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In the Molecular Orbital Resonance Theory (MORT) each
resonance structure is defined as an antisymmetrised product of
mutually disjunct bond orbitals. In the present paper expressions
for overlaps and matrix elements of one-particle operators between
MORT resonance structures are derived.

INTRODUCTION

In the treatment of quantum chemical problems of molecules there are
two major ab initio and semi-empirical approaches, namely the molecular
orbital (MO) and valence bond (VB) theory.!” The VB theory contains the
concept of the resonance which is very helpful in qualitative discussions in
organic chemistry. The MO theory however treats one- and two-particle
contributions to the energy of the system in the correct order.8

There are many attempts to combine the two approaches.® ! The so-called
Generalized Valence Bond (GVB) theory developed by Goddard and co-
-workers? should be emphasised. It consists in allowing selected electron pairs
in the Hartree-Fock wave function

Y = 1@1,5,?,..., D, 5;1;]

(where @; and @; are spin-a and spin-f molecular orbitals, respectively) to
be described in terms of overlapping singly occupied orbitals

b, (1) D, (2 — [@ia 1) D, 02— D, 1) Dy, ()]

The concept of localised bonds, such that each bond is described by the use
of bond orbitals, is present in the so-called PCILO method.!'® Other authors
also discuss possible applications of the chemical bond concept by numerical
approximation methods.!* All these approaches usually sacrifice the very
appealing concept of resonance. Recently, a new approach to the treatment
of quantum chemical problems was proposed.®!*> This approach retains the
resonance concept of the VB method, but it treats each particular bond in
the MO sense. It has been called the Molecular Orbital Resonance Theory
(MORT). Even on a very simple level of approximation, which retains only
MORT Kekulé struktures and uses the Hiickel Hamiltonian, one can obtain
quite satisfactory results. For example, by this simple MORT version, the
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heats of atomization of conjugated hydrocarbons are reproduced approximately
equally well as by the more sophisticated SCF-MO approach.!> Similarly,
heats of atomization of some heteroconjugated systems can be also obtained.!?
Moreover, charge polarisation as well as bond length alternation can be
successfully explained for some conjugated hydrocarbons.® All these results
are obtained on a very simple level of approximation. The use of this
approximation amounts to a single diagonalization of a matrix of the order
equal to the number of Kekulé structures only. The MORT approach can
however be generalised to include more resonance structures and more sophi-
sticated Hamiltonians. It can in fact be made equivalent to the complete con-
figuration interaction (CI) approach. In the forthcoming papers a systematic
generalisation and presentation of this method will be given.

This paper can be considered as a first step in this direction. It presents
the derivation of matrix elements of one-particle operators between MORT
resonance structures.

1. CONFIGURATION INTERACTION SPACE X, AND MORT RESONANCE STRUCTURES

Let B={y|i=1,..,N} be an orthonormalised set of N one-particle
orbitals y;. These orbitals can be atomic orbitals (AO’s), spin atomic orbitals,
molecular orbitals ete. The only requirement is that this set must be ortho-
normalised. For the sake of reference we will call orbitals y; primitive orbitals
(PO’s). Each subset D, © B of n = N primitive orbitals i, ..., yin defines a

n-particle determinant D,

1
Dy= |22+ s Zin| = ﬁ § (— 1Dz PY) ... %, (Pn) 1)

The summation in (1) is performed over all permutations P of n indices 1,
2,...,n. The set of all n-particle determinants (1) is orthonormalised and it
spans the configuration interaction (CI) space X,N. We define resonance stru-
ctures in the following way:

Form bond orbitals (BO’s) as linear combinations of PO’s y;

1
Ps = @35 = e (i + 29 nonexcited BO

)
1
o* =gt = i Gi—2 excited BO

The term »bond orbital« is taken in analogy with the usual interpretation of
these orbitals when y; are AO’s. However, orbitals ¢ and ¢¢* do not necces-
sarily have any direct connection with the bond picture. In particular, PO’s
yi and y; can correspond to different spin states ete.

We distinguish two types of BO’s: excited and nonexcited BO’s. The
marker (*) denotes an excited BO. For the sake of simplicity we will omit the
marker in the notion of the BO, when there is no explicit reference to the
excited and nonexcited BO.

We now define:
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Definition 1

A n-particle resonance structure (RS) is an antisymmetrised product of n
mutually disjuct BO’s, i.e.

1 .
S=—"7"23 (— 1)l Ps1 (P1) Ps2 (P2) <o Psn (Pn) =

\/ n! P
(3a)
1 o' P
“\/TT % (— 1) @pg (1) @ps (2) . . . @pg, ()
Structure (3a) can be written in the contracted form
. 1 »
S = ISl,SZ,...,Sn>:—‘\';:rtlT?)(—l) |PSI,...,PSn)
(3b)

where [s;,s,,...,5) = ¢4 (1) @, 2)...¢, 1)

is a simple product of BO’s. The summation in egs. (3) is performed over
all permutations P of n indices 1,...,n (or s;, S, ..., Sy). By definition, BO’s
are mutually disjunct if they have no PO in common. A resonance structure
can hence be defined only if 2n = N.

One can easily show that the set of all n-particle RS’s (3) spans the CI
space X,N. Each resonance structure satisfying the condition 2n = N will be
called normal resonance structure (NRS). For the sake of simplicity the cor-
responding CI space X,>* will be denoted by X,. :

There is a natural graphical representation of RS’s. To each quantum
system, for example a m-electron system, a parent graph G is associated.
Primitive orbitals are associated with vertices of the graph G. Bond orbital
@ij is represented as a line connecting vertices (i) and (j). If BO is excited
(pij*), we put an arrow at the vertex (j) where BO ¢;* has the phase (—1)
(see eq. (2) and Figure 1). In this way one can represent each resonance
structure R € X,N. A graphical representation of a resonance structure is
ambiguous up to the phase (—1). This ambiguity will be treated later.

The condition 2n = N is necessary in order to define a resonance structure.
This condition is however not a serious restriction to generality. Namely, if
2n > N one can add (2n — N) dummy vertices to a graph G in order to satisfy
the condition 2n = N. In this way one obtains a graph G’ of which a graph
G is a subgraph. All matrix elements taken on dummy vertices and/or con-
necting them to the graph G should be zero.* An example is given in Figure 2.

A polar structure S = [12,3> is a two-particle state and hence n =2
(Figure 2a). However, a parent graph G has only three vertices and thus
2n =4>3 = N. We introduce a dummy vertex (4), and a new graph G
satisfies 2n = N’ (Figure 2b). Structure S can now be represented as a linear
combination of two normal resonance structures (Figure 2c).

