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The reduced graph model which represents an alternative way 
of depicting hexagonal networks is reviewed. This model is exploit­
ed in several enumeration problems of benzenoid systems. It is 
used as a basis for »pencil and paper« algorithms for counting 
Kekule structures, conjugated circuits and cata-condensed isomers 
of benzenoid hydrocarbons. 

INTRODUCTION 

We have recently developed a reduced graph model as an alternative way 
to represent benzenoid-type networks.1 This model has shown itself to be very 
useful for computer enumeration and generation of Kekule structures in 
benzenoid hydrocarbons. Since Kekule structures are important quantities in 
the resonance theory and lattice statistics, the reduced graph model appears 
to be an interesting approach in further applications. Consequently we decided 
to test the reduced graph model in connection with some other enumeration 
problems of benzenoid systems. However, since the problem of enumerating 
the Kekule structures is continually being discussed in the literature,2- 16 we 
have also decided to report on this question from another angle and to shovv 
how the reduced graph model could easily be used not only for cata- but also. 
for peri-condensed benzenoid hydrocarbons. Therefore, we will be discussing 
the enumeration of Kekule structures, conjugated circuits and cata-condensed 
isomers of benzenoid hydrocarbons by means of the reduced graph model. The 
number of Kekule structures and the number of conjugated circuits are 
quantities needed in the structure-resonance theory11- 20 and in the conjugated 
circuits model of Randic. 21 - 26 The conjugated circuits model was also inde­
pendently introduced by Gomes.26a 

The counting of all benzenoid systems for a given number of benzene 
rings, is supposed to be an unsolvable problem.27- 3o Therefore, we decided to 
attack the problem by means of the reduced graph model and to see how 
the model could be used in this area. However, our paper will deal in this case 
only with cata-condensed benzenoid hydrocarbons. 
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THE REDUCED GRAPH MODEL OF BENZENOID HYDROCARBONS 

Ordinarily benzenoid hydrocarbons are represented by hydrogen-suppres­
sed31 bipartite32 planar32 molecular graphs33 which are called benzenoid graphs.34 

They are usually denoted by the symbol G. A 3tandard convention is used 
for the construction of these graphs, i. e. vertices replace carbon atoms and 
edges replace carbon-carbon bonds.33 In our previous work1 and in contrast 
to some other work in this field,35,36 the single bonds are represented by a single 
connecting line and the double bonds by two connecting lines. Consequently, 
the vertex valency32-34 in these graphs is either 3 or 4. Thus, vertices belonging 
simultaneously to two rings necessarily have valency 4. 

Since benzenoid graphs are planar graphs, we need to define the planarity 
of graphs. A graph is planar if it is isomorphic to some plane graphs. If a 
graph can be embedded in a plane in such a way that no pair of its edges cross, 
it belongs to the class of plane graphs.32 A plane graph partitions the plane 
into one infinite (external) and several finite (internal) regions. These finite 
regions are called faces.32 The edges limit the faces of the graph, which are 
hexagons in benzenoid graphs. 

A vertex can belong either to the interior of an arbitrary cycle or it can 
lie on the boundary of the infinite region of the graph. The former vertices 
are called internal vertices, while the latter are called external vertices (see 
Figure 1). The interior of a graph is a finite region which is not bounded to 
the infinite region. 

internal vertex 

G 
Figure 1. External and internal vertices 

All internal vertices have valency 4. External vertices may have valencies 
3 or 4. 

Every benzenoid ,hydrocarbon may be presented as part of an infinite 
hexagonal planar lattice. Three sets of parallel edges, (vertical, left and right) 
arranged in rows, are recognized in the lattice. A new infinite triangular 
planar lattice T may be produced from the lattice H. This can be done in the 
following way. The vertices of the lattice T are the vertical edges of H. Two 
vertices of T are connected if (a) the corresponding edges belong to the same 
ring in H, or if (b) the corresponding edges are in the adjacent rings of H, 
and their distance is one. The lattice T has two disjunctive sets of edges that 
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are called »diagonal« and »horizontal« edges. The degree of vertices in T is 6; 
If the same operation is performed on the benzenoid graph G, the graph M {G) 
is obtained. The graph M (G) represents a »reduced« graph of G. Some examples 
of benzenoid graphs and the corresponding reduced graphs are presented in 
Figure 2. 

benzenoid graph G reduced graph IYI(G) 

Figure 2. Examples of reduced graphs 

The reduced graph model of benzenoid hydrocarbons has great potential 
for treating various types of isomer enumeration problems of these hydro­
carbons. This will be demonstrated on subsequent pages. 

