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The degree of structural complexity of cyclic molecules with 
acyclic branches is quantitatively expressed by means of ·rules 
based on the change in the sum of the topological distances, i. e. the 
Wiener number, in the corresponding graphs. It is shown that these 
topological rules are well reflected in the properties of iso:ue1·ic 
alkyl-benzenes. 

INTRODUCTION 

The central problem in theoretical chemistry is the deduction of mole­
cular properties from the structural features of molecules. In this the influence 
of electronic and geometric factors is usually separately treated, i. e. one 
discriminates between the electronic structure and the structure of the mole­
cular skeleton (or molecular constitution) as defined by the equilibrium state 
of atomic nuclei. 

There are several levels of information about the molecular structure. The 
first level considers the connectedness (the atom-atom connectivity) or topo­
logy of a molecule. Most nearest-neighbours interactions are a consequence of 
the connectivity in a molecule. This aspect of molecular structure is sometimes 
called the primary structure of a molecule. The secondary structure of a 
molecule concerns bond lengths and bond angles and it is commonly referred 
to as the geometry of the system. The tertiary structure of a molecule results 
,from torsional energetics and it is usually referred to as the conformation of 
the system. 

Different methods compete in studying the dependence of properties on 
molecular structure. Chronologically the first approach proposed was the in­
crement method, according to which each molecula1' fragment (an individual 
atomic group, a bond, a ring, etc.) contributes to the total magnitude of mole­
cular properties. The most complete form of the increment method has been 

* Presented at The IUPAC International Symposium on Theoretical Organic 
Chemistry, held in Dubrovnik, Croatia, August 30 - September 3, 1982. 
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developed by Tatevskii.1- 3 The additive schemes for calculation of molecular 
properties, however, have their limitations related to accuracy achieved as 
well as to their applicability to molecular properties originating from inter­
molecular interactions, such as melting and boiling points, vapour pressure, 
etc. The very basis of the approach, that individual structural fragments always 
make the same contribution to various molecular properties, is also debatable. 
In many cases a complicated combination of individual structural elements 
means a new quantity that is not reducible to the sum of individual contribut­
ions. The last argument has played a major role in the appearance of alternat­
ive algebraic approaches to the relation between molecular constitution ancl 
properties. 

In the work by Dubois4- 7 the diverse structural elements are already 
variables, their contributions to a certain molecular property are calculated 
by means of a computer program for correlation analysis. The procedure 
eliminates those factors with a negligible contribution, thus laying bare the 
structural fragments dominating the molecular property under consideration. 
This approach displays a high accuracy and has found considerable application 
in research on biologically active substances. The difficulties in applying this 
method to complicated molecular systems are mainly of technical nature: it 
needs a computer with a large memory, it uses a considerable amount of 
computer time, etc. From the methodological point of view, however, the 
computer-oriented description of a molecular property as a function of a 
very large number of structural parameters seems questionable, since the 
physical nature of the property is, thus, dissolved in the mass 'Of various 
parameters. 

Quite different is the approach based on a global quantitative estimate 
of molecular complexity by means of various structural (topological) indices.8-u 
It is supposed that these indices, reflecting the essential features of molecular 
structure, will correlate well with molecular properties. Chemical graph theory 
is largely applied in the realization of this approach.13- 17 The approach is based 
on the idea that molecular properties are mainly dependent on the primary 
structure of a molecule (molecular topology),18 while the specific geometrical 
parameters such as bond lengths and bond angles (molecular metrics) are 
responsible rather for only moderate deviations in the magnitude of a given 
property. The structural indices, obta~ned by graph-theoretical techniques, 
reflect on a unified 'scale the gradual increase in the complexity of molecular 
structures starting from linear acyclic and proceeding through branched acyclic, 
cyclic, branched cyclic, and finally to cyclic structures with acyclic branches. 
This order of molecular complexity is reflected in a regular manner in varfous 
properties of these molecules thus revealing possibilities for establishing satis­
factory correlations between molecular properties and topological indices.11, 19 

