C. Trindle	The Hierarchy of Models in Chemistry	
	Criteria for useful models in chemistry are given. A number of prevalent and bonding models are briefly discussed. The possibility of encoding chemists' non-numerical conceptual models by the methods of Artifical Intelligence is described	1231—1245
B. Kirtman and W. E. Palke	Factors Governing Nuclear Geometry and Bond-Orbital Directions in Second Row AH ₂ Molecules	
	A number of simple rules which govern the molecular geometry and bond-orbital directions in AH_2 systems are explained in terms of VB orbital characteristics and energy decomposition.	1247—1257
D. Cremer and E. Kraka	A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy	
	Salient features of chemical bonding are considered in terms of the saddle points r_p of the one-electron density ϱ (\mathbf{r}) in the regions between the bonded nuclei and local energy density $H(r_p) = G(r_p) + V(r_p)$. Information about the concentration and depletion of electronic charge at r_p is stored in $\nabla^2 \varrho_p$. It was found, however, that the $\nabla^2 \varrho_p$ criterion does not suffice for detecting weak covalent bonds.	1259—1281
W. L. Luken	Properties of the Fermi Hole in Molecules	
	The shape of the Fermi hole in molecules is discussed. If the wavefunction is given in the form of a single Slater determinant, the Fermi hole is determined by a square of the Fermi orbital. A set of Fermi orbitals can be used to transform a set of canonical SCF MOs into localized MOs.	1283—1294

Z. B. Maksić, M. Eckert-Maksić, and K. Rupnik

Model Description of Some Molecular Properties by the Modified-Atom-in-a--Molecule (MAM) Approach

Conclusive evidence is presented which shows that the concept of modified atoms in a molecule (MAM) is a viable model for the description of numerous molecular properties. Modification of an atom in a chemical environment can be decomposed into isotropic and anisotropic components. Isotropic (monopole) part is responsible for the changes of $\sigma_A{}^d$, χ^d and ESCA shifts. Extramolecular electrostatic potentials require inclusion of higher (anisotropic) local multipoles. Special attention is devoted to the description of atomic anisotropy by hybrid AOs. The latter explain various relationships existing between directional features and properties which can be termed as »local«. It is argued that atomic monopoles and hybridization indices represent pseudo-observables par excellence.

1295—1353

S. K. Kang, T. A. Albright, and J. Silvestre

The Bonding of P₄ to d⁸ — ML₃ Complexes

Structure and Stability of η^1 , η^2 , and η^3 complexes of P_4 to Rh (PH₃)₂Cl are studied by the EHT method. It is found that η^1 -square planar and η^2 complexes with C_{2v} symmetry are the most stable. d^{10} η^1 -tetrahedral complexes of P_4 are expected to be quite stable. The best candidate for an η^3 mode of bonding is the trimer Fe₃ (CO)₉.

1355-1370

H. Nakatsuji and M. Hada

Interaction of the Hydrogen Molecule with the Palladium Atom. A Force Theoretic Study

The interaction between the H_2 molecule and ${}^1S(4d^{10})$ and ${}^3D(4d^95s^4)$ states of the Pd atom were considered as a model for chemisorption phenomenon. The force and density origins of the interactions were clarified. The former was calculated by using the Hellman-Feynman Theorem. The singlet $Pd({}^1S)$ - H_2 system provides stable ground state, whilst the interaction bet-

	ween the $P(^3D)$ triplet and H_2 system is repulsive. It was found that the side-on approach is a preferable path for bonding.	1371—1386
E. Ortoleva and M. Simonetta	A Theoretical Study of the Influence of Surface Structure on Chemisorption of Nitrogen on Iron Single-Crystal Faces	
	Fe _n clusters (where $n=9$, 10, 13, 15, 18) were used in a process of modelling of 111, 100 and 110 surface planes of an iron single-crystal. The calculations were performed within the EHT framework. The ordering of reactivity of surfaces is determined. Reactivity decreses as follows: $111 > 100 > 110$.	1387—1393
M. Persico and J. Tomasi	An Evaluation of Solvent Effects on Isomerization Mechanisms in Diimide and Methylenimine	
	Inversional and rotational isomerization mechanism in N_2H_2 and CH_2NH in solution have been studied by an <i>ab initio</i> approach. The reaction potential of a solvent was mimiced by a dielectric continuum and included in the solute hamiltonian. It was found that the solvent effect is mainly dependent on the hybridization state of the nitrogen atoms and the relative orientation of their lone pairs	1395—1409
G. Klopman and M. R. Frierson	The Alpha-Effect. A Theoretical Study Incorporating Solvent Effects	
	Experimental observations unambiguosly show that OOH ⁻ anion has a higher nucleophilic character in solutions than the OH ⁻ anion. This finding was rationalized by the model of frontier MOs (FMO). Namely, it was shown that splitting of the FMO energy levels strongly depends on the solvent	1411—1415
H. O. Villar, O. G. Stradella,	Some Comments on the Nucleation Phenomena	
R. E. Cachau, and E. A. Castro	The process of forming the first solvation shell around the solute was studied by the CNDO/2 method accompained by the supermolecule formalism and self consi-	