KEKULE STRUCTURES AND REDUCED GRAPHS 

Recently we had reported1 on a novel algorithm for enumeration and 
display of Kekule structures in benzenoid hydrocarbons, which was based on 
the search of paths in the binary tree generated from the reduced graph of 
the molecule. This algorithm is also applicable to some non-benzenoid hydro­
carbons, alternant and non-alternant, if they can be reduced or enlarged to 
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benzenoid structures by the appropriate graph-theoretical transformations.37 ,38 

This does not alter the number of Kekule structures. The essentials of the 
reported algorithm will be summarized below. However, before proceeding 
to the discussion of the algorithm for enumeration of Kekule structures in 
benzenoid systems, we need to describe the kinds of annelation found in the 
benzene rings. 

Two types of annelation of benzene rings are recognized in the reduced 
graph: (i) chain-type annelation when the set of diagonal edges in the reduced 
graph is empty, and (ii) lattice-type annelation when both sets of edges in the 
reduced graph, diagonal and horizontal, are populated. 

Let us now delineate the procedure for enumeration of Kekule structures 
of benzenoids via the reduced graph model. 

Every Kekule structure may be presented by a colored reduced graph. The 
vertices of the reduced graph are colored in two colors: black and white. Black 
vertices correspond to single bonds and white vertices to double bonds. The 
black vertices are always connected (up and down) by diagonal edges. The 
sequence of black vertices and diagonal edges, in which the first vertex belongs 
to the top level of the reduced graph and the last vertex to the bottom level 
of the graph, is a path in the reduced graph denoting a particular Kekule 
structure. The rest of the vertices in the reduced graph are white. 

Enumeration and display of all possible Kekule structures may be per­
formed by applying a procedure which searches for all differently colored 
reduced graphs. More simply, by traversing the reduced graph of a benzenoid 
system, the procedure searches for all the different paths in the graph. The 
search for a path in a reduced graph which is a whole lattice is a simple 
process, but when M (G) is a complex graph which consists of chains and one 
or several whole lattices, then decomposition of the reduced graph must first 
be performed in order to use the method described. The complex reduced 
graph decomposes to whole lattices and chains, and each of these parts is colo­
red separately. Then the colored parts are superpositioned by the summation, 

K (G) = ~ k [G;, f (q;,;l] · k [G;, f (q;,;H · k [G;, f (q;,k)] · • .. · k [Gn, f (q,,,,,1)] (1) 
f(q1 ,1) 
f(qJ,k) 

where k [G;, f (q;,;)] is a coloring of the graph (M (G;), while f (q i,;) is some 
coloring of the path q;,; in the colored superimposed structure consisting of 
M (G;) and M (G;). If the composite graph M (G) consist of only M (G;) and 
M (G;), then the product k [G;, f (q;,;)] · k [G;, f (q;,;)] represents a Kekule struc­
ture of G. The set of all possible Kekule structures is equal to the sum of all 
colorings of the paths q;,;, q;,k,. .. , qm,n· The path q are sequences of vertices 
and diagonal edges which decompose the reduced graph M (G) 1nto subgraphs 
M (G;), M (G;), M (Gk), ... , M (G,,,), M (G,,). The possible colors of the vertices 
in path q;,; are presented in Table I. 
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TABLE I 

The colors of the vertices on the path qi,i 

Color of the vertex in G; 

black 
black 
white 
white 

Color of the vertex in Gi 

black 
white 
black 
white 

351 

Color of the vertex in G 

0 
black 
black 
white 

The procedure described was implemented in a computer program.1•39 The 
output of the program is the set of all possible Kekule structures labelled and 
displayed. This method for enumeration of Kekule structures may be simplified 
and used straightforwardly without the aid of a computer. In what follows we 
will discuss how to obtain the number of Kekule structures by the »pencil and 
paper« method. 

