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On a refinement of the Chebyshev and
Popoviciu inequalities*

CHARLES E. M. PEARCE! JOsIP PECARICTAND JADRANKA SUNDE?

Abstract. We establish a refinement of the discrete Chebyshev
inequality and an analogous one for the Popoviciu inequality.
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Sazetak Poboljsanje Cebisevljeve i Popoviciu-ove nejedna-
kosti. U radu je pokazano poboljsanje diskretne Cebisevljeve i jedna

analogija Popovicu-ove nejednakosti.

Kljuéne rijeéi: diskretna Cebisevljeva nejednakost, Popoviciu-
ova nejednakost

1. Introduction

A fundamental inequality in probability is the discrete Chebyshev inequality,
which states the following.

Theorem A. Suppose a and b are n—tuples of real numbers, both nondecreasing
or both monincreasing, and p is an n—tuple of positive numbers. Then

a bp szzpja] szazzpjb > 0. (1)

Recently an improvement has been derived by Alzer [1].
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Theorem B. If a,b and p are defined as above, then

To(a,b;p) > min [(a; —ai—1)(bj — bi—1)] - T(e, e;p), (2)
2<4,5<n

where e = (1,2,...,n). Equality holds if and only if
a;=a1+ @ —Da and bj=b+(—-1)p (GF=1,...,n), (3)

where o and 3 are positive or negative real numbers accoding as a and b are
both nondecreasing or nonincreasing n—tuples.

In fact it is possible to give a corresponding upper bound for T}, (a, b; p). Set

m(a) = lgliign(aiﬂ —a;), M(a)= 121?<Xn(ai+1 —a;).

Lupas [2] has shown that with the same condition for a,b and p,

T(a7 b§p)
m < M(a)M(b).

We note that the first inequality is equivalent to (2).
The condition that p is a positive n—tuple can be weakened to the condition

m(a)m(b) <

0<P <P (k=12...,n—1), (4)

where Py, := Zlepi (k=1,2,...,n) (see [4]).

The result was established via an Abel-type identity. This appears to be of
a more general applicability, and in this article we shall employ it to derive two
new results: a refinement for the Chebyshev inequality and one for Popoviciu’s
inequality.

Since the identity is not proved in [4], we present a proof in Section 2. An
interesting feature is that although this generalizes Abel’s identity, it can be es-
tablished by repeated use of the basic Abel identity. The latter therefore appears
to hold a key role in connection with the cluster of results mentioned above. In
Section 3 we prove our new refinements of the Chebyshev and Popoviciu results.

2. An Abel-type identity

Proposition 1 below is a useful consequence of repeated use of Abel’s identity

n n—1
ijcj = Pucp, — Z PjAc;y,
j=1 j=1

where Ac; := ¢j+1 — ¢; and P; is defined as in the introduction.
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It will be useful to introduce also a variant. Put P; = Z:.L:j pi (j=1,...,n).
On substituting for the definitions of P;, Pj and interchanging the order of
summation, we derive

Zp]cj—clP ZPAC]—F Z PAc] 1 (1<i<n),
j=i+1

which is an extension of Abel’s identity.

Proposition 1. Suppose a = (a;)7, b= (b))}, p = (p;)} are real n—tuples and
T, (a,b;p) is defined by the left-hand relation in (1). Then