Reviewing the results in this field, one should note those obtained for 
acyclic structures.20- 36 However, in the case of cyclic molecules one faces some 
difficulties due to ring strain. This is the reason why the topological approach 
was mainly applied to (poly)cyclic structures containing strain-less rings, e. g. 
systems consisting of six-membered rings.37- 49 Most frequently, however, at­
tempts to associate the properties of (poly)cyclic molecules with their structure 
represented correlations within a certain homologue series of components. These 
correlations for isomeric compounds are, with a few exceptions,50•51 not satis-
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factory. This is understandable when taking into account the numerous factors 
influencing cyclicity and branching of cyclic molecules, which determine to 
a large extent their structural complexity. Hence, there is an obvious necessity 
for general quantitative analysis of the regularities in the changes of molecular 
topology of these compounds. 

The sum of the topological distances in the molecular graph, G, (the so­
-called Wiener number of a graph) appears to be a particularly convenient 
tool37 for realization of the above-stated aim. It should be recalled that the 
distances between graph vertices are integers since the distance between two 
adjacent vertices is by definition a unity. 14•17 This fact points to the connection 
between the graph distances and the Wiener number of a graph. The easiest 
way to obtain the Wiener number of a graph, W = W (G), is by means of the. 
distance matrix, G, D (G). The distance matrix of the graph is a real N X N 
(N = number of vertices in G), symmetric in relation fo the principal diagonal. 
Its elements, Dii (G), represent the length of the shortest path {the topological, 
graph distance) between the i-th and the j-th vertices in G. All the elements 
of the type Dii (G) are, by definition, zero. Also, by definition, Dii (G) = 1, if 
i and j vertices of G are adjacent. Therefore, all off-diagonal entries of the 
distance matrix are integers. It is found that the Wiener number of a graph 
is equal to the sum of all entries of the trigonal off-diagonal submatrix of 
D (G), 

W (G) = l: Dii (G) 

i, j 2 

It is enough to consider the submatrix of D (G), because owing to the symmetry 
of the distance matrix each D;i (G) entry is counted twice. 

The Wiener number was initially defined for acyclic graphs (acyclic hydro­
carbons)20 as the sum of the paths (bonds) between each pair of vertices {atoms) 
in the graph (molecule). However, the one-to-one correspondence between a 
pair of neighbours a certain number of bonds .away and the number of paths 
of the same length holds only for acyclic systems. Hence, in polycyclic struc­
tures the Wiener number is associated with distance only, and not with the 
number of paths, but in acyclic structures the two are the same. Since the 
sum of the topological distances in the molecular graph is associated in an 
obvious way with the compactness of the molecules, the Wiener number was 
used as a reverse proportional measure of molecular branchings,37,4s and cycli­
city.47·49·52·53 The change in the Wiener number as a result of certain structural 
changes was reported in a series of papers dealing with isomeric polycyclic 
structures with different types of ring linkage (fusion-,49 spiro-,54 and bridge­
-type52 linkage), in which a number of rules of molecular cyclicity were for­
mulated. The latter are of practical interest, since, in principle, they provide 
a basis for the prediction of the relative order of magnitudes of different 
molecular properties in a series of isomeric chemical compounds. 

In relation to the above, we wish in the present work to report on the 
influence of topological rules, defined by means of the change in the Wiener 
number along a series of isomers, on the re-electron energy and on some phy­
sical properties of cyclic structures with acyclic branches. Alkylbenzenes will 
be used as the test molecules. 
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TOPOLOGICAL RULES FOR CYCLIC MOLECULES W ITH ACYCLIC BRANCHES 

In this section we present a set of topological55 rules for characterization 
and classification ·of cyclic molecules with acyclic branches. Each rule deals 
with a certain molecular rearrangement within an isomeric series of com­
pounds, as well as with the change in the Wiener number upon this trans­
formation. The rules are illustrated by examples accompanied by the Wiener 
numbers and the Ruckel energies in B units. Th~ lengthy mathematical proof 
of these rules are given elsewhere.56 

Rule 1. - The sum of the topological distances in molecular graphs of 
isomeric structures composed of a cycle and a non-branched side-chain goes 
through a minimum, defined by the condition, 

(1) 

with an increase in chain length at the cost of a decrease in the cycle size 
at a constant parity of the cycle dimensions, 

W N , N, > W N-1, N ,+1 > · · · > W N-n, N.+ n < W N-n-1, N k+ n + l 

< · · · < W N-n-s, N.+ n + s (2) 

where n and s are positive integers. In the above relations Nk is the number 
of atoms in the side-chain (or the length of the latter), N is the number of 
atoms in a cycle, while N0 is the total number of atoms in the molecule. Illu­
strative examples are given in Figure 1. 