THE »PENCIL AND PAPER« METHOD FOR ENUMERATION OF KEKULE STRUCTURES 
IN BENZENOID HYDROCARBONS 

Let us consider a sufficiently complex benzenoid structure such as the 
one presented in Figure 3. 

benzenoid graph G reduced graph M(G) 

Figure 3. An example of the complex benzenoid hydrocarbon and the corresponding reduced 
graph 

The corresponding reduced graph consists of three chains and one whole 
lattice. Let us assign these constituent parts of the reduced graph M (G) as 
M (G1), M (G2), M (G3) and M (G4). Coloring the chains M {G2), M (G3) and M (G4) 
produces three differently colored structures for every chain. Coloring the 
whole lattice M (G1) produces 10 differently colored lattices as is shown in 
Figure. 4. 

The vertices at which the chains jo1n the whole lattice are denoted by a, b 
and c. The terminal vertices of the chains which represent the points of 
attachments to the lattice are colored twice with black and once with white 
(see Figure 5). 
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a a 

b 

c c 
I II Ill 

a a 

c 

·IV v VI 

b 

VII VII IX 

a 

c 

x 
Figure 4. The path count in the M (G1) lattice 



BENZENOID HYDROCARBONS 353 

Figure 5. Coloring of the M (G,) (i = 2, 3, 4) chain 

If M (G) is a chain 'Of v vertices then it can be colored differently v times. The 
terminal vertices are colored black v-1 times, and once white. 

Let us now calculate the number of colored reduced graphs obtained by 
joiniing M (G1) and M (G2), M (G3) and M (G4). 

vertex a 

Vertex a is colored black, thus, only one of the M (G2) chains can be super­
positioned and only one new structure is generated. 

vertex b 

Vertex b is colored white, thus, M (Gi) and all three differently colored struct­
ures that correspond to the M (G3) chain may be joined and 3 new structures 
generated. 

vertex c 
Vertex c is colored black, thus, only one of the M (G4) chains can be super­
positioned and only one structure generated. 

Applying the rule of product (1) we can compute the number of differently 
colored reduced graphs that can arise from superpositioning M (G1) lattices 
and M (G2), M (G3) and M (G4) chains : 

M(G1) Product a · b · c Coloring of the terminal vertices 

I 1. 3. 1 = 3 Vertex b is white 
II 1 . 3. 3 = 9 Vertices b and c are white 
III 1. 3 . 3 = 9 Vertices b and c are white 
IV 3 . 3. 1 = 9 Vertices a and b are white 

v 3. 3. 3 = 27 Vertices a, b aind c are white 
VI 3 . 3 . 3 = 27 Vertices a, b and c are white 
VII 3. 3. 1 = 9 Vertices a and b are white 

VIII 3. 3. 3 = 27 Vertices a, b and c are white 
IX 3. 3. 3 = 27 Vertices a, b and c are white 
x 3. 1. 3 = 9 Vertices a and c are white 

Total 156 
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Therefore the molecule in Figure 3 has 156 Kekule structures. This procedure 
is illustrated for two further examples (see Figure 6). 

2 3 

M( G2) 

2 

1 2 3 

MCG2>1 M(G3\2,3 M(G2>2 M(G3>12 3 
> I 

M ( G1 )1 3 2 

J-1( G1)2 3 2 

M(G1)3 0 2 

K (G) = 6 + 6 = 12 

continued on page 355 

Figure 6 

The advantage of this method over the earlier techniques for enumeration 
of Kekule structures3- 16 is that the method is general and therefore, it covers 
all kinds of geometrically planar benzenoid str.uctures. 
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Figure 6 continued from page 354 
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355 

M (G) 

4 5 

O>-----e..---e 
3 

Figure 6. Examples of computing the number of Kekule structures without the use of computer 
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REDUCED GRAPHS AND CONJUGATED CIRCUITS 

Kekule structures have been used as a basis for deriving the resonance 
energies, RE, by means of two approaches. In the work of Herndoo and Ellzey17 

the resonance energies of benzenoid hydrocarbons were calculated by using 
a set of equally-weighted Kekule structures. The quality of the calculated RE 
was on the level of Dewar's semiempirical SCF MO results.17 ,19 In addition, 
Herndon has used Kekule structures as a foundation for his structure-resonance 
theory which has proved to be useful for interpreting and predicting a number 
of properties of benzenoids and for rationalizfog their reactions.n-20 In the 
other resonance energy approach, Kekule structures have been used as a 
basis for enumeration of individual conjugated circuits.21 A conjugated circuit 
is represented by a regular alternation of formally single and double bonds in 
a given Kekule structure. Conjugated circuits have been used as essential 
elements for deriving the resonance energies of conjugated hydrocarbons.21- 23 ,25 