* The introduction of dummy vertices is equivalent to the extension of the
orthonormalised base B ={yi|i=1,...,N} to the orthonormalised base B’ =
={xili=1,...,N}, where N’ = 2n > N. Dummy orbitals y; (N <i< N’ = 2n) serve
only for formal purposes. Graph G’ is now considered to be a parent graph.
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G S.=112) S,=14,23*> s =h2}34* >

N P

z z

A

G s.-h2,34%56> S,=h, 56> S.=lefi2534>

Figure 1. Examples of resonance structures and their graphical representations. G and G’ are
the corresponding parent graphs. Structures S,, S., S.’ and S.” are normal resonance structures,
while structures S, and S,’ are not. All BO’s contained in a particular RS are mutually disjunect.

L L. L.

G = [12,3>
a) : b)

[ ] [ ] L]
. +
V2
o]
S=[123> =Vl§ (|12,34> + |12,34*>)
c)

Figure 2. The use of dummy vertices. A polar structure S = |12,3 > can be represented as a
linear combination of NRS’s S; = |12,3¢ > and S; = | 12,3¢* >, where (4) is a dummy vertex.

Let now S, = sy, 8, ..., 8 > and S, = |py, P2, . . ., Pn > be n-particle RS’s
and let A be one-particle operator. From egs. (3) it follows

S = <Sa|Sb> =2 (1" (Sp--+»8, | PPpy ..., Ppy) =
P
(=1 (s, | Pp) (s, | Ppy) ... (s, | Pp,) (4a)
P
and

Aab=<SalA|Sb>=2(——1)" = (sllel)...(sklAIPpk)...(sanpn) (4b)
P
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These relations will be used later in the explicit derivation of overlaps and
matrix elements.

2. SUPERPOSITION OF RESONANCE STRUCTURES AND THE NORMAL ORDERING
CONVENTION
In order to facilitate the evaluation of overlaps and matrix elements we
define the superposition of RS’s S, and S;:

Definition 2

Superposition of two n-particle resonance structures S, and S, is a graph
G.b, such that it contains all vertices and all bonds contained in either of
these two structures. If a particular bond is contained in both structures, we
connect the corresponding vertices in G,, with two bonds. Each bond cor-
responding to an excited BO is denoted by an arrow, i.e. it is oriented. We
use the notation G, = S, D Sp.

In the theoretical considerations and if there is no explicit reference to
excited or nonexcited BO’s, we will denote all bonds as being unoriented in
the superposition of two structures (see e.g. Figure 4 and Figures 7—12).

One can easily prove

Lemma 1

Superposition G., = S,@ S, of resonance structures S, and S, consists
of disjunct even cycles and/or chains. If in addition RS’s S, and S, are normal,
their superposition contains only disjunct even cycles.

A cycle is even if it contains an even number of bonds. Analogously, we
define even chains and odd cycles and chains. There is a special role played
by the cycle containing two bonds. Such a cycle results if both structures S,
and S, contain a BO correspondlng to the same bond (s). We call such a
cycle a y-cycle*. .

There is some resemblance between the superposition G,, of MORT
resonance structures and Rumer diagrams!* which represent supperpositions
of VB resonance structures. There is, however, more information contained
in the MORT superposition, since oriented and nonoriented bonds are distin-
guished, while Rumer diagrams contain only oriented bonds. In addition, each
bond in G, represents one-electron BO, while each bond in a Rumer diagram
represents two electrons with paired spins.

Figure 3. illustrates the above lemma.

Each excange of two BO’s in a given RS changes a phase of this structure
by a factor (—1). All matrix elements between different RS’s are hence
ambiguous up to this phase. One can fix the relative phase between RS’s
Sa=|s..,8,> and Sp=|py,...,pn > in the following way:

1. Form the superposition G = S, Sp, and let ¢, ..., ¢, and 1;,...,1, be
the set of all cycles and chains contained in G,,. If G,, contains more then
two odd chains, partition the set of odd chains into pairs in such a way

* In graph theory a y-graph is a graph which contains two vertices connected
by a single bond.’> Here we reserve the term y-cycle for a graph that consists of
two vertices connected by two bonds.
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that each pair of two odd chains contains the same number of BO’s corre-
sponding to RS’s S, and S;.

2. Partition all vertices in G,, into sink and source vertices in such a
way that no two sinks and no two sources are adjacent to each other. If
1, € Gu is an even chain put sink positions at the ends (terminal positions)
of the chain. Sink vertices denote with a cross (x).

0 Q0 0O (A

G Su Sb SC
X X x- X
G,=S® Sp Guc® 5,9 5, Gp=Sp® S,
a)
( (o O
\ ——
G Sq sb SC
X X X X X X ..x
X X —
X X
Gub= Su® Sb Go™Se® Sc Gp& Sp® S
b)

Figure 3. Superposition of resonance structures.

a) Structures S,, S, and S. are normal. Superposition G,;, is an even cycle, while each
of the superpositions G,. and Gy, contains three even cycles. Two out of those three cycles
are y-cycles.

b) Structures S,, S, and S. are not normal. Superposition G,, contains two odd chains,
superpositi}tl)n. Ga. contains an even chain, while superposition G;. contains two y-cycles and
an even chain.
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3. Fix the phase of each excited BO so that it has the phase (—1) at
sink and the phase (+1) at source position.

4. Write BO’s |s) € S, and | p;) € Sp in such an order that if BO |[s;) is
contained in the cycle c, € G, then BO | pi) is contained in the same cycle.
Moreover, BO’s |s;) and | p;) should lie between the two sink positions on c,.
Similarly, if BO [s;) is contained in an even chain 1, then BO’s |s;) and |p;)
should lie between the two sink positions on this chain. The same should
hold for all BO’s contained in the pair {l,1,} of two odd chains, except for
Bo’s |sy) and | pi) placed at source end of respective chains (those two BO’s
can be considered to lie between the two sink positions only if the two ter-
minal source vertices of the respective chains are identified).

For example, in the case of an even cycle, the two RS’s can be written
in the form (see Figure 4a)

2n-1 2n 1 2 3 4
I’X 2n-1 2n X 1 2 X 3 i
\

X e w— - e

a)
an even cycle

2 e, 20 2 2n
1 2 2n-1 2n 1 2
X X X X x s 2n-1
1 3 2n-1 2nH 1 3 2n-1
b) c)

an even chain an odd chain

Figure 4. Possible components of the superposition G,, of two RS’s. Sink vertices are denoted
with a cross (x).

Sa=|..s1L,3..,2n—1;...>
(5a)
St = 5125 v sy 20500 >
or
S, = |ee8y Bluvsy 2n—1; Tiss > (5b)
Sy = | ew i ) Gpov s 205 Zjie e >
etc. but not
Sa=:|...; 3,5, o 20—, 1o 5>
(5¢)
Sp=|-.24,..,2n—2 2n;...>

since in this case BO’s |3) and |2) in respective structures do not lie between
the two sink positions. Similarly, in the case of an even chain one can write
(see Figure 4b)

8, = v 5 1,8y 21

(6a)
Sp=]..32 4..,2n—2, 2n;...>

In the case of an odd chain 1, one can use the representation (see Figure 4c)

Sp=|-+31,3..,2n—3, 2n—1;...>

(6b)
Sp=|..324..,20—2; p,...>
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Bond orbital |sy) = [2n—1) € S, is placed at the terminal source vertex of
the chain 1,. This BO is paired with the BO | py) € S, wich is situated adjacent
'to the terminal source vertex of the chain 1,. Chains I, and 1, form a pair of
two odd chains. .