It is seen from the examples in Figure 1 that the maximum in the Wiener 
number appears at the beginning of the series of isomeric compounds under 
consideration. Thus for molecules having smaller rings, which are most fre­
quently encountered in chemical practice, the Wiener number changes smoothly 
:without extremes. The latter may be of use in the search for correlations with 
molecular properties. 
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Figu re 1. E x amples illustrating Rule 1. The superscript 2 on the v alues of E (here and in what 
follows) signifies the number of NBMO's . 
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Rule 2. - The sum of the topological distances in molecular graphs of 
isomeric structures composed of a linear string of cata-condensed, or spiro­
-linked rings, or cycles connected by a bridge (a single edge) and non-branched 
side-chain with a length Nk multiple to the number of newly-formed cycles, 
ak, attached at one and the same position of the terminal ring, decreases when 
the length of the side-chain reduces at the cost of formation of new cycles, 

W a, N• > W a + x, N.-n (3) 

for Nk = ak (N-m). The new symbols in (3) have the following meaning: a is 
the number of cycles, x = 1, 2, 3, ... , while n = x · (N-m), where m = 2, 1, 
and 0 for cata-condensed, spiro- and bridge-linked cycles, respectively. An 
explanatory example is presented in Figure 2. 
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Figure 2. Examples illustrating Rule 2 
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Rule 3. - The sum of topological distances in the molecular graph de­
creases when isomers are subsequently created from a structure, composed of 
a cycle having up to 10 atoms and a non-branched side-chain, by shortening 
the side-chain at the cost of the formation ·of i new non-branched side-chains 
of equal length Ni, on condition that the length of the initial side-chain Nk, 
divided by the maximum number of new branches increased by one, is an 
integer equal to the length of newlyformed side-chains Nh 

(4) 

for 
Nk 

--- = Ni. In eq. (4) Nk is the length of the j- th side-chain of the 
imax + 1 

initial structure, while x = 1, 2, 3, .. . and .i = 1 + ~ . Examples clarifying 

Rule 3 are shown in Figure 3. 
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Figure 3. Examples illustrating Rule 3 

"=388 

Rule 4. - The sum of topological distances in the molecular graph in­
creases when in a structure composed of a cycle and two non-branched side­
-chains the longer chain lengthens at the cost of a shortening of the shorter 
chain while keeping a fixed distance between them, and a constant cycle size, 

(5) 

where Nkj ' ~ Nki" and M = 1, 2, 3, ... 

Examples supporting this rule are given in Figure 4. 
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Figure 4. Examples illust rating Rule 4 

Rule 5. - In isomeric structures composed of a cycle and non-branched 
side-chains, the sum of the topological distances in the molecular graph in­
creases with an increase in the distance between the atoms to which the side­
-chains are connected. If the sum of these distances is constant, the Wiener 
number increases with an increase in the distances between the longest side­
-chains or, if these distances are also constant, the latter is true when the 
remaining side-chains become more distant from the longest ones, 

where d12 > d'12 and/or d13 > d'13 and/or di3 > d1
23 etc. The distance (expressed 

as the number of bonds) between the side-chains i and j along the cycle is 
denoted by dii· Illustrative examples for Rule 5 are presented in Figure 5. 

