played a major role in the appearance of alternat-
ive algebraic approaches to the relation between molecular constitution and
properties.

In the work by Duboist? the diverse structural elements are already
variables, their contributions to a certain molecular property are calculated
by means of a computer program for correlation analysis. The procedure
eliminates those factors with a negligible contribution, thus laying bare the
structural fragments dominating the molecular property under consideration.
This approach displays a high accuracy and has found considerable application
in research on biologically active substances. The difficulties in applying this
method to complicated molecular systems are mainly of technical mnature: it
needs a computer with a large memory, it uses a considerable amount of
computer time, etc. From the methodological point of view, however, the
computer-oriented description of a molecular property as a function of a
very large number of structural parameters seems questionable, since the
physical nature of the property is, thus, dissolved in the mass of various
parameters. )

Quite different is the approach based on a global quantitative estimate
of molecular complexity by means of various structural (topological). indices.5™?
It is supposed that these indices, reflecting the essential features of molecular
structure, will correlate well with molecular properties. Chemical graph theory
is largely applied in the realization of this approach.’® 7 The approach is based
on the idea that molecular properties are mainly dependent on the primary
structure of a molecule (molecular topology),!® while the specific geometrical
parameters such as bond lengths and bond angles (molecular metrics) are
responsible rather for only moderate deviations in the magnitude of a given
property. The structural indices, obtained by graph-theoretical techniques,
reflect on a unified scale the gradual increase in the complexity of molecular
structures starting from linear acyclic and proceeding through branched acyclic,
cyclic, branched cyclic, and finally to cyclic structures with acyclic branches.
This order of molecular complexity is reflected in a regular manner in various
properties of these molecules thus revealing possibilities for establishing satis-
factory correlations between molecular properties and topological indices.!!:'

Reviewing the results in this field, one should note those obtained for
acyclic structures.?03® However, in the case of cyclic molecules one faces some
difficulties due to ring strain. This is the reason why the topological approach
was mainly applied to (poly)cyclic structures containing strain-less rings, e. g.
systems consisting of six-membered rings.?% Most frequently, however, at-
tempts to associate the properties of (poly)cyclic molecules with their structure
represented correlations within a certain homologue series of components. These
correlations for isomeric compounds are, with a few exceptions,®®5! not satis-
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factory. This is understandable when taking into account the numerous factors
influencing cyclicity and branching of cyclic molecules, which determine to
a large extent their structural complexity. Hence, there is an obvious necessity
for general quantitative analysis of the regularities in the changes of molecular
topology of these compounds.

The sum of the topological distances in the molecular graph, G, (the so-
-called Wiener number of a graph) appears to be a particularly convenient
tool¥” for realization of the above-stated aim. It should be recalled that the
distances between graph vertices are integers since the distance between two
adjacent vertices is by definition a unity.!*1” This fact points to the connection
between the graph distances and the Wiener number of a graph. The easiest
way to obtain the Wiener number of a graph, W = W (G), is by means of the
distance matrix, G, D (G). The distance matrix of the graph is a real N X N
(N = number of vertices in G), symmetric in relation to the principal diagonal.
Its elements, Dj; (G), represent the length of the shortest path (the topological,
graph distance) between the i-th and the j-th vertices in G. All the elements
of the type D; (G) are, by definition, zero. Also, by definition, D;; (G) = 1, if
i and j vertices of G are adjacent. Therefore, all off-diagonal entries of the
distance matrix are integers. It is found that the Wiener number of a graph
is equal to the sum of all entries of the trigonal off-diagonal submatrix of
D (G),

W(G) =3 By
1]

It is enough to consider the submatrix of D (G), because owing to the symmetry
of the distance matrix each D;; (G) entry is counted twice.

The Wiener number was initially defined for acyclic graphs (acyclic hydro-
carbons)?® as the sum of the paths (bonds) between each pair of vertices (atoms)
in the graph (molecule). However, the one-to-one correspondence between a
pair of neighbours a certain number of bonds away and the number of paths
of the same length holds only for acyclic systems. Hence, in polycyclic struc-
tures the Wiener number is associated with distance only, and not with the
number of paths, but in acyclic structures the two are the same. Since the
sum of the topological distances in the molecular graph is associated in an
obvious way with the compactness of the molecules, the Wiener number was
used as a reverse proportional measure of molecular branching®3%4¢ and cycli-
city.47:4952,53 The change in the Wiener number as a result of certain structural
changes was reported in a series of papers dealing with isomeric polycyclic
structures with different types of ring linkage (fusion-,*® spiro-** and bridge-
-type®® linkage), in which a number of rules of molecular cyclicity were for-
mulated. The latter are of practical interest, since, in principle, they provide
a basis for the prediction of the relative order of magnitudes of different
molecular properties in a series of isomeric chemical compounds.