The above partition into sink and source vertices is always possible since
the superposition G, is by lemma 1 an alternant graph. This partition does
not neccessarily coincide with the partition on marked and nonmarked vertices
of an alternant parent graph G. For example, in Figure 5 two source positions
(5) and (6) are, considered as vertices on the parent graph G, adjacent to

1 1 cycle

5 3 \ 5 o g’—cycle

A 4

G SQ Sb Gdb= SO @ Sb

Figure 5. The partition on sink and source vertices does not neccessarily coincides with the
partition on marked and nonmarked vertices of an alternant parent graph G.

each other. Hence, it is not possible to bring into coincidence the partition
on sink and source vertices of the graph G., with the partition on marked and
nonmarked vertices of the parent graph G. Note also that in general G,, con-
tains an even number of odd chains, and hence the partition of the set of all
odd chains into pairs is also always possible. However, if G,, contains more
than two odd chains, this partition is not unique.

If RS’s S, and S, are written in accord with the above conditions, we
will say that they satisfy the mormal ordering convention. Provided the par-
tition on sink and source vertices is fixed, and if in addition the superposition
G,p contains at most two odd chains, then there are n! different representa-
tions of n-particle RS’s S, and S, satisfying the normal ordering convention.

We now define:

Definition 3

The relative phase between two resonance structures S, and Sy, is snor-
mal« if it is fixed according to the normal ordering convention.

It is important to know how much the normal phase between resonance
structures S, and S, depends on the particular representation satisfying the
normal ordering convention. This question is answered by the following.

Theorem 1

1. Normal phase between resonance structures S, and S, does not depend
on the particular representation satisfying the normal ordering convention,
as long as the partition on sink and source vertices and the partition into
pairs of odd chains is not changed.

2. Normal phase between resonance structures S, and S, does depend on
the partition on sink and source vertices and on the partition into pairs of
odd chains:
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a) Exchange of sink and source vertices in a cycle c, € Gu, changes
normal phase by the factor (—1)m+met1 where (2n,) is the number of bonds
contained in the cycle c,, while m, is the number of oriented bonds contained
in this cycle.

b) Exchange of sink and source vertices in an odd chain 1, changes normal
phase by the factor (—1)™*™ where (2n, + 1) is the number of bonds con-
tained in the chain 1,, while m, is the number of oriented bonds contained
in this chain.

c) In connection with the corollary 1 exchange of two pairs of odd chains
is of no immediate interest.

The above Theorem, apart from the point 2c), completely describes the
behaviour of the normal phase between the two resonance structures under
all transformations admissible by the normal ordering convention. No rule
is needed for the exchange of sink and source vertices on an even chain,
since such an operation would violate point 2 of the normal ordering con-
vention.

Once the phase between two resonance structures is fixed by a normal
ordering convention, and we know from Theorem 1 how this phase ‘changes
under all admissible operations, we can proceed to find matrix elements of
different operators between those two structures. Accordingly, all the follo-
wing expressions for overlaps and matrix elements will be derived under
the assumption that the phase between the two RS’s is normal.

3, FACTORISATION OF OVERLAPS AND MATRIX ELEMENTS OF ONE-PARTICLE
. OPERATORS

In the Appendix we prove the following.

Theorem 2
Let Sa = l Sa’ sa” > = l 51y 82, + 4 Sn’; Sp’41y -+ -y Sp > and Sb = 1 Sb, Sb” > =
= |p1, P2 -+ P’ Pr'41, - + » Pn > be n-particle resonance structures. Let further

the superpositions G, = S, @ S’y and Gu,” = S,” D S,” of the respective sub-
structures be disjunct subgraphs of the superposition G,, = S, @Sb (Gay’ and
G.,” have no vertex in common). Then

Sab = <Sa , Sb> = <Sa/

Sa” i Sb”> (7a)
and
Ay =(S,|A|Sy) = (S,

S8

where A is an arbitrary one-particle operator.

Theorem 2 reduces the calculation of overlap and matrix elements between
structures S, and S, to the calculation of those quantities between their
substructures. The only requirement for the application of this theorem is that
the superpositions of respective substructures be disjunct subgraphs of the
superposition G,,. Relations (7) can hence be consecutively applied to the
substructures S,, S’ and S,”, S,”. By induction one obtains

Sab o <Sa l Sb> = <Sal } Sbl> S <SaK r sbK> -

Sbll> + <Sa/ /> <Sa/l A ‘ Sb//> (7b)

A= (Sy|A[Sy) = = (S, Sp) .. (S| A8y ... (86|80 ®
p=1
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where each superposition Ga, = S* @ S# (1 =1, ..., %) is either a single cycle,
or a single even chain, or it contains two odd chains. We hence define.

Definition 4

The superposition G,, of two n-particle resonance structures S, and Sy,
is irreducible if it is either a single cycle or a single even chain or if it contains
two odd chains.

According to the egs. (8), in order to find overlap and matrix elements
of one-particle operators between arbitrary RS’s, it is enough to find those
quantities only for those RS’s whose superposition is irreducible. In the case
of NRS’s this is even further simplified since only cycles should be considered.
We refer to egs. (7) and their generalisation (8) as a factorisation Theorem.

One example of the application of this Theorem is given in Figure 6. The
superposition G,, contains two irreducible parts, and hence overlap and
matrix elements of all one-particle operators can be factorised. Similarly,
in Figure 3a superpositions G,. and Gu. are reducible and hence the corre-
sponding expressions can be factorised. The superposition Gy, in Figure 3b
is also reducible, while the superpositions G, and G,. are not.

VAR

Z ~
NN N\
G SISk S22 s=ls) S2>  Gg= 5,85,

=1246810;11,1315> =[13579;121416>

Figure 6. The apphcatlon of the factorisation Theorem. The superp051t10n G,, contains two
cycles and hence it is reducible. Hence Sap = Sap’ Sapn” and Aap = Aap’ Sap” + San” Aap” for any
one-particle operator A.

4. ELEMENTARY OPERATORS AND DIFFERENT EOND TYPES

Each one-particle operator can be represented as a linear combination of
relementary« one-particle operators AX and BX such that
<Zi I AR [ Xj> = (Sik 6jl +6i1 5jk if k=1 ©a)
(| A™ | 2 = Ouc O
and
G | B 2y = V—1 (8 0 — 8y 6 (9b)
i.e. in the base of PO’s y; all the matrix elements of operators A¥ and Bk
vanish, except matrix element connecting PO’s yx and y.
There is a simple connection between elementary operators as defined
above and creation and annihilation operators. If a;* and a; are creation and
annihilation operators associated with the PO y;, then
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A" =A%=ara +a’a ifk=1
A¥ = A*=a’a, (10)
B*=—B" =i(aa—a; a)

Operators Akl are real, while operators Bk are imaginary. We will expli-
citely give only the rules for the evalution of matrix elements of real ele-
mentary operators in the base of RS’s. Real operators are by far the most
important in quantum chemistry. For example, each velocity independent
Hamiltonian is a real operator. Hence, we will by an elementary operator
mean a real elementary operator, unless otherwise specified.