T(a,b;p) = Z Za+1PAb+ZPPAbJ L] A

=1 = j=i1+1

Proof. From its definition, we have

T(a,b;p) = szaz ij —b) | = piliai,
i=1

where .
hii="Y pj(bi —b;). (5)
j=1

Accordingly, by Abel’s identity,

n—1 %
a b; p (sz l) Ap — Z szhz Aaia

i=1 \j=1

and since . . .
> pihi = pi ¥ _pi(bi —b;) =0,
i=1 i=1  j=1

we thus have

T(a,b;p) = Z ijhj Aa;. (6)
j=1

=1

Again by Abel’s identity,

¢ i—1 i—1
ijhj :th17ZP]Ah]:hZszszpnAbj (7)
Jj=1 Jj=1 j=1



124 C.E. M. PEARCE, J. PECARIC AND J. SUNDE

Further, from (5) and our extension of Abel’s identity,

i—1 n
hi =Y PjAb;j— Y PjAb;_, (8)
j=1 j=it+1
and so (6) yields
n—1 i—1
T(a,bip) = Y | hiP, = > PiP,Ab; | Aa;  [by (7)]
i=1 j=1
n—1 i—1 n _ i—1
== P | D_PjAb— > PiAbj 1 | =Y PiP,Ab; | Aay [by (8)]
=1 Jj=1 j=i+1 j=1
n—1 1—1 n
= pz+1ZP]AbJ+PZ Z ijbj—l Aai,
i=1 j=1 j=i+1

and we are done.

3. Applications

We now proceed to an application of Proposition I to give a refinement of
Chebyshev’s inequality. With the notation

lal = (laal, - -, anl),

we have the following result.

Theorem 1. Let a and b be n-tuples of real numbers, both nondecreasing or
both nonincreasing, and p a real n-tuple satisfying (4). Then

Tn(a;b;p) > |Th(|al, [b],p)] = 0.
Proof. For a nondecreasing n—tuple we have

Aa; = aip1 — a; = |aip1 — ai| 2 |aip1| — lai]| = [Alai]],
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so that by Proposition 1

n—1 k—1 n
T(a,b;p) = Pk+IZPjAbj+Pk Z ijbj—l Aayg,

k=1 =1 j=k+1
n—1 B k—1 n B

> Pep1 Y Pi|Ab;l[+ Pe > PilAlb; || | [Alaxl
k=1 Jj=1 j=k+1
n—1 B k—1 n ~

> 3| Perr Y PARI+ P Y PiAb-a| | Alax
k=1 j=1 j=k+1

= |Ta(lal, [b; )|,

giving the required result.

We conclude by considering Popoviciu’s inequality [6], which states the fol-
lowing.

Theorem C. Suppose
F(a,b;z) = Z Z x; a;bj,
i=1 j=1
where all the quantities involved are real numbers. Then
F(a,b;z) >0 (9)

for all sequences a = (a1,...,a,) and b = (by,...,by) which are monotonic is
the same sense if and only if

Xrs>0 (r=2,...,n; s=2,...,m),

X,1=0 (r=1,...,n), (10)
X1s=0 (s=2,...,m),

where X, s =Y Z;n:é T

Remark 1. For the case m = n, we recover Chebyshev’s inequality under
condition (4) with the choice

S pi(Pp —pi) fori=j
“J —DiP; for i # j.
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Relation (9) is a simple consequence of the identity

F(a,b;x) = allel’l +alzX1,sAbs,1
n =2 n m (]-]-)
+b1 Z Xr,lAar—l + Z ZXr,sAar—lAbs—l
r=2

r=2s=2

(see [5] and also [3, p. 341]).
Interpolations of (9) which contain (2) and (3) are obtained in [4].
Finally, we derive an analogue of Theorem 1 for F.

Theorem 2. Suppose z; ; (1 <i<mn,1<j<m) are real numbers satisfying
(10). If the sequences a and b are monotone in the same sense, then

F(a,b;x) > [F(|a], |b; z)[ > 0.

Proof. By (10) F reduces to the last term in (11), so

F(a,b;z) = zn:iXmAar,lAbs,l

r=2s=2

3

NE

Xr,s |Alay—1]] X |A]bs—1]]

ﬁ
||
N
V)
||
N

I
NE
NE

Ko [Alar 1] x Alb, |

%
[
N
w
[
N

3

NE

X’I‘,SA|G/’I‘71‘ X A|b3,1|

ﬁ
[
N
w
[
N

F(lal, [b]; z)] -

Remark 2. As in Remark 1 we can obtain Theorem 1 from Theorem 2.
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