In relation to the above, we wish in the present work to report on the
influence of topological rules, defined by means of the change in the Wiener
number along a series of isomers, on the m-electron energy and on some phy-
sical properties of cyclic structures with acyclic branches. Alkylbenzenes will
be used as the test molecules.
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TOPOLOGICAL RULES FOR CYCLIC MOLECULES WITH ACYCLIC BRANCHES

In this section we present a set of topological® rules for characterization
and classification of cyclic molecules with acyclic branches. Each rule deals
with a certain molecular rearrangement within an isomeric series of com-
pounds, as well as with the change in the Wiener number upon this trans-
formation. The rules are illustrated by examples accompanied by the Wiener
numbers and the Hiickel energies in § units. The lengthy mathematical proof
of these rules are given elsewhere.”

Rule 1. — The sum of the topological distances in molecular graphs of
isomeric structures composed of a cycle and a non-branched side-chain goes
through a minimum, defined by the condition,

Ny = (3No“‘_2VN‘-’D—NO+ ,,37.,_4),5 o

with an increase in chain length at the cost of a decrease in the cycle size
at a constant parity of the cycle dimensions,

Wene 2 Waon+1 2 o > W o norn < Wneno, Notntt

<has < WN—n——s. Nyx+n+s @

where n and s are positive integers. In the above relations Ny is the number
of atoms in the side-chain (or the length of the latter), N is the number of
atoms in a cycle, while N, is the total number of atoms in the molecule. Illu-
strative examples are given in Figure 1.

It is seen from the examples in Figure 1 that the maximum in the Wiener
number appears at the beginning of the series of isomeric compounds under
consideration. Thus for molecules having smaller rings, which are most fre-
quently encountered in chemical practice, the Wiener number changes smoothly
without extremes. The latter may be of use in the search for correlations with
molecular properties.

"O = 22= ‘onst., N ‘l const.

13 g 10
2 L -_ - —
-~ ~C = 10 18
_,,_. - L

W=1261 W=1267 Wa1401 W=1583 w=1733

] € =27.722 £_=27.661 E_=27.599 E_=27.281 E.=27,0%

()

W=1331
E_-28.105

-G-GO

V=1243 W=1323 W=1491 U=1667

£ =28.008 Eﬂ=28.0|3 Eu=28.0h9 En=25.157
T

Figure 1. Examples illustrating Rule 1. The superscript 2 on the values of E (here and in what
follows) signifies the number of NBMO'’s.
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Rule 2. — The sum of the topological distances in molecular graphs of

isomeric structures composed of a linear string of cata-condensed, or spiro-
-linked rings, or cycles connected by a bridge (a single edge) and non-branched
side-chain with a length Ny multiple to the number of newly-formed cycles,
ax, attached at one and the same position of the terminal ring, decreases when
the length of the side-chain reduces at the cost of formation of new cycles,

Wa, Ni > Wa+x, Ny—n 3

for Ny = ax (N—m). The new symbols in (3) have the following meaning: a is
the number of cycles, x =1,2,3,..., while n =2 - (N—m), where m = 2,1,
and 0 for cata-condensed, spiro- and bridge-linked cycles, respectively. An
explanatory example is presented in Figure 2.

o

0

O QO OO — 000

W=889 W=753 W=625 W=569

€ =23,042 £ =23.682 £ =24.255 £ =24.930

21

22 2
O — OO — OO0
. _— —

=218k W=1924 V=1664
£ = 30.899 £ =31.467

[

£=31.6%2

o
w2

g

W=1543
£ =33.161
b

Figure 2. Examples illustrating Rule 2
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Rule 3. — The sum of topological distances in the molecular graph de-
creases when isomers are subsequently created from a structure, composed of
a cycle having up to 10 atoms and a non-branched side-chain, by shortening
the side-chain at the cost of the formation of i new non-branched side-chains
of equal length Nj, on condition that the length of the initial side-chain Ny,
divided by the maximum number of new branches increased by one, is an
integer equal to the length of newlyformed side-chains Nj,