w = 195 w = 200 w "' 203 

Figure 5. Examples illustr atlnR Rule 5 
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Rule 6. - Consider a consecutive conversion of a monocycle, having N 0 

atoms, into isomeric structures in which the cycle, maintaining its parity, 
decreases to N atoms at the cost of the creation of 1, 2, 3, . . . , i neighbouring, 
non-=branched side-chains of the same length Nii with i not exceeding (N + 2)/2 
or (N + 1)/2 for even- and odd- membered cycles, respectively. The sum of 
distances in the molecular graphs, corresponding to a thus formed sequence 
of isomers, decreases regularly, 

W N 1, 11 > WN,, 12 > ... (7) 

following the condition, 

(8) 

where D is given by, 

D == 3N; [6N;3 -N/ (9N0 -20) + N_1 (3 N 0
2 -21N0 +19) + 3 (N0 -2)2] (9) 

The symbols i and N; denote, respectively, the number and the length (expres­
sed as the number of atoms) of the newly-formed side-chains connected to the 
cyclic part of the structure. Illustrative examples for Rule 6 are presented in 
Figure 6. 
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Figure 6. Examples illustrating Rule 6 
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The other possibilities for the sum of topological distances in the mole­
cular graphs of such a sequence of isomers, which, however, occur much ,less 
frequently, are: 

(a) to pass through a minimum specified by an inequality opposite to (8), 

3NiNo+2vD . . ... N 
·----~--- > i -1 = --

3 Ni (3Ni + 4) max 2 

(b) to pass through a maximum specified by the condition, 

2 Ni+ 4:::::.; N0 :::::.; Ni+ 2 + 2 Ni VB 

where Ni~ 6 and B = (3 Ni + 10 + 14/Ni)/3 (3 Ni + 4) 

(c) to increase when Ni= 2 and No~ 8. 

(10) 

(11) 

Rule 7. - In isomeric structures composed ·of a cycle and ··a side-chain 
with a branch of arbitrary length, in which the branch is displaced from a 
position close to the cycle towards the end of the side-chain, the sum of the 
topological distances in the molecular graph increase, or, when the sl.de-chain 
has at least three atoms more than the cycle, it passes through a minimum at 
a displacement. 

(12) 

where Np is the length (as the number of atoms) of the newly-f9rmed branch 
attached to the initial side-chain. Examples supporting Rule 7 are given in 
Figure 7. 
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Rule 8. - The sum of topological distances in the molecular graph de­
.creases when in isomeric structures, consisting of a cycle, a side-chain, and 
a branch attached to an arbitrary atom of the latter, the side-chain shortens 
at the cost of an increase in branch length at a constant branch position, 

(13) 

where Np, <NP• < N Pa ... Illustrative examples are presented in Figure 8. 
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Rule 9. - The sum of the topological distances in the molecular graph 
decreases when in isomeric structures, composed of a cycle and a side-chain 
(with or without branches), the latter shortens at the cost of the formation of 
new branches of equal length attached to the side-chain, 

W Nk, Pt > W Nk, P2 > ... (14) 

where p is the number of newly-formed branches attached to the single initial 
side-chain. Note, p1 < p2 < ... Examples illustrating Rule 9 are shown in 
Figure 9. 
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TOPOLOGICAL RULES AND 7t-ELECTRON ENERGY 

Total n-electron energy (E") is one •of the most important parameters 
characterising conjugated molecules that can be obtained from the Hiickel 
method. Hiickel E./s are often of the same degree of accuracy as those obtained 
by much more sophisticated (and complicated) SCF n-MO models.57a,b In this 
respect an interesting result was achieved by Hess and Schaad57b who demon­
strated that in many cases E" (Hiickel) follows linearly the total thermodyna­
mically observable energy of conjugated systems. 
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Since the Hiickel model is topological in its origin, E,, (Hiickel) depends 
to certain extent on molecular topology.58 E,, (Hiickel) is not just a topological 
quantity, because it depends upon a knowledge of a ground-state configuration, 
and this may only be attained by an application of the Aufbau Principle, which 
is external to the topological aspects of the problem embodied in the adja­
cency matrix.58a. Newertheless, E,, (Hiickel) in combination with the Aufbau 
Principle is deducible from the structure of the molecular graph. The influence 
of some topological factors on the Jt-electron energy is modestly under­
stood.17·58·59 In the case of monocyclic conjugated hydrocarbons, the size of 
the cycle is of major importance for E,,.60 This is formulated as the Hiickel rule61 

which states that 4n + 2 :n-electron monocycles are more stable than 4n 
ri:-electron monocycles. The generalizations of this rule show that it is valid 
for n = ,small62"-64 and that it can be extended to polycyclic structures.65•66 