In the expressions of RE the main features are the numbers of conjugated 
circuits with different numbers of CC bonds. By using the model of conjugated 
circuits Randie was able to predict, with remarkable accuracy, the RE's of 
many fused benzenoid hydrocarbons with complex structure.21 ,25 The analysis 
of conjugation in benzenoid hydrocarbons in terms of 4m + 2 and 4m circuits 
(where m is equal to 1, 2, .... ) provided a quantitative estimate for the 
difference in their stability as measured by RE of the accuracy of the SCF 
MO level.21 It has been shown in another paper that conjugated circuits 
are suitable quantitative indicators of the contributory role of individual 
Kekule structures in the aromatic stability of the molecule.26 Individual Kekule 
structures each provide a different contribution to the total RE of a molecule. 
It was also noted that it is the conjugated circuits, not fragments such as 
individual bonds or rings, which are the essential structural elements to 
consider when discussing the properties of conjugated hydrocarbons.21- 26 ,40,41 

The search for conjugated circuits as well as their enumeration demands 
a list ·of all Kekule valence structures of a compound. While there is no dif­
ficulty in deriving all Kekule structures for a compound consisting of a few 
condensed rings, the situation is quite different when larger molecules are 
analysed. However, the problem of obtaining all Kekule forms of such complex 
benzenoid hydrocarbons has been successfully solved by adopting the pro­
cedure described in section 3 to computer use.1,39 The complete set of Kekule 
structures is generated in the form of colored reduced graphs and correspond­
ing benzenoid graphs. Comparison of the p roperties of the reduced graphs and 
conjugated circuits in a particular Kekule structure has shown that the 
recognition and enumeration of conjugated circuits is far more easy and 
reliable if colored reduced graphs are used instead of the Kekule structures. 
Let us now illustrate this by examining some examples. First we must recognize 
the basic forms of ·conjugated circuits represented as reduced graphs which 
will be analysed in the reduced graph of the molecule. 

(a) Reduced graphs as a chain 

When the reduced graph ois a chain, the colorings have the property of a 
conjugated circuit, Rn (see Figure 7). 
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Kekute' structure 

Conjugated circuit Reduced graph 

o----•---• 

Or---e---41·.__-e• 

0---1 • .-~~·~-"1 • .--•• 

o.-----<e.--1et-----.e.--~•~-•• 

Figure 7. Reduced graphs representing the conjugated circuits 

(b) Reduced graphs as a lattice 

When the reduce~ graphs is a whole lattice, then R1 may be found in three 
different environments. This is illustrated in Figure 8. 

The dotted lines mean that the edge •--0 lies in a triangle in which two 
black colored vertices are present. Let us explain this statement. In Figure !? 
a benzene ring is given with the assigned bonds as a, b, c, d, e and f. If the 
bonds a and b are on the border of the external region, then bond f is single 
(the black vertex in the corresponding reduced graph) and bond c is double 
(the white vertex in the corresponding reduced graph) by definition. 
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Figure 8. Description of R 1 conjugated circuit by reduced graph as a lattice 
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Figure 9. Benzene ring with assigned bonds 

Bond a is then obviously double since there are no valency constraints regarding 
the vertex at which bonds a and b join, i.e. this vertex must have valency 3. 
The ring would be a conjugated circuit R1 only if bond g is single and c.on­
sequently bond e double. Or, in other words, the reduced graph consisting of 
the edge a and the adjacent vertices is a representation of a conjugated circuit 
R1 only when it is part of a triangle in which two black vertices are present. 
When the benzene ring is part of the internal region of the graph, then the 
edge a is a diagonal of a square in which there are three black vertices and 
one white vertex. 

Conjugated circuits of the Rrtype are represented by colored reduced 
graphs which are diamond-shaped, i. e. have the shape of a rhombus (see 
Figure 10). 
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Figure 10. Description of R2 conjugated circuit by reduced graph as a lattice 

The edges denoted by a and ~ are on the border of the external region or are 
parts of triangles with two blue colored vertices. 