W N i = Wng—xNy, i4x 4)
N
for —i———}_*:-l— = N;. In eq. (4) Ny is the length of the j-th side-chain of the
el . N
initial structure, while *x =1,2,3,... and i =1+ --. Examples clarifying

2

Rule 3 are shown in Figure 3.
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Figure 3. Examples illustrating Rule 3

Rule 4. — The sum of topological distances in the molecular graph in-
creases when in a structure composed of a cycle and two non-branched side-
-chains the longer chain lengthens at the cost of a shortening of the shorter
chain while keeping a fixed distance between them, and a constant cycle size,

W N Ny < Wy 441, Ng"—Al (5)

where Ny = Nyj» and Al=1,2,3,...

Examples supporting this rule are given in Figure 4.
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Figure 4. Examples illustrating Rule 4

Rule 5. — In isomeric structures composed of a cycle and non-branched
side-chains, the sum of the topological distances in the molecular graph in-
creases with an increase in the distance between the atoms to which the side-
-chains are connected. If the sum of these distances is constant, the Wiener
number increases with an increase in the distances between the longest side-
-chains or, if these distances are also constant, the latter is true when the
remaining side-chains become more distant from the longest ones,

w Ny, Nio, Nig, « o, Ayo, dygy « .+ ., dag, . . > WNu, Nio, Nigy o« .y A%yp, A3, 0o, 3. . . (6)
where dy; > d’y, and/or dy3 > d’;3 and/or dy > d’5; ete. The distance (expressed

as the number of bonds) between the side-chains i and j along the cycle is
denoted by d;;. Illustrative examples for Rule 5 are presented in Figure 5.
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Figure 5. Examples illustrating Rule 5
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Rule 6. — Consider a consecutive conversion of a monocycle, having N,
atoms, into isomeric structures in which the cycle, maintaining its parity,
decreases to N atoms at the cost of the creation of 1,2,3,...,i neighbouring,
non-branched side-chains of the same length N;, with i not exceeding (N + 2)/2
or (N + 1)/2 for even- and odd- membered cycles, respectively. The sum of
distances in the molecular graphs, corresponding to a thus formed sequence
of isomers, decreases regularly,

W Ny, 11>W1\:g,,2>... n
following the condition,
aN;N,+2VD _ N
BN GN +a T T ©
where D is given by,
D=3N;[6N2—NZ@©ON,—20) + N;BN2—21 N, + 19) + 3 (N, — 2)*] 9)
The symbols i and N; denote, respectively, the number and the length (expres-
sed as the number of atoms) of the newly-formed side-chains connected to the
cyclic part of the structure. Illustrative examples for Rule 6 are presented in
Figure 6.
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Figure 6. Examples illustrating Rule 6
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The other possibilities for the sum of topological distances in the mole-
cular graphs of such a sequence of isomers, which, however, occur much less
frequently, are:

(a) to pass through a minimum specified by an inequality opp051te to (8)

3N;N, +2VD _ N
SliTe T > — 1= (10)
3N, (3N, + 4) 2 ’

(b) to pass through a maximum specified by the cbndition,
2N;+4<N,<N,+2+2N, VB 11
where N;>>6 and B = (3N, + 10 + 14/N))/3 (3 N; + 4)
(c) to increase when N; = 2 and N, < 8.

Rule 7. — In isomeric structures composed of a cycle anda side-chain
with a branch of arbitrary length, in which the branch is displaced from a
position close to the cycle towards the end of the side-chain, the sum of the
topological distances in the molecular graph increase, or, when the side-chain
has at least three atoms more than the cycle, it passes through a minimum at
a displacement,

AN, = (Ny—N + 1)/2 12)

where N, is the length (as the number of atoms) of the newly-formed branch
attached to the initial side-chain. Examples supporting Rule 7 are given in
Figure 7.
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Figure 7. Examples illustrating Rule 7
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Rule 8. — The sum of topological distances in the molecular graph de-
creases when in isomeric structures, consisting of a cycle, a side-chain, and
a branch attached to an arbitrary atom of the latter, the side-chain shortens
at the cost of an increase in branch length at a constant branch position,

