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The matching polynomial (also called reference and acyclic 
polynomial) was discovered in chemistry, physics and mathematics 
at least six times. We demonstrate that the matching polynomial 
of a bipartite graph coincides with the rook polynomial of a 
certain board. The basic notions of rook theory17 are described. It 
is also shown that the matching polynomial cannot always discri
minate between planar isospectral molecules. 

INTRODUCTION 

Four papers1- 4 which have been recently published in chemical journals 
consider the question of the reality of the zeros of the matching polynomial. 
Therefore it might be useful for theoretical chemists to know that similar or 
even equivalent problems have been examined in mathematics and theoretical 
physics some time ago. 

A k-matching of a graph G is a subgraph of G consisting of k pairs of 
vertices, each pair being connected by an edge. If p (G, k) denotes the number 
of k-matchings of a graph G with n vertices, then 

a (G) = a (G, x ) = ~ (- 1)'' p (G, k) x"-2
'' 

k 

is the matching polynomial of G. 

(1) 

Various authors have proposed different names for a (G), namely refe
rence polynomial1·3•

4
•5, acyclic polynomial6•7,8 and matching polynomial2•4

•9•
10

•
11

• 

This polynomial plays a significant role in statistical physics (theory of mono
mer-dimer systems) and quantum organic chemistry (theory of aromaticity). 
For both theories it is rather important that all the roots of the equation 
a (G, x) = 0 be real numbers. It is therefore not surprising that numerous 
efforts have been made to establish this factt-4• 12- 10• 

Because of the several independent discoveries of a (G), which were 
usually not noticed by researchers working in other fields of science, it may 
be useful to give a short review of the history of this problem. 
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The idea of matching is one of the oldest concepts of graph theory and 
therefore much work has been done on the numbers p (G, k) 16,17. Another 
related topic in combinatorics is the theory of permutations with restrictions, 
where the numbers r (B, k) play a central role17. 
The polynomial 

R (B) = R (B, x) = ~ r (B, k) xk 
k 

(2) 

is known17 as the rook polynomial. Instead of R (B), the associated rook poly
nomial 

(} (B) = (! (B, x) = ~ (- l)k r (B, k) x a+b-21' 
k 

(3) 

is sometimes considered. fl (B) is related in an obvious manner to R (B) and 
has moreover a form similar to a (G) , eq. (1). (The meaning of the symbols 
B, r (B, k), a and b will be explained in the next section). 

The theory of rook polynomials was elaborated in combinatorial analysis 
some thirty years ago17. Within this theory it was conjectured18 and immedi
ately thereafter also proved19 that all the roots of the equation fl (B, x) = 0 
are real numbers. 

For a long time, however, the close connection between fl (B) and a (G) 
was not recognized. 

The first contributions to the theory of the matching polynomial came 
from statistical physics. A result which is equivalent with the statement that 
all the roots of a (G, x) = 0 are real was first communicated by Heilmann 
and Lieb12 in 1970 and at the same time independently by Kunz14. These 
authors later developed13,15 a detailed theory of a (G). Theoretical chemists, 
unfortunately, seem to have become aware of the papers 12~15 only in the 
second half of 1978. In the meantime Hosoya20 used the polynomial 

Q (G, x ) = ~ p (G, k) xk 

" 
(4) 

in the study of the thermodynamic behaviour of saturated hydrocarbons. 
Aihara5 and independently Gutman, Milun and Trinajstic6 introduced a (G) 
within a novel theory of aromaticity. (For further references on the chemical 
applications of a (G) see10). Without knowledge of the previous work by 
Heilmann, Lieb and Kunz, the reality of the zeros of a (G) was first conjec
tured7'8 and later proved2 • Finally, few years ago Farrell considered in a 
mathematical paper9 , the basic properties of a (G) and thus he discovered 
a (G) for the sixth time (of course, not being aware of any of the previous 
publications). Farrell was the first t o use the name »matching polynomial«. 

THE ROOK THEORY AND ITS CON NECTION WITH THE MATCHI NG POLYNOMI ALS 

By a board B we mean a subset of cells of an m X m chessboard. For 
example, B1 , B 2 , B3 and B 4 are boards. 

81 
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The number of rows and columns in B will be denoted by a = a (B) and 
b = b (B), respectively. Thus, a (B1 ) = a (BJ = a (B,) = 3, a (BJ = 2, b (B1 ) = 
= b (BJ = b (BJ = b (B4 ) = 3. 