stent reaction field approach. The solvent molecules were subsequently added one by one. The importance of the approach by statistical mechanics is stressed. . . .

1417-1421

M. V. Basilevsky, N. N. Weinberg, and V. M. Zhulin

Where is the Limit to which the Qualitative Theory of Chemical Reactivity can be Extended? Study of Dienophilic Activity of Cyanoethylenes

The mechanism and kinetic regularities observed in Diels-Alder reactions of cyanoethylenes with cyclopentadiene and phenylcyclone were studied by a qualitative quantum-chemical approach. Polar effects predominated over the localization effect in the former reaction series. Experimental data can be understood as a results of the charge transfer from diene to dienophile in a synchronous transition structure (TS). The inversion of the regular activity sequence found in the latter reaction series is ascribed to localization effects in asynchronous TS. . .

1423-1444

P. N. Skancke

A Molecular-Orbital Study of the Thermal Walk Rearrangement of Bicyclo-[2.1.0]pent-2-ene

Ab initio MO calculations involving geometry optimization indicate that in the walk rearrangement of bicyclo[2.1.0]pent-2-ene the reaction path going via inversion of the migrating center is slightly preferred. It was found that the transition structure (TS) has a diradical nature.

1445-1449

1451 - 1460

W.-K. Ip and W.-K. Li

MNDO Study of the Dimerization of Borane

F. Volatron, Y. Jean, and Nguyên T. Anh	The Role of Lone Pairs in Heteroatomic Chemistry. Graphical Analysis and Ab Initio Calculations of Oxirane and Aziridine Ring Opening	
	Notion of the »overlap graph« is introduced and applied in analysis of energy barriers in thermal electrocyclic openings of oxirane and aziridine rings. It was found that oxygen and nitrogen lone pairs affect differently the activation energies. Qualitative conclusions are supported by the <i>ab initio</i> (STO-3G, 4-31G)++CI calculations	1461—1474
J. B. Moffat	Partitioning and Additivity of the Chemical Bond	
	Changes in the electronic energies of various molecules on substitution of a hydrogen atom by various groups were analysed. It is shown that the substitution energy for cyano and isocyano groups can be successfully correlated with the charge on the substituent group in the substituted molecule.	1475—1483
C. Petrongolo	Non Adiabatic Effects and Radiation- less Transitions	
	Ab initio methods for computing stationary molecular states and radiationless probabilities between nonstationary states were examined. The expansion methods, the molecular hamiltonians, the adiabatic and diabatic representations, and symmetry aspects are briefly discussed. As a specific example, nonadiabatic effects in the V—N spectrum of C_2H_4 and the corresponding V-Ry radiationless transitions are elaborated	1485—1495
A. Julg	The Problem of Enantiomers: Support for a New Interpretation of Quantum Mechanics	
	The problem of enantiomers is a typical case which illustrates the difficulties of quantum mechanics in interpreting the geometric structure of molecules. A so-	