Wy, AN, Npy = Winy, AN, N - > (13)

where Np, <N,, <N, ... Illustrative examples are presented in Figure 8.
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Figure 8. Examples illustrating Rule 8
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Rule 9. — The sum of the topological distances in the molecular graph
decreases when in isomeric structures, composed of a cycle and a side-chain
(with or without branches), the latter shortens at the cost of the formation of
new branches of equal length attached to the side-chain,

Wao o = W pe S (14)

where p is the number of newly-formed branches attached to the single initial
side-chain. Note, p; <p;<... Examples illustrating Rule 9 are shown in

Figure 9.
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Figure 9. Examples illustrating Rule 9

TOPOLOGICAL RULES AND n-ELECTRON ENERGY

Total n-electron energy (E;) is one of the most important parameters
characterising conjugated molecules that can be obtained from the Hiickel
method. Hiickel E,.’s are often of the same degree of accuracy as those obtained
by much more sophisticated (and complicated) SCF 7-MO models.5’®P In this
respect an interesting result was achieved by Hess and Schaad®® who demon-
strated that in many cases E. (Hiickel) follows linearly the total thermodyna-

mically observable energy of conjugated systems.
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Since the Hiickel model is topological in its origin, E, (Hiickel) depends
to certain extent on molecular topology.’® E, (Hiickel) is not just a topological
quantity, because it depends upon a knowledge of a ground-state configuration,
and this may only be attained by an application of the Aufbau Principle, which
is external to the topological aspects of the problem embodied in the adja-
cency matrix.’%s Newertheless, E. (Hiickel) in combination with the Aufbau
Principle is deducible from the structure of the molecular graph. The influence
of some topological factors on the m-electron energy is modestly under-
stood.1”:85 In the case of monocyclic conjugated hydrocarbons, the size of
the cycle is of major importance for E..%° This is formulated as the Hiickel rule!
which states that 4n + 2 n-electron monocycles are more stable than 4n
n-electron monocycles. The generalizations of this rule show that it is valid
for n = small®*% and that it can be extended to polycyclic structures.®5:66

Another factor of topological origin affecting the m-electron energy is the
presence (or lack) of non-bonding molecular orbitals (NBMO’s) which desta-
bilize (or stabilize) the molecule.’” The appearance of NBMO’s is a result of
the particular topology of a molecule for example, monocycles with 4n s-elec-
trons will have NBMOQ’s.1417.68 Similarly, non-Kekuléan molecules, (i.e. mo-
lecules with K = 0, where K is the number of Kekulé valence structures) will
also have NBMOQO’s.%9,70

In the case of acyclic polyenes it has been shown that an increase in
molecular branching generally reduces the s-electron energy. Therefore, the
most branched polyene, among the set of isomers, has the smallest value of E,.

The question may arise whether some topological factors of importance
are left out of these considerations. In the case of polycyclic systems cyclicity
appears to be the essential topological feature. It has recently been shown that
the increase in cyclicity parallels the increase of m-electron energy of poly-
cyclic condensed hydrocarbons. Hence, it is of interest to study the combined
action of branching and cyclicity on the sw-electron energy of cyclic molecules
with acyclic branches, as well as to compare, where possible, their contribution
to other topological factors. However, the high degree of structural complexity
in this class of molecules, as well as the opposing trends in action of some
topological factors, make it difficult to study separate effects. We will examine
here the dependence of n-electron energy on the Wiener number (regarded as
a measure of the overall structural complexity of molecules, including branch-
ing and cyclicity as its major components) within each of the topological rules
presented. Eight of the rules were analyzed using the Hiickel energies of 113
structures presented in Figures 1—9. The rules are divided into three groups
according to the collective influence of the various topological factors on the
n-electron energy.

The first group comprises the rules in which the sum of the distances in
the molecular graph (the Wiener number), representing molecular branching
or cyclicity is the dominating factor. Within Rules 3 and 9 (structures 25—37
and 102—113, respectively) the Hiickel (HMO) energy is directly proportional
to the Wiener number W since in both cases branching increases (we recall
here that E; is reverse proportional to branching®” and the same is true for W%7).
This is shown in Figures 10 and 11.
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Other topological factors such as cyclicity, the number of Kekulé structures,
the number of NBMO’s, are constant throughout the molecular rearrangements
considered. Within Rule 2 (structures 17—24) the n-electron energy increases
with a decrease in the Wiener number (Figure 12). This trend is a consequence
of the increasing cyclicity at the cost of decreasing branching, and it gains
additionally in force by the parallel increase in the number of Kekulé struc-
tures arising in the isomerization process (the latter increases by two for each
additional benzene ring in structures 17—20 and even more so in structures
21—24). Other topological factors, such as the number of NBMO’s, are con-
stant in this case.
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Figure 12. Total m-electron energy vs. the Wiener number for structures 17—24 supporting Rule
2. O denotes condensed, while A bridge-linked rings

