On a refinement of the Chebyshev and Popoviciu inequalities*

Charles E. M. Pearce ${ }^{\dagger}$ Josip Pečarić ${ }^{\ddagger}$ and Jadranka Šunde ${ }^{\S}$

Abstract

We establish a refinement of the discrete Chebyshev inequality and an analogous one for the Popoviciu inequality.

Key words: discrete Chebyshev inequality, Popoviciu inequality SažetakPoboljšanje Čebiševljeve i Popoviciu-ove nejednakosti. U radu je pokazano poboljšanje diskretne Čebiševljeve i jedna analogija Popovicu-ove nejednakosti.

Ključne riječi: diskretna Čebiševljeva nejednakost, Popoviciuova nejednakost

1. Introduction

A fundamental inequality in probability is the discrete Chebyshev inequality, which states the following.

Theorem A. Suppose a and b are n-tuples of real numbers, both nondecreasing or both nonincreasing, and p is an n-tuple of positive numbers. Then

$$
\begin{equation*}
T_{n}(a, b ; p):=\sum_{i=1}^{n} p_{i} \sum_{j=1}^{n} p_{j} a_{j} b_{j}-\sum_{i=1}^{n} p_{i} a_{i} \sum_{j=1}^{n} p_{j} b_{j} \geq 0 . \tag{1}
\end{equation*}
$$

Recently an improvement has been derived by Alzer [1].

[^0]Theorem B. If a, b and p are defined as above, then

$$
\begin{equation*}
T_{n}(a, b ; p) \geq \min _{2 \leq i, j \leq n}\left[\left(a_{i}-a_{i-1}\right)\left(b_{j}-b_{i-1}\right)\right] \cdot T_{n}(e, e ; p) \tag{2}
\end{equation*}
$$

where $e=(1,2, \ldots, n)$. Equality holds if and only if

$$
\begin{equation*}
a_{i}=a_{1}+(i-1) \alpha \quad \text { and } \quad b_{i}=b_{1}+(i-1) \beta \quad(i=1, \ldots, n), \tag{3}
\end{equation*}
$$

where α and β are positive or negative real numbers accoding as a and b are both nondecreasing or nonincreasing n-tuples.

In fact it is possible to give a corresponding upper bound for $T_{n}(a, b ; p)$. Set

$$
m(a)=\min _{1 \leq i<n}\left(a_{i+1}-a_{i}\right), \quad M(a)=\max _{1 \leq i<n}\left(a_{i+1}-a_{i}\right)
$$

Lupaş [2] has shown that with the same condition for a, b and p,

$$
m(a) m(b) \leq \frac{T(a, b ; p)}{T(e, e ; p)} \leq M(a) M(b)
$$

We note that the first inequality is equivalent to (2).
The condition that p is a positive n-tuple can be weakened to the condition

$$
\begin{equation*}
0 \leq P_{n} \leq P_{k} \quad(k=1,2, \ldots, n-1) \tag{4}
\end{equation*}
$$

where $P_{k}:=\sum_{i=1}^{k} p_{i}(k=1,2, \ldots, n)($ see [4]).
The result was established via an Abel-type identity. This appears to be of a more general applicability, and in this article we shall employ it to derive two new results: a refinement for the Chebyshev inequality and one for Popoviciu's inequality.

Since the identity is not proved in [4], we present a proof in Section 2. An interesting feature is that although this generalizes Abel's identity, it can be established by repeated use of the basic Abel identity. The latter therefore appears to hold a key role in connection with the cluster of results mentioned above. In Section 3 we prove our new refinements of the Chebyshev and Popoviciu results.

2. An Abel-type identity

Proposition 1 below is a useful consequence of repeated use of Abel's identity

$$
\sum_{j=1}^{n} p_{j} c_{j}=P_{n} c_{n}-\sum_{j=1}^{n-1} P_{j} \Delta c_{j}
$$

where $\Delta c_{j}:=c_{j+1}-c_{j}$ and P_{j} is defined as in the introduction.