	lution is proposed within a quantum for-	
	malism which yields average values of various properties over a sufficiently long time.	1497—1507
M. Kibler and T. Négadi	On the Use of Nonbijective Canonical Transformations in Chemical Physics	
	Three quadratic transformations are considered: The Levi-Civita, the Kustaanheimo-Stiefel and a new original transformation. Applications of the Kustaanheimo-Stiefel transformation are reviewed and further developed. It is applied to the hydrogen atom, the Stark and Zeeman effects in H-like ions and biefly discussed for other potentials of interest in chemical physics and quantum chemistry	1509—1523
K. Balasubramanian	Recent Applications of Group Theoretical Generators to Chemical Physics	
	The development and the use of generating function methods for some problems in chemical physics and quantum chemistry are reviewed. Applications in NMR, nuclear spin statistics of rovibronic levels, isomerization reactions and NQR spectra of crystals exhibiting phase transitions are discussed. The development of symmetry groups of non-rigid molecules as generalized wreath products is outlined.	1525—1552
T. P. Živković	The Splitting Theorem and Properties of Alternant Systems	
	The notion of alternant systems, as employed in semiempirical π -electron theories of planar hydrocarbons, is generalized to arbitrary symmetric hamiltonians. A CI space X_n , generated by n electrons distributed over $2n$ orthonormal orbitals, is considered. It is shown that wavefunctions $\Psi \in X_n$ of alternant hamiltonians lie in two complementary subspaces X_n^+ and X_n^- of CI space X_n . Each state $\Psi^\pm \in X_n^\pm$ has properties which characterize the eigenstates of neutral alternant hydrocarbon systems.	1553—1573

T. P. Živković	Antialternant Perturbations of Alternant Systems	
	The effect of the antialternant perturbation λV on the alternant hamiltonian H_0 is considered by the Rayleigh-Schrödinger expansion. A number of interesting conclusions are drawn. For example, the	
	expectation values of alternant operators are even functions of the perturbation operator λ . The opposite is true for anti-	
	alternant operators. Their average values can be developed in series involving only odd powers of λ .	1575—1593
A. Graovac and O. E. Polansky	Topological Effect on Molecular Orbitals. Part 8. A Study of Two Further Classes of Topologically Related Isomers	
	The family of isomers exhibiting topological effects on molecular orbitals (TEMO) is enlarged by two new classes. The inversions in TEMO and the predicted HOMO-LUMO separation of topologically related isomers are discussed for different central fragments.	1595—1619
L. v. Szentpály and W. C. Herndon	A Comparison of Pencil and Paper Procedures. PMO, Free-Electron PMO, and Structure-Resonance Theory Calculations for Proton Affinities	
	Simple quantum chemical procedures are applied to correlations of electrophilic substitution and proton affinities of planar hydrocarbons. The results are comparable with data obtained by more intricate procedures	1621—1628
M. Grzonka, J. V. Knop,	Theoretical Studies on Small Ring Heteropropellanes. Oxapropellanes	
L. Klasinc, and N. Trinajstić	Oxa(1.1.1)propellane, dioxa(1.1.1)propellane, trioxa(1.1.1)propellane and the parent hydrocarbon compound (1.1.1)-propellane are considered by the <i>ab initio</i> 6-31G*	
	technique. Structural properties, particularly the central bonds, are discussed	1629—1632

	Drawbacks of the existing molecular mechanics (MM) schemes and difficulties associated with the parametrization of heteroatoms are discussed. Incorporation of the data offered by accurate <i>ab initio</i> MM approach is suggested	1633—1642
V. Kvasnička	Second-Quantization Formalism for Geminals	
	A method of constructing second-quantization formalism on a set of orthonormal geminals is described. The so-called ideal creation and annihilation operators satisfying Bose commutation rules are employed. The calculations are simplified by the use of a modified Feynman-Goldstone diagrammatic technique	1643—1660
V. Kellö, I. Hubač A. I. Boldyrev,	Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃	
and V. Špirko	The inversion potential function and the dominant force constants are calculated by the MBPT(4) by employing the DZ+P basis set. Utilizing the $ab\ initio$ potential surfaces and the non-rigid hamiltonian, estimates of the inversion energy levels in NH $_3$ are obtained	1661—1665

Interpretation of Optical Spectra of Par-

A survey is given of spectroscopic studies of partially aligned molecular samples based on linearly or circularly polarized light. The mathematical treatment of molecular orientations and optical properties

1667 - 1679

tially Aligned Samples

is briefly described.

