Some Remarks on the Matching Polynomial and Its Zeros

C. D. Godsil

Institut für Mathematik, Montanuniversität Leoben, A-8700 Leoben, Austria

and

I. Gutman

Faculty of Science, University of Kragujevac, P.O.B. 60, 34000 Kragujevac, Serbia, Yugoslavia

Received March 4, 1980

The matching polynomial (also called reference and acyclic polynomial) was discovered in chemistry, physics and mathematics at least six times. We demonstrate that the matching polynomial of a bipartite graph coincides with the rook polynomial of a certain board. The basic notions of rook theory17 are described. It is also shown that the matching polynomial cannot always discriminate between planar isospectral molecules.

INTRODUCTION

Four papers1-4 which have been recently published in chemical journals consider the question of the reality of the zeros of the matching polynomial. Therefore it might be useful for theoretical chemists to know that similar or even equivalent problems have been examined in mathematics and theoretical physics some time ago.

A \(k\)-matching of a graph \(G\) is a subgraph of \(G\) consisting of \(k\) pairs of vertices, each pair being connected by an edge. If \(p(G, k)\) denotes the number of \(k\)-matchings of a graph \(G\) with \(n\) vertices, then

\[
\alpha(G) = \alpha(G, x) = \sum_{k} (-1)^{k} p(G, k) x^{n-2k}
\]

is the matching polynomial of \(G\).

Various authors have proposed different names for \(\alpha(G)\), namely reference polynomial1,3,4,5, acyclic polynomial6,7,8 and matching polynomial2,4,9,10,11. This polynomial plays a significant role in statistical physics (theory of monomer-dimer systems) and quantum organic chemistry (theory of aromaticity). For both theories it is rather important that all the roots of the equation \(\alpha(G, x) = 0\) be real numbers. It is therefore not surprising that numerous efforts have been made to establish this fact1-4,12-15.

Because of the several independent discoveries of \(\alpha(G)\), which were usually not noticed by researchers working in other fields of science, it may be useful to give a short review of the history of this problem.
The idea of matching is one of the oldest concepts of graph theory and therefore much work has been done on the numbers $p(G, k)$16,17. Another related topic in combinatorics is the theory of permutations with restrictions, where the numbers $r(B, k)$ play a central role17.

The polynomial
\[R(B) = R(B, x) = \sum_k r(B, k) x^k \]

is known17 as the rook polynomial. Instead of $R(B)$, the associated rook polynomial
\[\varrho(B) = \varrho(B, x) = \sum_k (-1)^k r(B, k) x^{a+b-2k} \]
is sometimes considered. $\varrho(B)$ is related in an obvious manner to $R(B)$ and has moreover a form similar to $\alpha(G)$, eq. (1). (The meaning of the symbols B, $r(B, k)$, a and b will be explained in the next section).

The theory of rook polynomials was elaborated in combinatorial analysis some thirty years ago17. Within this theory it was conjectured18 and immediately thereafter also proved19 that all the roots of the equation $\varrho(B, x) = 0$ are real numbers.

For a long time, however, the close connection between $\varrho(B)$ and $\alpha(G)$ was not recognized.

The first contributions to the theory of the matching polynomial came from statistical physics. A result which is equivalent with the statement that all the roots of $\alpha(G, x) = 0$ are real was first communicated by Heilmann and Lieb12 in 1970 and at the same time independently by Kunz14. These authors later developed13,15 a detailed theory of $\alpha(G)$. Theoretical chemists, unfortunately, seem to have become aware of the papers12-15 only in the second half of 1978. In the meantime Hosoya20 used the polynomial
\[Q(G, x) = \sum_k p(G, k) x^k \]
in the study of the thermodynamic behaviour of saturated hydrocarbons. Aihara6 and independently Gutman, Milun and Trinajstić6 introduced $\alpha(G)$ within a novel theory of aromaticity. (For further references on the chemical applications of $\alpha(G)$ see10). Without knowledge of the previous work by Heilmann, Lieb and Kunz, the reality of the zeros of $\alpha(G)$ was first conjectured7,8 and later proved2. Finally, few years ago Farrell considered in a mathematical paper9, the basic properties of $\alpha(G)$ and thus he discovered $\alpha(G)$ for the sixth time (of course, not being aware of any of the previous publications). Farrell was the first to use the name "matching polynomial".