The second group includes rules on molecular transformations, (e. g. Rule 6,
structures 58—72) in which the different parity of rings (i. e. rings containing
4n or 4n + 2 n-electrons) splits the dependence of E; on the Wiener number
into two parallel branches (Figure 13).

The direct proportional dependence between these two quantities is caused by
the strong increase in branching of the structures at a constant number of
Kekulé structures and NBMO’s. The decrease in the size of the cycle results
in an additional destabilization of 4n-systems and conversely in a stabilization
of (4n + 2)-systems, but the latter effect is small in magnitude and cannot
change the trend in the two correlations.

When molecular branching or cyclicity does not drastically change, as is
the case with molecular rearrangement of the third group of rules, the Wiener
number no longer dominates the Hiickel energy of a molecule. This role is
taken by the Hiickel or anti-Hiickel character of the cyclic fragment, or, when
the parity effect is constant, by the number of Kekulé structures. These two
topological factors also cause a splitting of the correlation into two branches,
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Figure 13. Total m-electron energy vs. the Wiener number for structures 58—72 supporting Rule 6.

but in the opposite direction in comparison with the change in n-electron
energy with increase in the Wiener number. Such is the case with Rule 1
(structures 1—16) which is similar to Rule 6 (structures 58—72). Both these
rules describe molecular transformations upon which the cyclic fragment redu-
ces at the cost of the increase in the acyclic fragment. The only difference
between the two rules is that the acyclic part of the molecules handled by
Rule 6 is highly branched whilst for those molecules in the domain of Rule 1
it is linear (or less branched). This difference, however, is sufficient to change
the trend in the m-electron energy for (4n + 2)- and 4n-systems. The increase
in the Wiener number is accompanied by an increasing branching of structures
or by a decrease in the Hiickel energy. However, this effect is not strong and
it is counter-balanced in molecules having rings with 4n + 2 n-electrons by the
stronger stabilization effect of the smaller (4n + 2)-rings (Figure 14).

In the case of molecules whose rings have 4n n-electrons, the decrease in the
n-electron energy is the result of both increasing branching and the increasing
destabilizing effect of the smaller 4n-rings. The superposition of the two effects
is reflected as relatively large changes in the n-electron energy.
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In the other three rules of this group, i.e. Rule 4, structures 38—57 (Fi-
gure 15), Rule 7, structures 73—86, and Rule 8, structures 87—101 (Figure 16),
the rearrangements within the acyclic part of the molecules are considered for
a constant cyclic part.

34.46

36.42

Ey

34.38

34.36

Figure 16. Total m-electron energy vs. the Wiener number for structures 91—101 supporting Rule 8

Smaller changes in the sum of topological distances in the molecular graph
result in a very weak change in the Hiickel energy. One could explain the
splitting of the correlation into two sections with opposite trends by the dif-
ference in the number of Kekulé structures (and NBMO’s). Thus, in the case
of Rule 4, K = 2 for branches with an even number of atoms and K =1 for
branches with an odd number of atoms. Similarly, in the case of Rule 7, K = 0
(and NBMO = 2) for the branch linked to even-numbered atoms of the side-
-chain (counting from the terminal atom of the side-chain), while K = 2 (and
NBMO = 0) for the branch linked to odd-numbered atoms of the side-chain.
Illustrative example are given below.

Rule &
NN PN\
QDA™ S K=1
A g W R
P P K=2
Rute 7
NN '/ NP '/
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This argument, however, fails to explain the situation treated by Rule 8, since
the number of Kekulé structures for different isomers is the same,

Here, perhaps, one should take into account different delocalization in the
acyclic parts®? depending on their length and parity. The algebraic structure
count (ASC) model,’"> which takes into account the different parity of the
Kekulé structures,” however, also fails to reflect this effect. We suppose that
the topological factor causing the splitting of the correlation between the
Hiickel energy and the Wiener number into two individual correlations with
opposite trends in the case of the molecular rearrangements following Rule 8
is the alternating number of Kekulé structures in the side-chain (K =0 for
odd and K = 1 for even number of atoms, see examples above).