On the Correspondence between Mole-

cular Orbital Energies and Empirical

Force Field Potential Terms

T. Hirano and

E. W. Thulstrup

E. Ōsawa

CROATICA CHEMICA ACTA

Croat. Chem. Acta Vol. 57 No. 6 1231—1679 C7—C8 I—XXIV (1984)

Zagreb, 21. svibnja 1985

SADRŽAJ

Hijerarhija modela u kemiji C. Trindle	1231—1245
O faktorima koji određuju geometrijske rasporede jezgri molekula AH ₂ i smjerove lokaliziranih veznih orbitala	
B. Kirtman i W. E. Palke	1247 - 1257
Opis kemijske veze s pomoću lokalnih svojstava elektronske gustoće i energije D. Cremer i E. Krak a	1259—1281
Svojstva Fermijeve šupljine u molekulama W. L. Luken	1283—1294
Opis molekulskih svojstava s pomoću modela modificiranih atoma (MAM) Z. B. Maksić, M. Eckert-Maksić i K. Rupnik	1295—1353
Vezanje P ₄ na d ⁸ -ML ₃ kompleksima SK. Kang, T. A. Albright i J. Silvestre	1355—1370
Interakcija molekule H_2 s atomom paladija primjenom koncepta Hellmann-Feynmanove sile H. Nakatsuji i M. Hada	1371—1386
Teorijsko razmatranje utjecaja strukture površina na kemisorpciju du- šika na monokristalu atoma željeza	
E. Ortoleva i M. Simonetta	1387—1393
Procjena utjecaja otapala na mehanizme izomerizacije diimida i metilenimina M. Persico i J. Tomasi	1395—1409
Alfa-efekt. Teorijski studij s pomoću MINDO/3 metode i teorije solvatacije G. Klopman i M. R. Frierson	1411—1415
O pojavi nukleacije molekula H. O. Villar, O. G. Stradella, R. E. Cachau i E. A. Castro	1417—1421
Do koje se granice može proširiti kvalitativna teorija kemijske reaktivnosti? Studij dienofilne aktivnosti cijanoetilena M. V. Basilevsky, N. N. Weinberg i V. M. Zhulin	1423—1444
Teorijski MO studij preuređenja biciklo[2.1.0]pent-2-ena putem termičkog koraka P. N. Skancke	1445—1449
Studij dimerizacije borana s pomoću MNDO metode WK. Ip i WK. Li	1451—1460
Uloga osamljenih parova kod heteroatomskih molekula. Analiza otva- ranja oksiranskih i aziridinskih prstena s pomoću <i>ab initio</i> ra- čuna i grafova prekrivanja	
F. Volatron, Y. Jean i Nguyên T. Anh	1461—1474
Particija i aditivnost kemijske veze J. B. Moffat	1475—1483
Neadijabatski efekti i prijelazi bez zračenja C. Petrongolo	1485—1495
Problem enantiomera: potpora za novu interpretaciju kvantne mehanike A. Julg	1497—1507
Primjena nonbijektivnih kanonskih transformacija u kemijskoj fiziciM. Kibler i T. Négadi	1509—1523

Neke primjene teorije grupa u kemijskoj fizici K. Balasubramanian	1525 - 1552
Teorem cijepanja i svojstva alternantnih sistema T. P. $\check{\mathbf{Z}}\mathbf{i}\mathbf{v}\mathbf{k}\mathbf{o}\mathbf{v}\mathbf{i}\acute{\mathbf{c}}$	1553—1573
Antialternantne perturbacije alternantnih sistema $\textbf{T.}$ $\textbf{P.}$ $\boldsymbol{\check{\textbf{Z}}} i v kovi \acute{\textbf{c}}$	1575—1593
Topološki efekt na molekulske orbitale. Dio 8. Studija dviju daljnjih klasa topološki vezanih izomera A. Graovac i O. E. Polansky	1595—1619
Protonski afiniteti π -elektronskih molekula. Usporedba rezultata dobivenih s pomoću PMO, FE-PMO i SR	
L. v. Szentpály i W. C. Herndon	1621—1628
Teorijski studij molekula heteropropelana. Oksapropelani. M. Grzonka, J. V. Knop, L. Klasnic i N. Trinajstić	1629—1632
O povezanosti energija molekulskih orbitala i članova empirijskoga potencijalnog polja	1633—1642
Formalizam druge kvantizacije za spregnute antisimetrične dvočestične	
valne funkcije (geminals) V. Kvasnička	1643—1660
Ab initio MBPT(4) računi potencijala inverzije NH3 molekule V. Kellö, I. Hubač, A. I. Boldyrev i V. Špirko	1661—1665
Interpretacija optičkih spektara djelomično uređenih uzoraka E. W. Thulstrup	1667—1679
Zahvala recenzentima	Prilozi C7—C8
Sadržaj Croatica Chemica Acta, Vol. 57	III—XIV
Indeks	XV—XXIV