Conjugated circuits of the Rrtype in the form of colored reduced graphs 
are given in Figure 11. 
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Figure 11. Description of R3 conjugated circuit by reduced graph as a lattice 
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When edges a and ~ do not lie on the border of the exte:mal region, they belong 
to a triangle with two black colored vertices. 

(c) Reduced graph as a composite structure consisting of a whole lattice and 
a chain 

In this case the R3 conjugated circuit may be represented by two dif­
ferently colored reduced graphs as shown in Figure 12 . 

0 . - fl 

Figure 12. Description of R3 conjugated circuit by reduced graph as a composite structure 

G 

Ri R2 R3 R4 

M(G)1 0...._--4.t--"---4•t---4• ...... ~-· 
1 1 1 1 

2 1 1 0 

·•~. --•e-----<0~-~·----· 
2 2 0 0 

2 1 1 0 

••--••---4•t---4•--~-o 
1 1 1 1 

I TOTAL 8 6 4 2 

Figure 13. Enumeration of conjugated circuits belonging to tetracene 
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How this procedure works when one wants to use it for the enumeration of 
conjugated circuits is shown in Figure 13 and Figure 14. 

G 
M(G) 

~ 
R, R2 R3 Rt. Rs 

M(G), 

2 2 0 0 
0 • 

3 1 0 0 

2 3 0 0 

3 0 0 

M(G)5 

0 0 0 

continued on page 362 

Figure 14 
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Figure 14 continued from page 361. 

M(G)5 4 0 0 0 

2 2 2 0 0 

M(G)s 2 2 0 0 

· M(G) 9 3 2 0 0 0 

3 2 0 0 0 

M(G) 11 
2 2 

TOTAL 30 18 6 2 2 

Figure 14. Enumeration of conjugated circuits belonging to 1,2-benzotetraphene 

Some additional results are presented in condensed form in Figure 15. 

Results in Figure 13, Figure 14 and Figure 15 agree fully with Randie's original 
enumerations. 
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Molecular graph 
G 

Ill 

IV 

Number of conjugated 
circuits Rn 

R1· = 40 

R2 = 20 

R3 = 10 

R4 = 4 

R5 = 2 

R1 = 42 

R2= 14 

R3 = 6 

R4 = 3 

R5 = 1 

R1 = 24 
R2 = 18 

R3 = 14 

R4 = 10 

R1 = 58 

R2 = 42 

R3 = 24 

R4 = 22 

Rs= 16 

Rl = 60 
R2 = 48 

R3 = 36 
R4 = 36 

R5 = 26 

Number of Kekule' 
structures 

K = 13 

K = 13 

K= 10 

K = 18 

K = 20 

363 

Figure 15. Enumeration of conjugated circuits belonging to 3,4,5,6-dibenzophenanthrene (I), 
1,2,3,4-dibenzoanthracene (II), anthanthrene (III) , peropyrene (IV), and 5,6,12,13-dibenzopero­

pyrene (V). 

REDUCED GRAPHS AND THE ENUMERATION OF CATA-CONDENSED POLYHEXES 

Enumeration of the number of structural isomers of benzenoid hydro­
carbons is a very challenging problem.28 Studies in pure mathematics, where 
such systems are known as hexaminoes or hexagonal animals,42 have shown 
that it will be difficult to develop a general formula for obtaining their 
number. However, some computer calculations have yielded results for the 
first eight benzenoids, which are also known in the literature as arenes or 
polyhexes.43 •44 Another computer program by Lunnon45 has enabled computat­
ions to be made for polyhex systems containing up to twelve hexagons (ben­
zene rl.ngs). Recently, Knop and co-workers46 have developed an algorithm 