Another factor of topological origin affecting the :n-electron energy is the 
presence (or lack) of non-bonding molecular orbitals (NBMO's) which desta­
bilize (or stabilize) the molecule.67 The appearance of NBMO"s is a result of 
the particular topology of a molecule for example, monocycles with 4n Jt-elec­
trons will have NBMO's.14·17·68 Similarly, non-Kekulean molecules, (i.e. mo­
lecules with K = 0, where K is the number of Kekule valence structures) will 
also have NBMO's.69,10 

In the case of acyclic polyenes it has been shown that an increase in 
molecular branching generally reduces the :n-electron energy. Therefore, the 
most branched polyene, among the set of isomers, has the smallest value of E,,. 

The qu;stion may arise whether some topological factors of importance 
are left out of these considerations. In the case of polycyclic systems cyclicity 
appears to be the essential topological feature. It has recently been shown that 
the increase in cyclicity parallels the increase of Jt-electron energy of poly­
cyclic condensed hydrocarbons. Hence, it is of interest to study the combined 
action of branching and cyclicity on the :n-electron energy of cyclic molecules 
with acyclic branches, as well as to compare, where possible, their contribution 
to other topological factors. However, the high degree of structural complexity 
in this class of molecules, as well as the opposing trends in action of some 
topological factors, make it difficult to study separate effects. We will examine 
here the dependence of :n-electron energy on the Wiener number (regarded as 
a measure of the overall structural complexity of molecules, including branch­
ing and cyclicity as its major components) within each of the topological rules 
presented. Eight of the rules were analyzed using the Hilckel energies of 113 
structures presented in Figures 1-9. The rules are divided into three groups 
according to the collective influence of the various topological factors on the 
:n-electron energy. 

The first group comprises the rules in which the sum of the distanc_es in 
the molecular graph (the Wiener number), representing molecular branching 
or cyclicity is the dominating factor. Within Rules 3 and 9 (structures 25-37 
and 102-113, respectively) the Hiickel (HMO) energy is directly proportional 
to the Wiener number W since in both cases branching increases (we recall 
here that E,, is reverse proportional to branching37 and the same is true for W37). 
This is shown in Figures 10 and 11. 
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figure 10. Total 7t-electron energy vs. the Wiener number for structures 25-37 supporting Rule 3 
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Other topological factors such as cyclicity, the number of Kekule structures, 
the number of NBMO's, are constant throughout the molecular rearrangements 
considered. Within Rule 2 (structures 17-24) the n:-electron energy increases 
with a decrease in the Wiener number (Figure 12). This trend is a consequence 
of the increasing cyclicity at the cost of decreasing branching, and it gains 
additionally in force by the parallel increase in the number of Kekule struc­
tures arising in the isomerization process (the latter increases by two for each 
additional benzene ring in structures 17-20 and even more so in structures 
21-24). Other topological factors, such as the number of NBMO's, are con­
stant in this case. 
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Figure 12. Total 1t-electron energy vs. the Wiener number for structures 17-24 supporting Rule 

2. o denotes condensed, while A bridge-linked rings 

The second group includes rules on molecular transformations, (e. g. Rule 6, 
structures 58-72) in which the different parity of rings (i.e. rings containing 
4n ·or 4n + 2 n:-electrons) splits the dependence of E" on the Wiener number 
into two parallel branches (Figure 13). 

The direct proportional dependence between these two quantities is caused by 
the rstrong increase in branching of the structures at a constant number of 
Kekule structures and NBMO's. The decrease in the size of the cycle results 
in an additional destabilization of 4n-systems and conversely in a stabilization 
of (4n + 2)-systems, but the latter effect is small in magnitude and cannot 
change the trend in the two correlations. 