CROATICA CHEMICA ACTA

Croat. Chem. Acta Vol. 57 No. 6

1231—1679 C7—C8 I—XXIV (1984)

Zagreb, May 21, 1985

The contents of CCA may be reproduced citing the original form in any medium without prior permission

CONTENTS

The Hierarchy of Models in Chemistry C. Trindle	1231—1245
Factors Governing Nuclear Geometry and Bond-Orbital Directions in Second Row AH_2 Molecules B. Kirtman and W. E. Palke	1247—1257
A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy D. Cremer and E. Kraka	1259—1281
Properties of the Fermi Hole in Molecules W. L. Luken	1283—1294
Model Description of Some Molecular Properties by the Modified- -Atom-in-a-Molecule (MAM) Approach Z. B. Maksić, M. Eckert-Maksić and K. Rupnik	1295—1353
The Bonding of P ₄ to d ⁸ -ML ₃ Complexes SK. Kang, T. A. Albright and J. Silvestre	1355—1370
Interaction of the Hydrogen Molecule and the Palladium Atom. A Force Theoretic Study	1371—1386
A Theoretical Study of the Influence of Surface Structure on Chemisorption of Nitrogen on Iron Single-Crystal Faces	- N.3
E. Ortoleva and M. Simonetta	1387—1393
An Evaluation of Solvent Effects on Isomerization Mechanism in Diimide and Methylenimine M. Persico and J. Tomasi	1395—1409
The Alpha-Effect. A Theoretical Study Incorporating Solvent Effects G. Klopman and M. R. Frierson	1411—1415
Some Comments on the Nucleation Phenomena H. O. Villar, O. G. Stradella, R. E. Cachau and E. A. Castro	1417—1421
Where is the Limit to which the Qualitative Theory of Chemical Reactivity can be Extended? Study of Dienophilic Activity of Cyanoethylenes M. V. Basilevsky, N. N. Weinberg and V. M. Zhulin	1423—1444
	1425—1444
A Molecular-Orbital Study of the Thermal Walk Rearrangement of Bicyclo[2.1.0]pent-2-ene P. N. Skancke	1445—1449
MNDO Study of the Dimerization of Borane WK. Ip and W. K. Li	1451—1460
The Role of Lone Pairs in Heteroatomic Chemistry. Graphical Analysis and Ab Initio Calculations of Oxirane and Aziridine Ring Opening F. Volatron, Y. Jean and Nguyên T. Anh	1461—1474
Partitioning and Additivity of the Chemical Bond J. B. Moffat	1475—1483
Non Adiabatic Effects and Radiationless Transitions C. Petrongolo	1485—1495
The Problem of Enantiomers: Support for a New Interpretation of Quantum Mechanics A. Julg	1497—1507
(Continued on inside back cover)	

(Continued from outside back cover)