It will be useful to introduce also a variant. Put $\bar{P}_{j}=\sum_{i=j}^{n} p_{i}(j=1, \ldots, n)$. On substituting for the definitions of P_{j}, \bar{P}_{j} and interchanging the order of summation, we derive

$$
\sum_{j=1}^{n} p_{j} c_{j}=c_{i} P_{n}-\sum_{j=1}^{i-1} P_{j} \Delta c_{j}+\sum_{j=i+1}^{n} \bar{P}_{j} \Delta c_{j-1} \quad(1 \leq i \leq n)
$$

which is an extension of Abel's identity.
Proposition 1. Suppose $a=\left(a_{i}\right)_{1}^{n}, b=\left(b_{i}\right)_{1}^{n}, p=\left(p_{i}\right)_{1}^{n}$ are real n-tuples and $T_{n}(a, b ; p)$ is defined by the left-hand relation in (1). Then

$$
T(a, b ; p)=\sum_{i=1}^{n-1}\left(\sum_{j=1}^{i-1} \bar{P}_{i+1} P_{j} \Delta b_{j}+\sum_{j=i+1}^{n} P_{i} \bar{P}_{j} \Delta b_{j-1}\right) \Delta a_{i}
$$

Proof. From its definition, we have

$$
T(a, b ; p)=\sum_{i=1}^{n} p_{i} a_{i}\left(\sum_{j=1}^{n} p_{j}\left(b_{i}-b_{j}\right)\right)=\sum_{i=1}^{n} p_{i} h_{i} a_{i}
$$

where

$$
\begin{equation*}
h_{i}:=\sum_{j=1}^{n} p_{j}\left(b_{i}-b_{j}\right) \tag{5}
\end{equation*}
$$

Accordingly, by Abel's identity,

$$
T(a, b ; p)=\left(\sum_{i=1}^{n} p_{i} h_{i}\right) a_{n}-\sum_{i=1}^{n-1}\left(\sum_{j=1}^{i} p_{i} h_{i}\right) \Delta a_{i}
$$

and since

$$
\sum_{i=1}^{n} p_{i} h_{i}=\sum_{i=1}^{n} p_{i} \sum_{j=1}^{n} p_{j}\left(b_{i}-b_{j}\right)=0
$$

we thus have

$$
\begin{equation*}
T(a, b ; p)=-\sum_{i=1}^{n-1}\left(\sum_{j=1}^{i} p_{j} h_{j}\right) \Delta a_{i} \tag{6}
\end{equation*}
$$

Again by Abel's identity,

$$
\begin{equation*}
\sum_{j=1}^{i} p_{j} h_{j}=h_{i} P_{i}-\sum_{j=1}^{i-1} P_{j} \Delta h_{j}=h_{i} P_{i}-\sum_{j=1}^{i-1} P_{j} P_{n} \Delta b_{j} \tag{7}
\end{equation*}
$$

Further, from (5) and our extension of Abel's identity,

$$
\begin{equation*}
h_{i}=\sum_{j=1}^{i-1} P_{j} \Delta b_{j}-\sum_{j=i+1}^{n} \bar{P}_{j} \Delta b_{j-1}, \tag{8}
\end{equation*}
$$

and so (6) yields

$$
\begin{gathered}
T(a, b ; p)=\sum_{i=1}^{n-1}\left(h_{i} P_{i}-\sum_{j=1}^{i-1} P_{j} P_{n} \Delta b_{j}\right) \Delta a_{i} \quad[b y \quad(7)] \\
=-\sum_{i=1}^{n-1}\left[P_{k}\left(\sum_{j=1}^{i-1} P_{j} \Delta b_{j}-\sum_{j=i+1}^{n} \bar{P}_{j} \Delta b_{j-1}\right)-\sum_{j=1}^{i-1} P_{j} P_{n} \Delta b_{j}\right] \Delta a_{k} \quad[b y \quad(8)] \\
=\sum_{i=1}^{n-1}\left(\bar{P}_{i+1} \sum_{j=1}^{i-1} P_{j} \Delta b_{j}+P_{i} \sum_{j=i+1}^{n} \bar{P}_{j} \Delta b_{j-1}\right) \Delta a_{i}
\end{gathered}
$$

and we are done.

3. Applications

We now proceed to an application of Proposition 1 to give a refinement of Chebyshev's inequality. With the notation

$$
|a|=\left(\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right),
$$

we have the following result.

Theorem 1. Let a and b be n-tuples of real numbers, both nondecreasing or both nonincreasing, and p a real n-tuple satisfying (4). Then

$$
T_{n}(a ; b ; p) \geq\left|T_{n}(|a|,|b|, p)\right| \geq 0 .
$$

Proof. For a nondecreasing n-tuple we have

$$
\Delta a_{i}=a_{i+1}-a_{i}=\left|a_{i+1}-a_{i}\right| \geq \| a_{i+1}\left|-\left|a_{i}\right|\right|=|\Delta| a_{i}| |,
$$