When molecular branching or cyclicity does not drastically change, as is 
the case with molecular rearrangement of the third group of rules, the Wiener 
number no longer dominates the Ruckel energy of a molecule. This role is 
taken by the Ruckel or anti-Ruckel character of the cyclic fragment, or, when 
the parity effect is constant, by the number of Kekule structures. These two 
topological :factors also cause a splitting of the correlation into two branches, 
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Figure 13. Total 7t-eleetron energy vs. the Wiener number for structures 58-72 supporting Rule 6. 

but in the opposite direction in comparison with the change in n:-electron 
energy with increase in the Wiener number. Such is the case with Rule 1 
(structures 1-16) which is similar to Rule 6 (structures 58-72). Both these 
rules describe molecular transformations upon which the cyclic fragment redu­
ces at the cost of the increase in the acyclic fragment. The only difference 
between the two rules is that the acyclic part of the molecules handled by 
Rule 6 is highly branched whilst for those molecules in the domain of Rule 1 
it is linear (or less branched). This difference, however, is sufficient to change 
the trend in the n:-electron energy for (4n + 2)- and 4n-systems. The increase 
in the Wiener number is accompanied by an increasing branching of structures 
or by a decrease in the Hiickel energy. However, this effect is not strong and 
it is counter-balanced in molecules having rings with 4n + 2 n:-electrons by the 
stronger stabilization effect of the smaller (4n + 2)-rings (Figure 14). 

In the case of molecules whose rings have 4n n:-electrons, the decrease in the 
n:-electron energy is the result of both increasing branching and the increasing 
destabilizing effect of the smaller 4n-rings. The superposition of the two effects 
is reflected as relatively large changes in the n-electron energy. 
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Figure 14. Total 1t-electron energy vs. the Wiener ntimber for structures 2-10, 12, 14, and 16 

supporting Rule 1. 
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In the other three rules of this group, i. e. Rule 4, structures 38-57 (Fi­
gure 15), Rule 7, structures 73-86, and Rule 8, structures 87-101 (Figure 16), 
the rearrangements within the acycl.ic part of the molecules are considered for 
a constant cyclic part. 
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Figure 16. Total ·1t-electron energy vs . the Wiener number for structures 91-101 supporting Rule 8 

Smaller changes in the sum of topological distances in the molecular graph 
result in a very weak change in the Hiickel energy. One could explain the 
splitting of the correlation into two sections with opposite trends by the dif­
ference in the number of Kekule structures (and NBMO's). Thus, in the case 
of Rule 4, K = 2 for branches with an even number of atoms and K = 1 for 
branches with an odd number of atoms. Similarly, in the case of Rule 7, K = 0 
(and NBMO = 2) for the branch linked to even-numbered atoms of the side­
-chain (counting from the terminal atom of the side.,-chain}, while K = 2 (and 
NBMO = 0) for the branch linked to odd-numbered atoms of the side-chain. 
Illustrative example are given below . 

~ 

~ 

. ~K•t 

~ K•2 

~K:O 

~K=2 
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I( • z 

K • Z 

I( "' 2. 

This argument, however, fails to explain the situation treated by Rule 8, since 
the number of Kekule structures for different isomers is the same, 

Here, perhaps, one should take into account different delocalization in the 
acyclic parts57a depending on their length and parity. The algebraic structure 
count (ASC) model,71 •72 which takes into account the different parity of the 
Kekule structures,73 however, also fails to reflect this effect. We suppose that 
the topological factor causing the splitting of the correlation between the 
Hiickel energy and the Wiener number into two individual correlations with 
opposite trends in the case qf foe molecular rearrangements following Rule 8 
is the alternating number of Kekule structures iri the side-chain (K = 0 for 
odd and K = 1 for even number of atoms, see examples above). 