On the Use of Nonbijective Canonical Transformations in Chemical PhysicsM. Kibler and T. Négadi Recent Applications of Group Theoretical Generators to Chemical PhysicsK. Balasubramanian The Splitting Theorem and Properties of Alternant SystemsT. P. Živković Antialternant Perturbations of Alternant SystemsT. P. Živković Topological Effect on Molecular Orbitals, Part 8. A Study of Two Further Classes of Topologically Related IsomersA. Graovac and O. E. Polansky A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton AffinitiesL. v. Szentpály and W. C. Herndon Theoretical Studies on Small Ring Heteropropellanes. OxapropellanesM. Grzonka, J. V. Knop, L. Klasinc, and N. Trinajstić On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential TermsT. Hirano and E. Ōsawa Second-Quantization Formalism for Geminals V. Kvasnička Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellő, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Acknowledgement to Referees Contents of Croatica Chemica Acta, Vol. 57 III—XIV		
The Splitting Theorem and Properties of Alternant SystemsT. P. Živković Antialternant Perturbations of Alternant SystemsT. P. Živković Topological Effect on Molecular Orbitals. Part 8. A Study of Two Further Classes of Topologically Related IsomersA. Graovac and O. E. Polansky A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton AffinitiesL. v. Szentpály and W. C. Herndon Theoretical Studies on Small Ring Heteropropellanes. OxapropellanesM. Grzonka, J. V. Knop, L. Klasinc, and N. Trinajstić On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential TermsT. Hirano and E. Osawa Second-Quantization Formalism for Geminals V. Kvasnička Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7-C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV		
Antialternant Perturbations of Alternant Systems T. P. Živković 1575—1593 Topological Effect on Molecular Orbitals. Part 8. A Study of Two Further Classes of Topologically Related Isomers A. Graovac and O. E. Polansky A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton Affinities L. v. Szentpály and W. C. Herndon Theoretical Studies on Small Ring Heteropropellanes. Oxapropellanes M. Grzonka, J. V. Knop, L. Klasinc, and N. Trinajstic On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential Terms T. Hirano and E. Ōsawa 1633—1642 Second-Quantization Formalism for Geminals V. Kvasnička Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV		1525—1552
Topological Effect on Molecular Orbitals. Part 8. A Study of Two Further Classes of Topologically Related Isomers A. Graovac and O. E. Polansky A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton Affinities L. v. Szentpály and W. C. Herndon Theoretical Studies on Small Ring Heteropropellanes. Oxapropellanes M. Grzonka, J. V. Knop, L. Klasinc, and N. Trinajstić On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential Terms T. Hirano and E. Ōsawa Second-Quantization Formalism for Geminals V. Kvasnička Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV		1553—1573
Further Classes of Topologically Related Isomers A. Graovac and O. E. Polansky A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton Affinities L. v. Szentpály and W. C. Herndon Theoretical Studies on Small Ring Heteropropellanes. Oxapropellanes M. Grzonka, J. V. Knop, L. Klasinc, and N. Trinajstic On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential Terms T. Hirano and E. Ōsawa Second-Quantization Formalism for Geminals Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV		1575—1593
A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton Affinities L. v. Szentpály and W. C. Herndon Theoretical Studies on Small Ring Heteropropellanes. Oxapropellanes M. Grzonka, J. V. Knop, L. Klasinc, and N. Trinajstić On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential Terms T. Hirano and E. Ōsawa Second-Quantization Formalism for Geminals V. Kvasnička Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Acknowledgement to Referees Contents of Croatica Chemica Acta, Vol. 57 III—XIV	Further Classes of Topologically Related Isomers	1595—1619
On the Correspondence between Molecular Orbital Energies and Empirical Force Field Potential Terms T. Hirano and E. Ōsawa Second-Quantization Formalism for Geminals Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57	A Comparison of Pencil and Paper Procedures. PMO, Free Electron PMO, and Structure-Resonance Theory Calculations of Proton	
rical Force Field Potential Terms T. Hirano and E. Ōsawa 1633—1642 Second-Quantization Formalism for Geminals Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV		1629—1632
Second-Quantization Formalism for Geminals V. Kvasnička 1643—1660 Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko 1661—1665 Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup 1667—1679 Acknowledgement to Referees Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV	rical Force Field Potential Terms	
Ab Initio MBPT(4) Calculations of the Inversion Potential Function of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Acknowledgement to Referees Contents of Croatica Chemica Acta, Vol. 57 III—XIV	T. Hirano and E. Osawa	1633 - 1642
of NH ₃ V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko Interpretation of Optical Spectra of Partially Aligned Samples E. W. Thulstrup Appendix C7—C8 Contents of Croatica Chemica Acta, Vol. 57 1661—1665 Appendix C7—C8	Second-Quantization Formalism for Geminals V. Kvasnička	1643—1660
Acknowledgement to Referees Contents of Croatica Chemica Acta, Vol. 57 E. W. Thulstrup Appendix C7—C8 III—XIV		1661—1665
Acknowledgement to Referees C7—C8 Contents of Croatica Chemica Acta, Vol. 57 III—XIV		1667—1679
	Acknowledgement to Referees	
	Contents of Croatica Chemica Acta, Vol. 57	III—XIV
		XV—XXIV