One can distinguish two types of elementary operators.

Definition 5

a) If k # 1 operator AF is a bond operator. We write AKl = Alk = As
where (s) = (kl).

b) Otherwise, i.e. if k =1, we call the operator Akk a vertex operator.
We write Akk = Ak, .

With respect to the superposition G., of RS’s S, and S, one can further
differentiate bond operators into additional subtypes:

Definition 6

Let G, be the superposition of RS’s S, and S;.

a) Bond operator As = Akl is »internal« if vertices (k) and (I) are con-
tained in the same connected subgraph of the graph G,, (i.e. either in the
same cycle ¢, € Gy, or in the same chain 1, € G,). Otherwise it is external.

b) Bond operator As = Akl is »trans-bridge« if vertices (k) and (I) are
either both sink or both source. It is »cis-bridge« if one of those vertices
is sink and another source.

c) If a bond (s) = (kl) is contained in the superposition G, i.e. if it
is a part of either a cycle ¢, € Bu,; or of a chain 1, € G.,, bond operator AS is
»normal«. A normal bond operator is a special case of a cis-bridge bond
operator.

Analogously one can define different bonds to be normal, cis-bridge,
trans-bridge, internal and external. For example, in Figure 7. the superposition
G.p, consists of an even cycle and an even chain. Bonds (s) and (s') are normal,
bonds (s), (s"), (p) and (p’) are cis-bridge, while bonds (r) and (r’) are trans-
bridge. Also, bonds (s) (p), (r) and (s') are internal, while bonds (p’) and (r")
are external. w

X x X ) X
,’ ---—---——*-\
1 " P ]
‘~ = - enen @ St © o’
X X X X
P r
/\ A
X X ---X X

Figure 7 Examples of different bond types.
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5. OVERLAP AND MATRIX ELEMENTS OF ELEMENTARY OPERATORS BETWEEN
RESONANCE STRUCTURES WHOSE SUPERPOSITION IS IRREDUCIBLE

Consider first the simplest case when resonance structures S, and S, are
reduced to a single BO. Following cases are possible (Figure 8.):

k k X L X
s
s p s S xNP s, ro
X X X

a) b) ) d)
ava avs
e) f)

Figure 8. Different types of the superposmon of two BO’s. Case c¢) violates point 2. of the

normal phase convention, but it is needed in order to evaluate matrix elements between arbi-

trary resonance structures. Cases d), e) and f) are identical apart from the external bond
connecting two odd chains.

1) Superposition Ga, = |s) D |p) is a y-cycle (Figure 8a)

Sap = | P) = [1 + (=1)"]/2 (11a)
‘Aabk e l Ax % f)) _ 1/2 (k) € G, is a source Vertex (11b)
{ (—D™ 1/2 (k) € G, is a sink vertex
Ayt = (| A%|p) = (D™ [1 + (—1)"]/2 (11c)
2) Superposition G, = |s) D |p) is an even chain. Vertex (k) common to

bonds (s) and (p) is either a source or a sink vertex:
a) Vertex (k) is a source vertex (Figure 8b)

S, = (s[p) = 1/2
Ayt = (s| A | p) = 1/2

Ay = (s ) = (—1)%" 1/2 (128)
ab = (8| AT p) = (—=1)"1/2
b) Vertex (k) is a sink vertex (Figure 8c)*
Sap = (5| p) = (=" 1/2 _
= G[AYp) = (D" 12 (12b)

Ay’ = (]| A% |p) = (1)@ 1/2
Ay =G| A |p)=1/2

3) Superposition G, = \s) s> L p) consists of two disjunct bonds (s) and (p).
Two cases are possible.
a) Bonds (s) and (p) are connected through a cis-bridge (r) as in Figure 8d:

Ay = ([ AT[p) = (=)™ 1/2 (13)

* According to point 2 of the normal phase convention this case does not occur.
However, we need relations (12b) in order to facilitate the evalution of more complex
matrix elements (see e.g. proff of the Theorem 3 in the Appendix).
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b) Bonds (s) and (p) are connected through a trans-bridge (r) (Figures 8e
and 8f):

(1/2 bond (r) connects two
source vertices
p) = (14)
_ (—1)™1/2  bond (r) connects two
sink vertices

At o (e A

The above relations follow from the eq. (2) and from the definitions (9a) of
elementary operators AKL In those relations m is the number of oriented
bonds contained in the superposition G.,, while Sgn(s) =1 if BO|s) is excited
and Sgn (s) = O otherwise. Matrix elements not listed in the above relations
are either deducible from them by symmetry considerations, or if not, they
are zero. Using these relations we prove in the Appendix the following three
Theorems concerning overlaps and matrix elements of elementary operators
A¥! between resonance structures whose superposition is irreducible:

Theorem 3

Let the superposition G, of two n-particle resonance structures S. and
S, be a single cycle. Further, let A be an elementary operator and let m be
the number of oriented bonds contained in the cycle G, (see Figure 9.). Then:

1. Overlap S,, equals:
Sap = (84| Spy = [1 + (—D)™™)/2" ‘ (15)
2. If A = Ak is a vertex operator and (k) € Gup:
> (k) is a source vertex
Ayt =(5,|A¥[8y) = ; R )
(—1pmmr 2 (k) is a sink vertex

3. If A= AK = As is an internal bond operator:
a) Bond (s) is normal

Aabs — <Sa i As ] Sb> —_ (___1)Sgn(s) [1+ (_1)n+m+l]/2n — (_I)Sgn(s) Sab (17)
where Sgn (s) =1 if BO |s) is excited, and Sgn (s) = O otherwise.

b) Bond (s) is a cis-bridge. In this case bond (s) forms two even cycles
¢ and ¢” on Gy (see Figure 9b). We have '

Aabs o <Sa I As Sb> —_ (_l)u'+m'+l [1 + (_1)n+m+l]/2n = (_l)n’+m'+l Sab (18)

where (2n’) is the number of bonds contained in a cycle ¢/, while m’ is the
number of oriented bonds contained in this cycle.

. c) Bond (s) is trans-bridge. In this case bond (s) forms two odd cycles ¢’
and ¢” on G, (see Figure 9c). We have -

(—1)™*™ [14 (—1)™™]/2" ©  bond (s) connects
. oF two source vertices
G
AL =4(S. | A®|S, )= on Ly . 19)
' = S| A8y (—1)™ ™ [14 (—1)=]/2"  bond (s) connects us
two sink vertices
on G,
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where (2n” 4+ 1) is the number of bonds contained in a cycle ¢/, while m’ is
the number of oriented bonds contained in this cycle.