In concluding this section we wish to summarize the effects that the
examined topological rules have on the Hiickel energy. The latter increases
in parallel with the sum of the distances in the molecular graph upon molecular
rearrangement as designated by Rules 3, 9, 6, 1 4n +2), 4(K=2), TK=1)
and 8 (K = 0). An inverse proportional correlation was found between E, and
the Wiener number for molecular transformations described by Rules 2, 1
(4n), 4 (K = 1), 7(K = 0), and 8 (K = 1). As seen, the Hiickel energy is uniquely
related to the Wiener number by half of the rules (2, 3, 6 and 9). For each of
the remaining rules (1, 4, 7 and 8) there are two correlations between the two
quantities depending on the parity (4n or 4n + 2) of the cyclic fragment
(Rule 1), the number of Kekulé structures in the side-chain of the branched
cyclic molecule (Rule 8). As was demonstrated in Figures 10—16 the correlat-
ions obtained are quite satisfactory. Therefore, the Wiener number used above
as a measure of branching and cyclicity, or more generally as a measure of
structural complexity of cyclic systems with acyclic branches, can be applied
for predicting trends in m-electron energies of molecules in this vast class of
hydrocarbons. The above analysis also provides a comparison of different
topological factors contributing to the n-electron energy of isomeric molecules.
It indicates the cases where the overall structural complexity (branching and
cyclicity) seems to be the dominating factor.
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In this section we will examine the influence that some of the structural
complexity rules formulated above have on eleven properties of alkyl benzenes.
These properties are: relative density, d?°; reflection coefficient, np??; dielectric
constant, ¢; surface tension, ¢; parachor, P; molecular volume, V’g’i,"l ; boiling
point, Tg; heat of formation, —AH“;gfm ; heats of combustion in the liquid and
the gas phase, (— AHi%?nb) liqand (—AH ig;b) zas) Tespectively; and heat of va-
porization, Ljs The datal™ for sixteen alkylbenzenes, presented in Table I,

allow a detailed examination of Rules 3 and 5, as well as a partial examination
of Rules 7 and 9.

Rule 3 can be illustrated by two isomers with 8 carbon atoms and 3
isomers with 9 carbon atoms taken from Table I.

X

2

w1> Wz

Let us denote the Wiener numbers for the two neighbouring structures
in a sequence of isomers, ordered by the increase in this topological index,
by W; and W,,4, respectively. Further, let X; and X;,; be the respective values
of the molecular property X of these isomers. Inspection of Table I shows
that for W;<{W;,; the considered molecular properties of the above two
groups of isomers obey the following inequalities,

@ Xi < Xi+lf where X =P, V f}gol’ =4 Hzcoomb ) lig’ —A Hi%mb ) gas

(b) X;>X,,, where X =4d3’, n%, &0, Ty, —AHBDE | L,

One can conclude that the molecular rearrangement by which a side
chain attached to a cycle reduces in size at the cost of the formation of new
side-chains on neighbouring positions, is reflected in all eleven molecular
properties considered.

2 3 4
W, <W, <W,
ci ol
Wy <Wy <Wy ,
fj——)ﬁ’——ﬁ
10 1" 12

Wip <Wjy <Wj,
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Rule 5 is even better demonstrated because of the larger number of
isomers for which experimental data are available. 3 isomers with 8 carbon
atoms and two sets of 3 isomers with carbon atoms are considered.

For each W; << W;,; within these three groups of isomers two inequalities
are again valid,

(i) X; <X, where X=P, V2 AHZE
% _ 20 . 20 298 208
(i) X;> X;,, where X=dy ng, &0, Tg (—A Hcomb)liq y (—AHomp gas: Lo

The grouping of molecular properties in the case of Rule 5 is similar to
that of Rule 3, the only difference being the interchange of the heat of for-
mation and the heats of combustion.