364 B. DZONOVA-JERMAN-BLAZIC AND N. TRINAJSTIC 

for the enumeration of polyhexes which has been adapted to computer cal­
cul!ahons. It produced all polyhexes up to 12 benzene rings and its results 
differ slightly from those of Lunnon in the cases of overlap. From the reported 
results it is evident that the number of ·possible structures increases very 
sharply with i ncreasing N, the number of benzene rings in the structure. The 
benzenoid cata-condensed structures for N ::::;; 8 have been drawn in the form of 
their inner dual graphs by Balaban and Harary.47 It is interesting to note here 
that Smith,48 in his discussion on capacitive energy and ionization potentials 
of benzenoid hydrocarbons has drawn these molecules in a short-hand notation 
which is identical to the Balaban-Harary graphs. Thus, unconsciously, he was 
the first to use this graph-theoretical depiction of benzeno.id systems. General 
formulae are available for enumerating the members of par ticular classes of 
catacondensed benzenoids, i. e. those that are in the form of unbranched 
chains,47,49 or of branched chains.50 

While studying the properties of the r educed graphs, we have arrived at 
a result which shows that they could be used for developing a systematic and 
reliable procedure for the enumeration and display of the set of all possible 
isomeric benzenoid hydrocarbons. It must be noted that the computer enumerat­
ions already reported represent only a few possible ways of producing a 
solution to the problem of »cell-growth« with hexagonal animals. For example, 
in these papers no account has been taken of hydrogen atoms, whose total 
number will vary among the structures for a given N value. However, attempts 
have also been made in this direction.51 

We tried to solve this problem by defining a set of basic reduced graphs. 
The elements of the set containing the basic reduced graphs are: chains of 
one or two benzene rings, and lattices constructed of two, three and four 
benzene rings. Cata-condensed structures of up to 6 benzene rings are con­
structed by systematically combining the elements of the basic set. These 
results are presented in Figure 16. 

Basic set of reduced Reduced graphs 
graphs (used elements) 

o=.o---0-----0 

!5l ~ 

~ 

!57 I 

Balaban's inner dual 
graphs 

0--0---0 

J 

~ 

Figure 16 

Isomeric arenes 
(polyhoxes) 

0 

cco 
o9 

cxxo 
cxx9 

continued on page 365 
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Figure 16 continued from page 364 
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continued on page 366 

Figure 16 
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Figure 16 continued from page 365 
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continued on page 367 

Figure 16 
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Figure 16 continued from page 366 
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Figure 16. Enumeration of cata-condensed polyhexes by using the reduced graph approach 

The results reported indicate that the suggested procedure gives an 
altennative solution to the problem of enumerating the cata-condensed hexa­
gonal animals. At the same time these results point out that the problem of 
enumeration and display -of the higher members (N > 6) of cata-condensed 
arene isomers may be solved in a simpler way if the polyhexes consisting of 
more than six r~ngs are partitioned into substructures with two or three 
benzene rings. 

CONCLUSION 

In this paper we have expanded further the reduced graph model which 
appears to be very useful in providing an alternative graph theoretical 
representation of benzen-oid hydrocarbons as well as for computer represent-
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ation of benzenoids. The convenient features of the model are used in several 
enumeration problems of benzenoid systems. Thus, we have produced a »pencil 
and paper« recipe for enumeration of Kekule structures and conjugated cir­
cuits of benzenoid hydrocarbons. In both cases the result is obtained by 
counting paths and colored graphs in the reduced graph. Since the use of the 
conjugated circuits introduces a new kind of superposition principle novel 
to Quantum Chemistry, we believe that it is worth studying and applying to 
the chemistry of conjugated structures. The new method of enumeration that 
is proposed here should be very helpful in its applications. 

The third enumeration problem : the enumeration of catacondensed ben­
zenoids was also considered. In this case a solution is produced by systematic 
combination of the elements of the set of basic reduced graphs and then all 
possible combinations among these are explored. The total number of these 
combinations equals the total number of the isomeric forms for a given 
molecule. 

Further work with the reduced graph model of benzenoid hydrocarbons 
is in progress.52 
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SAZETAK 

Primjena modela reduciranog grafa na prebrojavanje Kekuleovih struktura 
konjugiranih krugova benzenoidnih ugljikO"vodika 

B. Dfonova-Jerman-Blazic i N. Trinajstic 

Model reduciranog crtefa (grafa) pretstavlja alternativni nacm prikazivanja 
heksagonalnih struktura. U ovom je radu taj model upotrebljen kao temelj nekoliko 
jednostavnih algoritama za prebrojavanje Kekuleovih struktura, konjugiranih kru­
gova i kata-kondenziranih izomera benzenoidnih ugljikovodika. 