so that by Proposition 1

$$
\begin{aligned}
T(a, b ; p) & =\sum_{k=1}^{n-1}\left(\bar{P}_{k+1} \sum_{j=1}^{k-1} P_{j} \Delta b_{j}+P_{k} \sum_{j=k+1}^{n} \bar{P}_{j} \Delta b_{j-1}\right) \Delta a_{k} \\
& \geq \sum_{k=1}^{n-1}\left(\bar{P}_{k+1} \sum_{j=1}^{k-1} P_{j}|\Delta| b_{j}| |+P_{k} \sum_{j=k+1}^{n} \bar{P}_{j}|\Delta| b_{j-1}| |\right)|\Delta| a_{k}| | \\
& \geq\left|\sum_{k=1}^{n-1}\left(\bar{P}_{k+1} \sum_{j=1}^{k-1} P_{j} \Delta\left|b_{j}\right|+P_{k} \sum_{j=k+1}^{n} \bar{P}_{j} \Delta\left|b_{j-1}\right|\right) \Delta\right| a_{k}| | \\
& =\left|T_{n}(|a|,|b| ; p)\right|
\end{aligned}
$$

giving the required result.

We conclude by considering Popoviciu's inequality [6], which states the following.

Theorem C. Suppose

$$
F(a, b ; x)=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i, j} a_{i} b_{j}
$$

where all the quantities involved are real numbers. Then

$$
\begin{equation*}
F(a, b ; x) \geq 0 \tag{9}
\end{equation*}
$$

for all sequences $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)$ which are monotonic is the same sense if and only if

$$
\begin{align*}
& X_{r, s} \geq 0 \quad(r=2, \ldots, n ; s=2, \ldots, m) \\
& X_{r, 1}=0 \quad(r=1, \ldots, n) \tag{10}\\
& X_{1, s}=0 \quad(s=2, \ldots, m)
\end{align*}
$$

where $X_{r, s}=\sum_{i=r}^{n} \sum_{j=s}^{m} x_{i, j}$.
Remark 1. For the case $m=n$, we recover Chebyshev's inequality under condition (4) with the choice

$$
x_{i, j}= \begin{cases}p_{i}\left(P_{n}-p_{i}\right) & \text { for } i=j \\ -p_{i} p_{j} & \text { for } i \neq j\end{cases}
$$

Relation (9) is a simple consequence of the identity

$$
\begin{align*}
& F(a, b ; x)=a_{1} b_{1} X_{1,1}+a_{1} \sum_{s=2}^{m} X_{1, s} \Delta b_{s-1} \\
&+b_{1} \sum_{r=2}^{n} X_{r, 1} \Delta a_{r-1}+\sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s} \Delta a_{r-1} \Delta b_{s-1} \tag{11}
\end{align*}
$$

(see [5] and also [3, p. 341]).
Interpolations of (9) which contain (2) and (3) are obtained in [4].
Finally, we derive an analogue of Theorem 1 for F.
Theorem 2. Suppose $x_{i, j}(1 \leq i \leq n, 1 \leq j \leq m)$ are real numbers satisfying (10). If the sequences a and b are monotone in the same sense, then

$$
F(a, b ; x) \geq|F(|a|,|b| ; x)| \geq 0
$$

Proof. By (10) F reduces to the last term in (11), so

$$
\begin{aligned}
F(a, b ; x) & =\sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s} \Delta a_{r-1} \Delta b_{s-1} \\
& \geq \sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s}|\Delta| a_{r-1}| | \times|\Delta| b_{s-1}| | \\
& =\sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s}|\Delta| a_{r-1}|\times \Delta| b_{s-1}| | \\
& \geq\left|\sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s} \Delta\right| a_{r-1}|\times \Delta| b_{s-1}| | \\
& =|F(|a|,|b| ; x)|
\end{aligned}
$$

Remark 2. As in Remark 1 we can obtain Theorem 1 from Theorem 2.

References

[1] H. Alzer, A refinement of Tchebyschef's inequality, Nieuw Archief voor Wiskunde 10(1992), 7-9.
[2] A. Lupaş, On an inequality, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 716-734(1981), 32-34.
[3] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Acad. Publ., Dordrecht (1993).
[4] J. E. PečARIć, On the Ostrowski generalization of Čebyšev's inequality, J. Math. Anal. Appl. 102(1984), 479-487.
[5] J. E. Pečarić, On an inequality of T. Popoviciu, Bul. Sti. Tech. Inst. Politehn. Timişoara 2, 24, 38 (1979), 9-15.
[6] T. Popoviciu, On an inequality, Gaz. Mat. Fiz. Ser. A8 64(1959), 451461.

[^0]: *Received November 12, 1996.
 ${ }^{\dagger}$ Department of Applied Mathematics, University of Adelaide, Adelaide SA 5005, Australia, e-mail: pearce@cromath.math.hr
 ${ }^{\ddagger}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia, e-mail: pecaric@cromath.math.hr
 §Department of Applied Mathematics, University of Adelaide, Adelaide SA 5005, Australia