2n-1 2n 1 2 = 1
e 2 ~ po2izl g 20 1 2
! *y X, on % X\
[N { c 'S c
oo s o o o on e o» o as a» N X X '
n'+1 3 a_ 3
cycle ng ’ - zt,’zn S
cis-bridge
Q) b)
2n-1 _2n 1 1 2
¢ X » X xR
AL, 5 x‘s et B
“ ' 4
2n'*+2 2n’*1f 2n* 2~

2+ 1
trans—bridge

sink-sink case

c)

Figure 9. The superposition G,, of resonance structures S, and S; is an even cycle. Formulas
for overlap and matrix elements of elementary one-particle operators between those two
structures are given by Theorem 3.

Theorem 4
Let the superposition G, of two n-particle resonance structures S, and Sg
be an even chain. Further, let A be an elementary operator and let m be the
number of oriented bonds contained in the chain G, (see Figure 10. ). Then:
1. Overlap S,, equals

Sap = <S, [ Sp> =27 (20)
2. If A = Ak is a vertex operator and (k) € G then:

2" =8, (k) is a source vertex
Ayt = <S,|A¥|S> = 21
O (k) is a sink vertex
3. It A = AKl = As is the internal bond operator:
a) Bond (s) is normal

Ay = <S,|A%|S,> = (—DW/2" = (—1) S, @2

b) Bond (s) is cis-bridge (see Figure 10b). In this case bond (s) forms an
even cycle ¢’ on Gy, and

A bs — <S lAs Sb > = (__l)n'+m'+1/2u = (__1)n'+m'+l S (23)

where (2n”) is the number of bonds in a cycle ¢/, while m’ is the number of
oriented bonds contained in this cycle.
¢) Bond (s) is trans-bridge. In this case bond (s) forms an odd cycle
¢’ on G (see Figure 10c). We have
(—1)2*™/2" = (—1)""*™' S, bond (s) connects
two source vertices
Ayt =<S,|A'S,> = on Gay 24
ab a| I b (TEyen o (pyEemtg bond (s) connects - &8
two sink vertices
on G,
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where (2n” + 1) is the number of bonds contained in the cycle ¢’, while m’ is
the number of oriented bonds contained in this cycle.

an even chain

a)
D e eeaall 2D o2p+1 2p+2
X X 3 : X|g o X \.
- X ]
W R s R -
2n  2n- 2ps2n’ 2p+2n'-2
2p*2n'
cis—bridge
b)
1 2 2p-1_ 2p _2p+1 2p+2
X X X 3 " LY
" T D
2n 204 2pe2r 42 { 2p+20

2p+2n'+ 2pe2m-1
trans—bridge

sink-sink case

<

Figure 10. Superposition G,, of resonance structures S, and S, is an even chain. Formulas
for overlap and matrix elements of elementary operators between those two structures are
given by Theorem 4.

Theorem 5

Let the superposition G, of two n-particle resonance structures S, and
Sy consists of two odd chains. Further, let A be an elementary operator and
let m be the number of oriented bonds contained in G, (see Figure 11.). Then:

1. Overlap and matrix elements of all elementary one-particle operators,
except external bridge type operators connecting two chains, are equal zero.

2. Concerning external bridge type operators relations (23) and (24) for
cis- and trans-bridge on an even chain remain valid, provided we identify
two source terminal-vertices of odd chains 1; and 1, thus forming an even
chain 1 (see Figures 11b and 1llc). i.e.

a) Bond (s) is external cis-bridge (Figure 11b). In this case bond (s) forms
an even cycle ¢’ on the chain 1 and

Ay = <S,|A"|S,> = (D2 (25)

where (2n’) is the number of bonds in a cycle ¢/, and m’ is the number of
oriented bonds in this ecycle.
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| 12 2t 2tel
L X X
X X X

2n  2n-1 2t+3  2t+2

two odd chains

a)
1 2 2Bl 20 241 2002 2t 2t
[ X X X Xls X ¢ X Ndentify
p 3 3 3 _ 3 ~terminal
2n  2n-1 2p+2n' ‘ 2p+2n'-2 2t+3  2t+2 —
2p+2n'~
cis—bridge
b) .
1 2 2p=1  2p _2pel  2pe2 2t 2tel
L X X =X e X o X “\idcntify
: b s X S 3 -~ terminal
2n  2n-1 2p*2n'+2 ’ 2p+2n ' 2t+3 2t+2 vertices
2p¥in'+] 2p+2n'-1

trans—-bridge

sink-sink case

<)

Figure 11, Superposition G, of resonance structures S, and S, consists of two odd chains

l; and 1l,. Formulas for the matrix elements of external bond operators reduce to the corre-

sponding formulas for an even chain, provided two terminal source vertices on chains [ and
I, are identified, thus forming an even chain 1. For details see Theorem 5.

b) Bond (s) is external trans-bridge (Figure 1lc¢). In this case bond (s)
forms an odd cycle ¢’ on the chain 1 and

{ (—1 ™2 bond (s) connects two
source vertices on G,

Ayt = <S; | A'[Sy> 5 (26)
E=1)r+msi/on, bond (s) connects two

sink vertices on G

where (2n” + 1) is the number of bonds contained in the cycle ¢, and m” is
the number of oriented bonds contained in this cycle.

Concerning the above Theorems some remarks are necessary:

1. In points 3b) and 3c) of Theorem 3, there is a reference to the number
of bonds (2n") and (2n" + 1), respectively, and to the number of oriented
bonds m’ in a cycle ¢’. However, both, cis- and trans-bridge form two cycles,
a cycle ¢” and a cycle ¢”. Egs. (18) and (19) might hence seem to be ill-defined.
But this is only apparently so and these equations remain valid if we substitute
n” for n’ and m” for m’. Which cycle we call cycle ¢’ and which ¢” is of no
consequence. This can be shown to be true by direct derivation, but it is
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simpler to prove it starting from the very eqgs. (18) and (19). Take for example
eq. (18). It contains a phase factor (—1)2"*m'*1, However, m’ = m — m”, where
m” is the number of oriented bonds in a cycle ¢” (Figure 9b). Also, and since
there are two vertices common for cycles ¢’ and ¢”, we have 2n = 2n’ + 2n” —
— 2. Hence (—1)n'+m'+1 = (—])ntm+iin"+m"+1 Byt now if (n-+m + 1) is even
this phase reduces to (—1)»"*m"+1 if however (n + m + 1) is odd then by (18)
matrix element A,® vanishes since 1 4 (—1)»*m+!1 = (. Hence Ay’ =

= (—1)n"tm"+1[1 4 (—1)n+m+1]/20 in both cases. In a similar way one can

show that in the eq. (19) n” and m” can be substituted by n” and m”, respectively.