In concluding this section we wish to summarize the effects. that the 
examined topological rules have on the Hiickel energy. The latter increases 
in parallel with the sum of the distances rn the molecular graph upon molecular 
rearrangement as designated by Rules 3, 9, 6, 1 (4n + 2), 4 (K = 2), 7 (K = 1) 
and 8 (K = 0). An inverse proportional correlation was found between E,, and 
the Wiener number for molecular transformations described by Rules 2, 1 
(4n), 4 (K = 1), 7(K = 0), and 8 (K= 1). As seen, the Hiickei energy is uniquely 
related to the Wiener. number by half of the rules (2, 3, 6 and 9). For each of 
the remaining rules (1, 4, 7 and 8) there are two correlations between the two 
quantities depending on the parity (4n or 4n + 2) of the cyclic fragment 
(Rule 1), the number of Kekule structures in the side-chain of the branched 
cyclic molecule (Rule 8). As was demonstrated in Figures 10-16 the correlat­
ions obtained are quite satisfactory. Therefore, the Wiener number used above 
as a measure of branching and cyclicity, or more generally as a measure of 
structural complexity of cyclic systems with acyclic branches, can be applied 
for predicting trends in n:-electron energies of molecules in this vast class of 
hydrocarbons. The above analysis also provides a comparison of different 
topological factors contributing to the n:-electron energy of isomeric molecules. 
It indicates the cases where the overall structural complexity (branching and 
cyclicity) seems to be the dominating factor. 
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In this section we will examine the influence that some of the structural 
complexity rules formulated above have on eleven properties of alkyl benzenes. 
These properties are: relative density, d4

20 ; reflection coefficient, n0
20; dielectric 

constant, £; surface tension, cr; parachor, P; molecular volume, v:,01 
; boiling 

point, Ts; heat of formaUon, - ~H~~~m ; heats of combustion in the liquid and 
the gas phase, (- ~H~~~b ) liq and (- ~H~~~b) gas, respectively; and heat of va­
porization, L 298• The data1- 3 for sixteen alkylbenzenes, presented in Table I, 
allow a detailed examination of Rules 3 and 5, as well as a partial examination 
of Rules 7 and 9. 

Rule 3 can be illustrated by two isomers with 8 carbon atoms and 3 
isomers with 9 carbon a:toms taken from Table I. 

CJ-(( 
I 

Let us denote the Wiener numbers for the two neighbouring structures 
in a sequence of isomers, ordered by the increase in this topological index, 
by W1 and Wi+t. respectively. Further, let Xi and Xi+l be the respective values 
of the molecular property X of these isomers. Inspection of Table I shows 
that for Wi < Wi+l the considered molecular properties of the above two 
groups of isomers obey the following inequalities, 

(a) Xi< Xi+!• where X =: P, V ~ol, (-fl H~0omb) liq, (-fl H~~mb ) gas 

(b) Xi> Xi+1' where X = d !0
, n ~ , s, o, TB' - 6. H~~~m, L298 

One can conclude that the molecular rearrangement by which a side 
chain attached to a cycle reduces in size at the cost of the formation of new 
side-chains on neighbouring positions, is reflected in all eleven molecular 
properties considered. 

c;x-y-¢ 
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. W7 <We <W9 
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Rule 5 is even better demonstrated because of the larger number of 
isomers for which experimental data are available. 3 isomers with 8 carbon 
atoms and two sets of 3 isomers with carbon atoms are considered. 

For each Wi < Wi+t within these three groups of isomers two inequalities 
are again valid, 

(i) X i < Xi+t• where X = P, V~01 , - 11 H~~~m 

(ii) x i > xi+l' where x = o!0 
,n ~' :; , a, TB• (- 11 H~~8mb)llq ' (- 11 H~~mb )gas I L 298 

The grouping of molecular properties in the case of Rule 5 is similar to 
that of Rule 3, the only difference being the interchange of the heat of for­
mation and the heats of combustion. 

In the case of Rule 7 one finds exactly the same grouping of molecular 
properties in inequalities (i) and (ii) as for Rule 5. Although the data for 
boiling points and heats of vaporization are missing one would expect them 
to follow a similar trend in the case of Rule 7 as was found for Rule 5. 
Clearly more examples are needed since only two isomers illustrating Rule 7 
are shown in Table I. 

or-~ 
lL 

1S 

w1, > Wis 

The situation with Rule 9, which deals with the transformation of a 
side-chain attached to a cycle into shorter side-chains having more branches, 
is more complicated than for Rules 3, 5, and 7. Rule 9 can be illustrated by 
the isomeric structures given below. 