THE ROOK THEORY AND ITS CONNECTION WITH THE MATCHING POLYNOMIALS

By a board B we mean a subset of cells of an $m \times m$ chessboard. For example, B_1, B_2, B_3 and B_4 are boards.
The number of rows and columns in B will be denoted by $a = a(B)$ and $b = b(B)$, respectively. Thus, $a(B_1) = a(B_4) = a(B_3) = 3$, $a(B_2) = 2$, $b(B_1) = b(B_2) = b(B_3) = b(B_4) = 3$.

The number of ways in which one can arrange k non-attacking rooks on B is denoted by $r(B, k)$. By definition, $r(B, 0) = 1$ for all boards. As an example we present all the six possible arrangements of two rooks and the unique arrangement of three rooks on the board B_3.

Consequently $r(B_3, 2) = 6$, $r(B_3, 3) = 1$. The rook polynomials of the boards B_1, B_2, B_3 and B_4 can be calculated in this manner. They read

\[
R(B_1, x) = 1 + 5x + 4x^2 \\
R(B_2, x) = 1 + 5x + 4x^2 \\
R(B_3, x) = 1 + 5x + 6x^2 + x^3 \\
R(B_4, x) = 1 + 5x + 4x^2 + x^3
\]

while the corresponding φ-polynomials are

\[
\varphi(B_1) = x^6 - 5x^4 + 4x^2 \\
\varphi(B_2) = x^5 - 5x^3 + 4x \\
\varphi(B_3) = x^6 - 5x^4 + 6x^2 - 1 \\
\varphi(B_4) = x^6 - 5x^4 + 4x^2 - 1
\]

Among the numerous known results in the rook theory17, we shall mention the following.

1. For every board B,

\[
\begin{align*}
 r(B, 1) &= \text{number of cells in } B \\
 r(B, k) &= 1 \Rightarrow r(B, k + 1) = 0 \\
 r(B, k) &= 0 \Rightarrow r(B, k + 1) = 0
\end{align*}
\]

2. If the board B is composed of two subboards B_1 and B_2 so that no cell from B_1 lies in a row or column in which there is a cell from B_2, then

\[
R(B) = R(B_1) R(B_2) ; \quad \varphi(B) = \varphi(B_1) \varphi(B_2)
\]
3. Let \(c_{ij} \) denotes the cell in the \(i \)'th row and \(j \)'th column of the board \(B \). Let \(B - c_{ij} \) be a board obtained from \(B \) by deleting the cell \(c_{ij} \). Let \(B - C_{ij} \) be the board obtained by deleting from \(B \) the \(i \)-th row and the \(j \)-th column.

An arrangement of \(k \) non-attacking rooks either contains a rook in the cell \(c_{ij} \) or not. If there is a rook in \(c_{ij} \), then no other rooks can be placed in the cells of the \(i \)-th row and \(j \)-th column. Therefore, there are \(r(B - C_{ij}, k - 1) \) arrangements of \(k \) non-attacking rooks such that one rook is in \(c_{ij} \). The number of arrangements of \(k \) rooks such that no rook is in \(c_{ij} \) is simply \(r(B - c_{ij}, k) \). Thus we deduce the equality

\[
r(B, k) = r(B - c_{ij}, k) + r(B - C_{ij}, k - 1)
\]
(5)

For example,

\[
\begin{array}{ccc}
\text{B} & \text{B-}c_{12} & \text{B-}C_{12} \\
\text{r(B, 1) = 5} & r(B - c_{12}, 1) = 4 & r(B - C_{12}, 0) = 1 \\
\text{r(B, 2) = 6} & r(B - c_{12}, 2) = 4 & r(B - C_{12}, 1) = 2 \\
\text{r(B, 3) = 1} & r(B - c_{12}, 3) = 1 & r(B - C_{12}, 2) = 0
\end{array}
\]

When (5) is substituted back into (2) we get a recursion relation

\[
R(B) = R(B - c_{ij}) + x R(B - C_{ij})
\]
(6)

The following theorem, which is our main result, connects the numbers \(r(B, k) \) with \(p(G, k) \).