2. Point 3b) of the same Theorem gives a rule for a matrix element of
an elementary operator defined on a cis-bridge. However, a normal bond can
be considered to be a special case of a cis-bridge where one of the two cycles
¢’ and c¢” reduces to a p-cycle. If the normal bond is considered to form a
y-cycle, then one bond joining vertices (i) and (j) should correspond to a
cis-bridge proper, while another bond joining those two vertices should belong

to a superposition G, (see Figure 12b).

cycle c
i i

X = e e X - e aw

s s
: e : ° -

Normal bond (5) Normal bond (s) considered
as a cis-bridge
a)  b)

Figure 12. Normal bond (s) can be considered to be a cis-bridge forming a y-cycle c’. Formulas
for matrix elements of normal bond operator can be shown to be a special case of formulas
for the matrix elements of cis-bridge operators.

With this convention we have 2n” = 2 and m’ = Sgn (s). Hence (—1)»'+m'+1 =
= (—1)5%® and thus eq. (18) is reduced to eq. (17). The rule for the matrix
elements of an operator defined on a normal bond is a special case of a
matrix element of an operator defined on a cis-bridge. Similarly, in the case
when G, is an even chain (Theorem 4) eq. (23) reduces to eq. (22) if a
cis-bridge degenerates into a normal bond. Hence, with due caution, one can
altogether omit the rule concerning matrix elements of a normal bond operator.

3. Notice finally that relations (15), (16) and (17) valid for the case when
Ggp is an arbitrary cycle, reduce to relations (11) valid for the case when
Ggb is a y-cycle if we put 2n = 2. Under the same condition relations (20)—(24),
valid for an arbitrary even chain, reduce to relations (12a), valid for an even
chain containing two bonds, and also corresponding relations valid for an arbi-
trary pair of odd chains reduce to the relations (13) and (14), valid for two
odd chains containing one bond each.

Some examples of the application of Theorems 3, 4 and 5 are given
in Figure 13.
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k X k
m ‘ !
Xl X
Q) b) c)
kX
X T
: X
t
X p l)
f)

Figure 13. Examples for the application of Theorems 3, 4 and 5.

a) The superposition G,, is an even cycle (Theorem 3.). We have n =2 and m = 0.
Hence Sy = Agy® =0, AP = —1/2, Ak = —A,! = 1/4.

b) The superposition Gy, is an even cycle (Theorem 3.). We have n = 3 and m = 0. Hence
Sap = Agp® = —Ap" = 1/4, Ag?® =0, Agpk = Agpl = 1/8.

c) The superp051t10n Gab is an even cycle. We have n =4 and m = 0. Hence Sy, = At =
= Anb = 0 Aabp = Aab 1

d) The superposition Gab is an even cycle. We have n =4 and m = 3. Hence S, = —Ay,° =
= —Aut =1/8, Agp? = Ayt = 0.

e) The superposition G,, is an even chain (Theorem 4.). We have n =3 and m = 3. Hence

Sap = Aap® = —Aa)® = AgpP = Agp" = Aap' = 1/8, Ayl = 0.
f) The superposﬂ:wn Gap contams two odd chains (Theorem 5.). We have n =4 and m = 1.
Hence Sup = Aap® = Aan® =  Aapf = Ayt = 0 (overlap and internal operators). Further A,,t=

= —Agp" = 1/16 (1dent1fy vertices (1) and ).

6. OVERLAPS AND MATRIX ELEMENTS OF ELEMENTARY OPERATORS BETWEEN
ARBITRARY RESONANCE STRUCTURES

Combining Theorems 3, 4 and 5 with the factorisation Theorem one can
now derive overlaps and matrix elements of elementary operators between
arbitrary resonance structures. Notice that in relations (15)—(19) related to
Theorem 3, the parity of the quantity (n + m) plays an important role. Hence,
we define

Definition 7

A cycle ¢, € Gy is »passive« if (n, +m,) is even, and it is »active«
otherwise. Here (2n,) is the number of BO’s contained in the cycle ¢, € Gu,
while m, is the number of oriented bonds contained in this cycle.

With the help of this definition one can now formulate a few simple
corollaries. Let G,, be the superposition of n-particle resonance structures
S, and S, and let ¢j,...,c, and 1;,..., 1, be the set of all cycles and chains
contained in G, Then

Corollary 1

If the superposition G,, contains more then two odd chains overlap and
matrix elements of all one-particle operators between these two structures
are equal zero.
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Corollary 2

Matrix element Au,* = (S,|A%|S,) of each bond operator AS connecting
two different irreducible parts of the superposition G., equals zero.

In particular if bond (s) connects two cycles, or two even chains, or cycle
and a chain, the matrix element A, vanishes.

Corollary 3

Overlap S,, equals

(6] if G, contains an odd chain
Su=<8] | S>> = and/or a passive cycle @27
207" otherwise

Corollary 4
Matrix element A,° of a normal bond operator AS equals

Ay = <S,|A’|Sp> = (1) Sy, (28)

Corollary 5
Matrix element A, of internal cis-bridge operator A® equals

Ay = <S,|A*|S,> = (1)t Sy, (29)

where (2n,) is the number of bonds in either of the two cycles ¢,/ and c;”
formed by a cis-bridge (s) over Gg, and m is the number of oriented bonds
in this cycle.

Similar expressions can be derived for all other cases.

7. MATRIX ELEMENTS OF IMAGINARY ONE-PARTICLE OPERATORS

So far we gave only the rules for the evalution of matrix elements
Anp¥l.= (S,|A¥'|S,) of real one-particle operators A between RS’s S, and
Sp. In order to evaluate matrix elements of an arbitrary one-particle operator
between RS’s S, and S, one needs in addition rules for the evalution of matrix
elements BX! = (S,|B¥ |Sy) of imaginary operators BX between RS's S,
and S,. As mentioned above, such operators are not so important in quantum
chemistry. Hence, and for the sake of restricted space, we will not give here
all those matrix elements, but we will rather only outline their derivation.
Take e. g. the case when the superposition G, is a single cycle and operator
B is an imaginary normal bond operator. Further, let (1) be a source and (k)
a sink vertex. The derivation of the matrix element (S,|B¥|S,) follows the
derivation of the corresponding matrix element (S,|AK |S,) of the real
operator AXL. Up to eq. (A8) in the Appendix we have completely parallel
expressions. Here however (1 |B¥|2) = —(1 |B¥ |2n) = i/2 (see Appendix and
eq. (9b)). Hence and from eq. (AS8).

<S,|BY|S, > = — <8, [B*| 8> =i (—1)*™* [1 + (—1)™"]/2" (30)
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This expression should be compared with the corresponding expression (17)
for the real operator AL Similarily, if BX is a cis-bridge operator and (k)
is a sink vertex one obtains

<S,|BY|S,> = — <8, |B*|S,> =i (—1)""™" [1 + (—1)""]/2" (1)

which should be compared with the analogous expression (18) involving the
real elementary operator AX. In the same way one can derive all other
matrix elements of imaginary one-particle operators BX¥! between different
resonance structures.