~-o-C-cY-
13 15 ~ 

It follows from inspection of Table I that for each Wi < Wi+t within the 
above two groups of isomers, a partition is obtained for only some properties, 

(i) Xi < Xi+I' where X = a, P, (-A H~~'!nb)Uq , (- 11 H~~mb) gas 

(ii) Xi > Xi+t• where X = s, - 11 H~~~m 

No data are available for T8 and L298• The other three properties, however, 
are differently grouped for isomers with 9 and 10 carbbn atoms: d4

20 and 
n 0

20 are in group (ii) for C9-isomers, but in group (i) fqr C10-isomers, . while 
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V mo120 is in group (i) for C9-isomers, but in group (ii) for C10-isomers. We 
assume that the difficulties with Rule 9 regarding these three properties are 
caused by the singular behaviour of isomers with branches in the next-to­
-terminal position, as has already been discussed37 in the case of acyclic 
branched molecules. 

CONCLUDING REMARKS 

In this work we have examined how deduced topological rules for cyclic 
structures with acyclic branches are reflected in the n:-electron energy and 
in various molecular properties. Based ·on the sum of topological distances 
(Wiener number) in the molecular graph, these rules illustrate to what extent 
molecular branching and cyclicity determine the properties of this class of 
molecules. 

The analysis of the correlation between the n:-electron energy and the 
Wiener number reveals its complicated ;nature. In the case of conjugated 
acyclic compounds one finds that E,, decreases with increasing branching. 
When polycyclic condensed structures are considered, the Ruckel energy in­
creases in parallel with increasing cyclicity.49 In cyclic molecules with acyclic 
branches both branching and cyclicity effect the n:-electron energy. When one 
of these factors ·is constant it is still possible to obtain a unique dependence 
between the Wiener number and E,,, which is directly or inversely proportional 
depending on the factor remaining variable upon the molecular transforma­
tions described by the corresponding rules. When both factors , branching and 
cycHcity, are variable the dependence may have quite a complicated form 
containing extremes. Clearly in such cases, where the influence of molecular 
branching and cyclicity cannot be separated, the topological rules describe 
the overall molecular complexity. In addition, the situation for cyclic systems 
with acyclic branches is complicated due to the influence of other topological 
factors, such as the parity of cycles, the number of Kekule structures, etc, 
acting in these molecules. As was demonstrated above, the latter often deter­
mine the trend in the n:-electron energy. In the case of polycyclic condensed 
hydrocarbons, the potency of these factors was much weaker and was respon­
sible only for insignificant deviations from the main regularity.49 

In addition to providing a comparative analysis of the different topological 
contributions to the n:-electron energy, the results of the present study also 
have important practical aspects. The topological rules intrnduced for cyclic 
molecules with acyclic branches can be applied to predict the relative ordering 
of isomers according to their n-electron energy and various molecular proper­
ties. Since the Wiener number is obtainable by elementary calculations, such 
predictions are accessible to every chemist. In addition, the rules based on 
the sum of topological distances in a molecular graph are of interest as a 
novel approach to structure- property and structure-activity correlations.48 

The major advantage of this approach is in the optimal selection of isomer 
samples to be used in a certain correlation. This selection is realized by means 
of the structural criteria used in the different topological rules. Thus, it 
seems that a promising way for obtaining pertinent correlations between 
molecular structure and properties is emerging. 
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SAZETAK 

Strukturna sastavljenost i molekularna svojstva ciklickih sistema s aciklickim 
ograncima 

Ov. Mekenyan, D. Bonchev i N. Trinajstic 

Stupanj strukturne sastavljenosti ciklickih molekula s aciklickim ograncima 
kantitativno je izrazen pomoeu pravila zasnovanih na promjeni sume topoloskih 
udaljenosti, tj. Wienerovog broja, u odgovarajucim grafovima. Pokazano je da se ova 
topoloska pravila dobro koreliraju sa svojstvima izomernih alkil-benzene. 