Theorem. There is a one-to-one correspondence between labelled bipartite graphs \(G = G(B) \) with \(a + b \) vertices and boards \(B = B(G) \) with \(a \) rows and \(b \) columns, such that \(p(G, k) = r(B, k) \) for all \(k \).

Proof. Let us construct a labelled graph \(G = G(B) \) with \(a + b \) vertices \(v_1, v_2, \ldots, v_a, w_1, w_2, \ldots, w_b \) by connecting the vertex \(v_i \) to \(w_j \) by an edge \(e_{ij} \) if and only if there is a cell \(c_{ij} \) in the board \(B \). This graph is obviously bipartite since the vertices \(v_i \) (and also \(w_j \)) are not mutually connected.

Now, according to the construction, two edges \(e_{ij} \) and \(e_{pq} \) are independent if and only if the cells \(c_{ij} \) and \(c_{pq} \) belong to different rows and different columns (\(i \neq p, j \neq q \)). Therefore the number of selections of \(k \) independent edges in \(G \) (i.e. \(p(G, k) \)) is equal to \(r(B, k) \).

Corollary. \(q(B(G)) = a(G(B)) \).

The graphs corresponding to the boards \(B_1, B_2, B_3 \) and \(B_4 \) are \(G_1, G_2, G_3 \) and \(G_4 \), respectively.
The q-polynomials of B_i are in the same time the matching polynomials of G_i, $i = 1, \ldots, 4$.

Because of the Theorem, the molecular graph of every alternant conjugated system can be presented in the form of a board. For instance, the molecular boards of benzene, benzocyclobutadiene and naphthalene are B_5, B_6 and B_7.

It is clear that the board representation of alternant conjugated molecules is rather unusual from a chemists' point of view. Nevertheless, we think that the above given Theorem will be of some help even in theoretical chemistry because

(a) it connects two such diverse fields of science as the theory of aromaticity and rook theory and
(b) it enables the application of the numerous known results and proof techniques of rook theory.

In fact, it becomes clear that a great part of the results which were obtained for $a (G)$ were previously known in rook theory. For example, when eqs. (5) and (6) are »translated« by means of our Theorem, one gets

$$p (G, k) = p (G - e_{ij}, k) + p (G - v_i - w_j, k - 1)$$
and
\[a(G) = a(G - e_{ij}) - a(G - v_{i} - w_{j}) \]
which are the basic recurrence relations in the theory of matching polynomials. The proof of the reality of the zeros of \(q(B) \) was just a proof of the reality of the zeros of the matching polynomial of bipartite graphs.

ON A CONJECTURE ABOUT MATCHING POLYNOMIALS

If a conjugated system is acyclic, then its characteristic and matching polynomials coincide and therefore isospectral acyclic molecules necessarily also have equal matching polynomials. Examples of isospectral acyclic molecular graphs can be found in.

It was recently conjectured that the matching polynomial can be used for discriminating between planar isospectral cyclic molecules. This conjecture is not true.

There exist pairs of cyclic conjugated systems with both characteristic and matching polynomials equal. I and II are examples of such molecules.

Using an idea of Schwenk it is not difficult to design as many such examples as desired. One of the possible construction procedures is the following.

Notice that the vertices \(v \) and \(w \) in the graph \(G \) have the property \(a(G - v) = a(G - w) \). Therefore, every pair of molecular graphs of the type \(G', G'' \) (where \(S \) stands for an arbitrary fragment) must have both characteristic and matching polynomials equal.

REFERENCES

16. F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

SAŽETAK

Neke napomene o polinomu sparivanja i njegovim nulama

C. D. Godsil i I. Gutman

Polinom sparivanja (koji se naziva još i aciklički i referentni polinom) otkrivan je u kemiji, fizici i matematici najmanje šest puta. Pokazano je da je polinom sparivanja svakog bikromatskog grafa identičan topovskom polinomu izvjesne ploče. Pri-kazane su osnove o teoriji topovskog polinoma17. Također je ukazano na činjenicu da se pomoću polinoma sparivanja ne mogu u općem slučaju razlikovati planarne izospektralne molekule.

ODJEL ZA MATEMATIKU
SVEUCILIŠTA U MELBURNU

PRIRODNO-MATEMATIČKI FAKULTET
SVEUCILIŠTA U KRAGUJEVCU