To complete the list of matrix elements one should include two-particle
operators as well. Theorems 3, 4 and 5 in connection with the factorisation
Theorem form a sufficient base for the development of an elementary theory.
We limit here our discussion to the evalution of matrix elements of one-
-particle operators, while the evalution of the corresponding theory as well
as the inclusion of two-particle operators to form a more satisfactory system
will be done elsewhere.!¢

CONCLUSION

This paper deals with the evalution of overlaps and matrix elements of
one-particle operators between MORT resonance structures. In the first para-
graph the MORT resonance structures are defined (Definition 1). The phase
of a particular resonance structure, and hence all matrix elements between
those structures, are ambiguous up to the factor (—1). In order to lift this
ambiguity, a normal phase between two resonance structures is defined (Defi-
nition 3). The phase between two resonance structures may be fixed in many
different ways, and in particular definition 3 is chosen in order to make this
phase invariant to as many different operations as possible (see Theorem 1).
Theorem 2 expresses overlap and matrix elements between two resonance
structures in terms of overlaps and matrix elements defined on the basis of
their substructures. Using the concept of the superposition of two resonance
structures one can decompose each pair of structures into »elementary partss,
i.e. such pairs of substructures whose superposition is irreducible in the
sense of Definition 4. Finally, the formulas for overlaps and matrix elements
between resonance structures whose superposition is irreducible are explicitely
given by Theorems 3, 4 and 5.

The method for the calculation of matrix elements outlined here is quite
simple and straightforward. The decomposition into smaller parts will prove
useful in the further development of the theory.!® There is some formal resem-
blance to the calculation of matrix elements in the VB theory. The formulas
obtained, as well as the very notion of the resonance structure, are however
different in these two approaches.

APPENDIX
Proof of the Theorem 1

If the partition on sink and source vertices, as well as the partition into pairs
of odd chains is not changed, then the transition from one to another representation,
satisfying normal ordering convention, is accomplished by some permutation P, of

BO’s contained in a structure S, and some permutation Py of BO’s contained in a

structure S,. From point 4 of the normal ordering convention it follows that those
two permutations are identical, and hence the relative phase between the two
structures does not change. This proves the first part of Theorem 1. Consider now
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point 2a). If the role of sink and source vertices is exchanged in the cycle ¢, € G,

all excited BO’s corresponding to this cycle change sign. This produces the factor
(—1)™., In addition, the related BO’s in respective structures do not anymore lie
between the two sink positions. In order to restore this condition one has to perform
a cyclic permutation of n, BO’s, and this produces the additional factor (—1)"+"'. This
proves point 2a). In a similar way point 2b) can be proven.

Proof of the Theorem 2
Consider the overlap <S,|S,>. According to eq. (4a)

<s, [ Sp > = 2 (—1)° (s, | Pp)) ... (s, ] Pp,) (5441 { Pp, .y ... (5, l Pp,) (A1)
p

In the relation (A1) the summation is performed over all permutations P of n indices
Py Py ..., P, However, since G,’ and G,” are disjunct, overlap (sllel) vanishes
whenever BOlel) is contained in the superposition G,,”. Similarly for all other
overlaps (s, ] Pp,), ..., (s, | Pp,). Hence

<s,[8,> =
2 D7 (| PP Sy [P Pp) = (D7 (8441 [P Ppryp) -+ 8y | PP =
o
= <8,' le’> <s,” I Sp”> (A2)

Similary, in the case of one-particle operator A

<8,|AS> = z (s s (s,|Pp, (5| A|Ppy) ... (s, | Pp,) =
k=

= E 1)° E (s; [ Ppy) - (skIA|Ppk) s o A8
kf

). (s, | PPy +

n
= D S £ Bl (s,]Pp,)‘..(sn:‘Ppn:)...(sklAlek)...(snlen)=
P k=n"+1

’

n
=3 D" = (s ] P p)... (s, | A \ P'pY...(sy ‘ P’ p,)
P’ k=1

gD e Y M R | P pyryy) - (8, [ P’ o)+
P

n
S G VR C D 8 ) BN O [P'py) 2 (D™ 2 (544 | P Ppry) - - -
P’ P k=n"+1

Gk |A|P" DY ... (5, |P"Py) =

=<8/ |A|8,/> <8, |Sy"> 4 <S,/|S,> <S,”|A|S8,"> (A3)
Proof of the Theorem 3
According to egs. (4)
<8,[Sy> =2 -D'A|P)@|PY...(2n—1|P2n) (A4)
I)
and
n
<SaiA|Sb> == (—1)" ) (1|P2) @3 ‘P4) (2r—1|A‘P2r)...(2n—1\PZn)
r=1

(A5)
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1. Consider first the overlap S, = <S,|S,>. In the relation (A4) the summation

is performed over all permutations P of n indices 2,4,6,...,2n. However, BO |1)
has a nonvanishing overlap only with BO’s |2) and |2n) (see Figure 9a). Hence,
either P2 = 2 or P2 = 2n. Consider first the case P2 = 2. This implies P4 = 4, since
otherwise (3 |P4) = 0. Furthermore P6 = 6 etc.. Hence there is only one permutation
satisfying P2 = 2 which leads to a nonvanishing term in (A4). This permutation is
identity. Analogously, one finds that another possibility P2 = 2n leads to a cyclic

permutation of n indices 2,4,...,2n. This permutation has the parity (—1)""' and
hence
<Sa[Sb> =01 | 2)...2n—1 | 2n) + (—1)™' (1 \ 2n)...(2n—1 {Zn—z) =
= [1 4+ (—p™™)/2" (A6)

where we have used relations (12). This proves point 1 of the above Theorem.

2. Consider now the matrix elements of elementary operators A*. According to
Theorem 1. the normal phase between structures S, and S, does not depend on the
particular representation satisfying normal ordering convention, as long as the
partition on sink and source vertices is not changed. This option can be used in
order to simplify the proof. In particular, a normal bond can be chosen to be the
bond (1), cis-bridge can be chosen to connect vertex (1) with vertex (2n’), while
trans-bridge can be chosen to connect vertex (1) with vertex (2n” 4+ 1) (sink-sink
case), or vertex (2) with vertex (2n” + 2) (source-source case). -

a) Let A = A® be the normal bond operator and let bond (s) be bond (1) (see
Fig. 9a). It follows (2r—1|A®|P2r) = 0 unless 2r — 1 = 1. Hence

(S, | A*|Sy) == (—1)" (1| A*|P2) (3| P4)...(2n—1|P2n) (AT)
P

In the above expression either P2 = 2 or P2 = 2n, since otherwise (1|A°|P2) = 0.
The first possibility (P2 = 2) implies P4 = 4, this implies P6 = 6 etc., Similarly, for
the case P2 = 2n. By iduction