In the case of Rule 7 one finds exactly the same grouping of molecular
properties in inequalities (i) and (ii) as for Rule 5. Although the data for
boiling points and heats of vaporization are missing one would expect them
to follow a similar trend in the case of Rule 7 as was found for Rule 5.
Clearly more examples are needed since only two isomers illustrating Rule 7

are shown in Table I.
i1 5

wiL > Ms

The situation with Rule 9, which deals with the transformation of a
side-chain attached to a cycle into shorter side-chains having more branches,
is more complicated than for Rules 3, 5, and 7. Rule 9 can be illustrated by
the isomeric structures given below.

Wiz > Wis > Wyg

It follows from inspection of Table I that for each W;<<W;,; within the
above two groups of isomers, a partition is obtained for only some properties,

$ £, 298 : 298
() X;<X,,, where X=0,P, (—A Hcomb)liq’ 2 Hcomb)gas
() X;>X,,, where X=¢, —AHZS

No data are available for Ty and Lys. The other three properties, however,
are differently grouped for isomers with 9 and 10 carbon atoms: ds° and
np*® are in group (ii) for Cy-isomers, but in group (i) for Cjp-isomers, while
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Vma?® is in group (i) for Cy-isomers, but in group (ii) for Cj-isomers. We
assume that the difficulties with Rule 9 regarding these three properties are
caused by the singular behaviour of isomers with branches in the next-to-
-terminal position, as has already been discussed®” in the case of acyclic

branched molecules.
CONCLUDING REMARKS

In this work we have examined how deduced topological rules for cyeclic
structures with acyclic branches are reflected in the m-electron energy and
in various molecular properties. Based on the sum of topological distances
(Wiener number) in the molecular graph, these rules illustrate to what extent
molecular branching and cyclicity determine the properties of this class of
molecules.

The analysis of the correlation between the n-electron energy and the
Wiener number reveals its complicated nature. In the case of conjugated
acyclic compounds one finds that E, decreases with increasing branching.
When polycyclic condensed structures are considered, the Hiickel energy in-
creases in parallel with increasing cyclicity.®® In cyclic molecules with acyeclic
branches both branching and cyclicity effect the n-electron energy. When one
of these factors is constant it is still possible to obtain a unique dependence
between the Wiener number and E;, which is directly or inversely proportional
depending on the factor remaining variable upon the molecular transforma-
tions described by the corresponding rules. When both factors, branching and
cyclicity, are variable the dependence may have quite a complicated form
containing extremes. Clearly in such cases, where the influence of molecular
branching and cyclicity cannot be separated, the topological rules describe
the overall molecular complexity. In addition, the situation for cyclic systems
with acyclic branches is complicated due to the influence of other topological
factors, such as the parity of cycles, the number of Kekulé structures, etc,
acting in these molecules. As was demonstrated above, the latter often deter-
mine the trend in the m-electron energy. In the case of polycyclic condensed
hydrocarbons, the potency of these factors was much weaker and was respon-
sible only for insignificant deviations from the main regularity.*?

In addition to providing a comparative analysis of the different topological
contributions to the m-electron energy, the results of the present study also
have important practical aspects. The topological rules introduced for cyclic
molecules with acyclic branches can be applied to predict the relative ordering
of isomers according to their m-electron energy and various molecular proper-
ties. Since the Wiener number is obtainable by elementary calculations, such
predictions are accessible to every chemist. In addition, the rules based on
the sum of topological distances in a molecular graph are of interest as a
novel approach to structure- property and structure-activity correlations.’®
The major advantage of this approach is in the optimal selection of isomer
samples to be used in a certain correlation. This selection is realized by means
of the structural criteria used in the different topological rules. Thus, it
seems that a promising way for obtaining pertinent correlations between
molecular structure and properties is emerging.

Acknowledgements. — The authors are very much indebted to Professor O. E.
Polansky (Miilheim/Ruhr) for helpful discussions on the formulation of some of the
topological rules presented here. We also thank the referees for their comments.
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SAZETAK

Strukturna sastavljenost i molekularna svojstva ciklickih sistema s aciklickim
ograncima

Ov. Mekenyan, D. Bonchev © N. Trinajstié

Stupanj strukturne sastavljenosti ciklickih molekula s acikli¢kim ograncima
kantitativno je izraZzen pomoéu pravila zasnovanih na promjeni sume topoloSkih
udaljenosti, tj. Wienerovog broja, u odgovaraju¢im grafovima. Pokazano je da se ova
topoloska pravila dobro koreliraju sa svojstvima izomernih alkil-benzene.