The number of ways in which one can arrange k non-attacking rooks on 
Bis denoted by r (B, k). By definition, r (B, 0) = 1 for all boards. As an example 
we present all the six possible arrangements of two rooks and the unique 
arrangement of three rooks on the board B3 • 

~~~~~~ 
d1 

Consequently r (B ,,, 2) = 6, r (B3 , 3) = 1. The rook polynomials of the boards 
B1 , B", B3 and B4 can be calculated in this manner. They read 

R (B1 , x ) = 1 + 5x + 4x2 

R (B
2

, x) = 1 + 5x + 4x 2 

R (B
3

, x) = 1 + 5x + 6x2 + x3 

R (B 
4

, x) = 1 + 5x + 4x2 + x3 

while the corresponding g-polynomials are 

(} (B1 ) = xG - 5x4 + 4x2 

(} (B 2) = x 5 -5x3 + 4x 

(} (B) = xG - 5x4 + 6x 2 
- 1 

(} (B
4

) = xG - 5x4 + 4x2 - 1 

Among the numerous known results in the rook theory17, we shall mention 
the following. 

1. For every board B, 

r (B, 1) = number of cells in B 

r (B , k) = 1 ==? r (B, k + 1) = 0 

r (B, k) = 0 ==? r (B, k + 1) = 0 

2. If the board B is composed of two subboards B1 and B 2 so that no 
cell from B1 lies in a row or column in which there is a cell from B" , then 
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3. Let c;i denotes the cell in the i'th row and j'th column of the board 
B. Let B - c;i be a board obtained from B by deleting the cell cii· Let B - C;i 
be the board obtained by deleting from B the i-th row and the j-th column. 

An arrangement of k non-attacking rooks either contains a rook in the 
cell c;i or not. If there is a rook in c;i, then no other rooks can be placed in 
the cells of the i-th row and j- th column. Therefore, there are r (B - C;i , 
k - 1) arrangements of k non-attacking rooks such that one rook is in cii· 
The number of arrangements of k rooks such that no rook is in C;i is simply 
r (B - C;j, k) . Thus we deduce the equality 

For example, 

r (B, 1) = 5 

r (B, 2) = 6 

r (B, 3) = 1 

r (B, k) = r (B - cii• k) + r (B - Cii' k - 1) 

B 

r (B - c
1 2

, 1) = 4 

r (B - c
1 2

, 2) = 4 

r (B - c12, 3) = 1 

DD 

r (B - C12, 0) = 1 

r (B- C12, 1) = 2 

r (B - C1 "' 2) = 0 

When (5) is substituted back into (2) we get a recursion relation 

R (B) = R (B-ci) + xR (B-Ci) 

(5) 

(6) 

The following theorem, which is our main result, connects the numbers 
r (B, k) with p (G, k). 

Theorem. There is a one-to-one correspondence between labelled bipartite 
graphs G = G (B) with a + b vertices and boards B = B (G) with a rows 
and b columns, such that p (G, k) = r (B, k) for all k. 

Proof. Let us construct a labelled graph G = G (B) with a + b vertices Vu 

v", .. .. , v,., Wv w", ... , wb by connecting the vertex V; to wi by an edge e;1 

if and only if there is a cell C;i in the board B. This graph is obviously bipartite 
since the vertices V; (and also w;) are not mutually connected. 

Now, according to the construction, two edges e;i and evq are independent 
if and only if the cells c;i and Cpq belong to different rows and different columns 
(i ~ p, j # q). Therefore the number of selections of k independent edges in 
G (i.e. p (G, k)) is equal to r (B, k) . 

Corollary. Q (B (G)) = a (G (B)). 

The graphs corresponding to the boards B1 , B2 , B3 and B4 are G,, G1 , 

G3 and G., , respectively. 
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v w v w 

~ orX 
G1 

v w 

! :c or 
v w 

~Ory 
G3 

The e-polynomials of Bi are in the same time the matching polynomials of 
G;, i = 1, ... , 4. 

Because of the Theorem, the molecular graph of every alternant conjugated 
system can be presented in the form of a board. For instance, the molecular 
boards of benzene, benzcyclobutadiene and naphthalene are B 0 , B0 and B 7 • 

It is clear that the board representation of alternant conjugated molecules is 
rather unusual from a chemists' point of view. Nevertheless, we think that 
the above given Theorem will be of some help even in theoretical chemistry 
because 

(a) it connects two such diverse fields of science as the theory of aromaticity 
and rook theory and 

(b) it enables the application of the numerous known results and proof techni
ques of rook theory. 

In fact, it becomes clear that a great part of the results which were 
obtained for a (G) were previously known in rook theory. For example, when 
eqs. (5) and (6) are »translated« by means of our Theorem, one gets 

p (G, k) = p (G-eii' k) + p (G-v ;-wi, k-1) 
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and 
a (G) = a (G-eii)- a (G-V;-Wj) 

which are the basic recurrence relations in the theory of matching poly
nomials5~10. The proof19 of the reality of the zeros of (} (B) was just a proof 
of the reality of the zeros of the matching polynomial of bipartite graphs. 

ON A CONJECTURE ABOUT M ATCHING POLY NOMIALS 

If a conjugated system is acyclic, then its charact.eristic and matching 
polynomia1s coinoide8- 10 and therefore isospectral acyclic molecules necessarily 
also have equal matching polynomials. Examples of isospectral acyclic mole
cular graphs can be found in21,22. 

It was recently conjectured3 that the m atching polynomial can be used 
for discriminating between planar isospectral cyclic molecules. This conjecture 
is not true. 

There exist pairs of cyclic conjugated systems with both characteristic 
and matching polynomials equal. I and II ar e examples of such molecules. 

~ 
II 

Using an idea of Schwenk23 it is not difficult to design as many such 
examples as desired. One of the possible construction procedures is the following. 

v w 

G G' G" 

Notice that the vertices v and w in the graph G have the property 
a (G-v) = a (G-w) . Therefore, every pair of molecular graphs of the type 
G' , G" (where S stands for an arbitrary fragment) must have both characteristic 
and matching polynomials equal. 
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SAZETAK 

Neke napomene o polinomu sparivanja i njegovim nulama 

C. D. Godsil i I . Gutman 

Polinom sparivanja (koji se naziva jos i aciklicki i referentni polinom) otkr ivan 
je u kemiji, fizici i matematici najmanje sest puta. Pokazano je da je polinom spat'i
vanja svakog bikromatskog grafa identiean topovskom polinomu izv jesne ploce. Pri
kazane su osnove o teoriji topovskog polinoma17• Takoder je ukazano na cinjenicu 
da se pomocu polinoma sparivanja ne mogu u opcem sluca ju r azlikovati planarne 
izospektralne molekule. 

ODJEL ZA MA TEMA TIKU 
S V EUCILISTA U MELBURN U 

i 
PRIRODNO-MATEMATICKI FAKULTET 

SVE UCILISTA U KRAGUJEVCU 

P r i s pj e lo 4. ozu j k a 1980. 