(S,|A*|Sp)=(1|A%[2)@3|4...(2n—1|2n) +
+ (D™ (1|A*|2n) 3|2)...2n—1|2n—2) = (=)@ [1 + (—)™™1]/2" (A8)

where we have again used relations (12), and where (s) stands for bond (1).
According to the above discussion the same relation holds for any normal bond
(s). This proves point 3 of the above Theorem. The proof of point 2 can be done
along the same lines and hence it will be omitted here.

b) Let A = A® be a cis-bridge operator and let bond (s) connect vertices (1)
and (2n) as shown in Figure 9b. The matrix element (2r—1|A°|P2r) in the
expression (A5) equals zero, unless either 2r—1 =1 or 2r—1 = 2n"— 1. Hence

<SalAs Sb)=2(—1)"(liAs P2)(3’P4)...(2n——1|P2n)+
) [ p

+ E(—I)P(1|P2) ..(2n"—1 IA"
P
(1] A®| P2) > 0 implies P2 = 2n’, this implies P4 = 2 etc. Analogously, (2n’—1|A*®
| P2n’) # 0 implies P (2n’) = 2n, hence P2 = 2, since otherwise (1|P2) = 0. Further-
more, P4 =4,...,, P(2n'—2) = 2n’— 2. Also P (2n) = 2n— 2, since otherwise (2n —
—1|P2n) =0. Next P(2n—2) =2n—4,..., P(2n’ + 2) = 2n’. Hence

CH ] A® [ Syy = (1"t | A®|2n’) 3 1 2)...2n"—1 [2n'—2) 2n’ +
+ 1‘2n' +2)...@2n—1]2n) + (™" (1‘2)...(2n’—3|2n'—2) @n’ —

P2n)...2n—1 |P2n) (A9)

~1|Asl2n)(2n'+112n’)...(2n—1;2n—2) (A10)
In the first term of the above expression there is a cyclic permutation of n’
indices 2,4,...,2n". Hence phase (—1)""1. In the second term there is a cyclic per-
mutation of indices 2n’ + 2, 2n’ 4 4,...,2n (n—n’ + 1 indices), hence phase (—1)"™.

Finally, using egs. (12) and (13) one obtains
(Sy| A*|Spy = (=111 + (—1)™m1]/2 (A11)
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where (2n’) is the number of bonds in the cycle ¢/, while m’ is the number of
excited BO’s corresponding to this cycle. This proves point 4 of the above Theorem.

c) Let A = A® be a trans-bridge operator. Assume that bond (s) connects two
sink vertices on the cycle G, as shown in Figure 9c. A matrix element (2r—
— 1] A®| P 2r) in the expression (A5) equals zero, unless 2r—1 =1 or 2r—1 = 2n’ + 1.
Hence

(s, \ A’

Sb>=E(-—~1)P(1!A“|P2)(3|P4)...(2n—1]P2n)+
P

+2(—1)P(1[P2)...(2n’+IIAS
P
(1]A%|P2) = 0 implies P2 =2n’. This implies P4=2,...,P (2n) = 2n'—2. Also

P (2n’ + 2) = 2n’ + 2, since otherwise (2n’ + 1|P (2n’ + 2)) = 0, etc. Analogously, in
the second term (2n’+ 1}A®|P(2n’ + 2)) 0 implies P (2n’ + 2) = 2n. Hence

P@n +2)...2n—1 l P 2n) (A12)

P@n'+4)=2n"+2.., P@n=2n—2 and P2=2, P4=4,..., P@n)=2n" It
follows:
(S| A"|Sp) = (=" (1 |A%|2n) (3|2)...(2n"—1|2n"—2) (2n’ +
+1]2n"+2)...@2n—1|2n) + (=)™ (1]2)...(@n"—1|2n") @0’ +
+1|A*|2n)@n" +3|2n" +2)...(2n—1|2n—2) (A13)

In the first term of this expression there is a cyclic permutation of n’ indices 2, 4,
6,...,2n". Hence phase (—1)"*. In the second term there is a cyclic permutation of
indices 2n’ + 2, 2n’ + 4,...,2n. This gives the phase (—1)""*1. Finally, using egs.
(12) and (14) one obtaines

(S,| A%[Sp) = ()™ [1 + (—)"™)/2" (Aa14)

This proves point 5 for the case when the trans-bridge (s) connects two sink vertices
on the cycle G,,. Analogously, one can derive the corresponding relations for the
case when bond (s) connects two source vertices. This completes the proof for
Theorem 3.

Proof of the Theorem 4

This Theorem can be proved along the same lines as the Theorem 3 (see Figure
9.). We start from eqgs. (A4) and (A5) and then we treat each possible case in turn.
One can, however, greatly simplify the proof if one considers an even chain to be
derived from an even cycle by cutting it at some sink position. Each formula for
a cycle usually contains two terms (see for example formulas (A6), (A8), (A10) and
(A13)). If we cut a cycle we formally make either one of the overlaps (2r —1|2r)
(r=1,..,n) or one of the overlaps (2r + 1|2r)(r=0,...,n—1) equal zero. In
either case one of the two terms entering formulas (A6)—(A13) equals zero. Closer
examination leads to formulas (20)—(24). This proves Theorem 4.

Proof of the Theorem 5

The first part of this Theorem is easy to prove. No overlap (2r— 1|P2r) in
the expression (A4) can connect chains 1; and 1,. Since those chains are odd, overlap

(Sa|Sb> vanishes. Similarly, if A" is an internal operator then no matrix element
(211'——1|Akl P2r) in the expression (A5) connects chains 1, and 1, Hence matrix
element (S, |A"|S,) vanishes. In the case of external operators we again use a

helpful device. From Figure 11. and in connection with eq. (A5) it follows P2 = 2,
P4 =4,... and P (2n) = 2n, P 2n —2) = 2n— 2, ... This holds true along both chains
1, and 1, up to the points where the bond (s) is situated (Figures 10b and c). Now
at this point the bond (s) should be taken into account since it enters the matrix
element (2r—1|A*|P2r). If we proceed along chains 1; and 1, we can see that
this implies overlaps (2t + 1|2t) and (2t + 3|2t + 2), i.e. overlap (2t + 1|2t + 2)
does not occur. But this means that one can identify terminal source vertices of
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the two chains, without changing the matrix element (S,|A®|S,). Hence formulas

(23) and (24) derived for an even chain are also valid for the case of two odd chains,
provided terminal source vertices of those two chains are identified (Figures 10b
and c).
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SAZETAK

Novi semiempirijski pristup proracunu elekfronske strukture n-elektronskih
sustava, I. Matricni elementi

Tomislav P. Zivkovié

Predlaze se novi semiempirijski pristup za proracun elektronske strukture
n-elektronskih sustava. Metoda sadrzava neke karakteristike i VB i MO teorije. Iz
VB teorije zadrzan je pojam rezonancije, dok je svaka pojedina¢na veza tretirana
na MO natin. U radu se izvode matri¢ni elementi prekrivanja i jednocesti¢nih
operatora medu rezonantnim strukturama definiranim na nov nacin.





