Surface Reactions of Some Aqueous Silver Halide Dispersions

A. H. Herz
Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, U.S.A.
Received November 22, 1979

This review discusses interactions of cationic surfactants, cyanine dyes, gelatin, bromide ions and other Ag⁺-ligands with aqueous silver halide dispersions containing particles of controlled size, composition and crystal habit. Results are discussed in terms of adsorption energies and orientation of adsorbates; emphasis is placed on crystal habit as a variable both for adsorption equilibria and for kinetic processes like recrystallization (Ostwald ripening) and the dissolution rates of silver halide surfaces.

INTRODUCTION

As with many recent physical-chemical investigations of silver halides having photographic significance, the studies summarized here generally required suspended microcrystals of variable but known size, composition and crystal habit. Methods are available \(^1\) for preparing such aqueous silver halide dispersions at high particle concentrations, and a number of techniques can be employed for the evaluation of their particle size and surface area. It will be shown that the resulting information can be applied to the characterization of kinetic phenomena such as silver halide dissolution rates by various Ag⁺-ligands or the recrystallization and Ostwald ripening of AgBr. Effects of silver halide composition in such reactions will be reviewed as will be the role of silver bromide cubic or octahedral crystal habit as a variable for the adsorption of bromide ions, cationic surfactants, cyanine dyes and gelatin.

SUBSTRATE PREPARATION AND CHARACTERIZATION

When in the course of these studies small-particle silver halide suspensions were needed that contained no gelatin or other polymeric vehicle, it was convenient to use ca. 10 nm Ag⁺ sols because such silver particles can be partly or completely converted to silver halide dispersions\(^2\), e.g.,

\[
2 \text{Ag}^+ + 0.5 \text{O}_2 + 2 \text{HBr} = 2 \text{AgBr} + \text{H}_2\text{O}, \; K \sim 10^{39}
\]

More generally, however, silver halide dispersions were prepared from highly water-soluble salts in dilute gelatin solution by a double-jet homogeneous nucleation process\(^1\). This technique can facilitate formation of AgX suspensions having controlled particle sizes because of a correlation between

\(^*\) Based on an invited lecture presented at the 5th «Ruder Bošković» Institute's International Summer Conference Chemistry of Solid/Liquid Interfaces, Cavtat/Dubrovnik, Croatia, Yugoslavia, June 1979.
the silver halide's equilibrium solubility, a thermodynamic parameter, and the kinetics of silver halide particle growth. Evidence for the existence of such a correlation is given in Figure 1; it shows that the size of AgI crystals formed as a function of pAg paralleled AgI solubility in the same pAg range. Similarly, parallel changes of AgBr solubility and its rate of Ostwald ripening were reported over a wide pAg range.

Although electron microscopy is frequently used for characterizing the size and dispersity of silver halide suspensions, particle dimensions were also obtained by other techniques that included Rayleigh scatter, the Coulter Counter and dye adsorption. For the latter purpose, 1,1'-diethyl-2,2'-cyanine was preferred because various workers are in reasonable agreement that this dye occupies a limiting area per molecule of ca. 0.58 nm² at aqueous AgCl, AgBr and AgBr/I surfaces. This limiting surface occupancy by the cyanine did not vary with the substrate's crystal habit. Moreover, in a useful concentration range, this dye existed primarily in either its dissolved and unperturbed form or in its adsorbed state that exhibited the distinct and intense long-wavelength absorption of a J-aggregate. Monitoring these spectral features by transmission or reflectance spectrophotometry without any intervening phase separation procedures allowed the convenient determination of dye surface coverages and, hence, the surface areas of silver halide dispersions.

Although gelatin had no apparent influence on the saturation coverage by that 2,2'-cyanine, there is evidence that this polyelectrolyte may alter the orientation of fatty tail cationic surfactants at AgBr/Br⁻ surfaces. At any rate, since most silver halides discussed here contain ossein gelatin with an isoeionic point (IP) at pH ~ 4.9, it should be recognized that this protein appears to be bound to both cubic and octahedral AgBr surfaces by only a few of its polar groups and that the remainder of the molecule extends some 20–40 nm into solution in highly solvated loops. In weight terms, 3–8 mg gelatin/m² is irreversibly adsorbed to AgBr/Br⁻ surfaces, the maximum amount being adsorbed at the IP where gelatin exists as a random coil rather than in an extended configuration.
This measured thickness of adsorbed gelatin indicates that chains of this polyelectrolyte extend much further into the aqueous solution than was calculated for the electrical double layer due to bound lattice ions at the silver halide surface. Hence, electrokinetic properties of AgX dispersions in the presence of gelatin are insensitive to excess lattice ions (pAg) but vary with the pH-dependent charges of the protein.\textsuperscript{16,18,19}

**SURFACE EFFECTS OF AgX DISSOLUTION RATES**

Because of its practical importance, many studies have been concerned with fixing, i.e., the conversion of a sparingly soluble, dispersed silver halide to a highly soluble and removable Ag\textsuperscript+ complex such as an argentothiosulfate. These studies often employed clearing rates involving the complete dissolution of the AgX crystals by the Ag\textsuperscript+ ligand. In order to separate this bulk behavior from reactions of the ligand at the AgX/solution interface, an electrochemical procedure was used that monitored the initial formation of Ag\textsuperscript+ ligand complexes in the silver halide dispersion.\textsuperscript{14}

More specifically, experiments were carried out with silver halides dispersed in alkaline gelatin solutions at constant ionic strength and temperature. In the presence of excess ligands such as ethanolamines or sulfite, the initial dissolution rates, \( \tau \), were insensitive to the crystal habit of AgBr but they increased in direct proportion to (1) the effective surface area, \( A \), of the silver halide, (2) its apparent solubility product, \( K_{sp} \), and (3) for ligands of equal charge, the product of the total ligand concentration squared, \( L_0^2 \), and the stability constant of its Ag\textsuperscript+ complex, \( \beta_2 \).

The results, some of which are illustrated in Figure 2, made it apparent that \( \tau = a \left( A \beta_2 L_0^2 K_{sp} \right) \), where \( a \) depends on factors such as the concentration of excess halide (pAg) and ligand charge. This charge-dependent factor was particularly important; \( a \) decreased more than tenfold when an anionic group was introduced into an alkylamine. However, this retardation could be avoided by the presence of reversibly adsorbed cationic surfactants which are known to diminish the negative charge density at silver halide/halide surfaces.\textsuperscript{8,12}

These observations were interpreted by use of a model involving the formation
of charged Ag⁺-complexes at the charged AgX/solution interface and a rate-
determining process whereby the complexed Ag⁺ diffuses from the AgX
surface into the bulk of the solution.\(^8\)

RELATIONS BETWEEN SILVER HALIDE SURFACE STABILITY AND ADSORPTION
OF ORGANIC CATIONS

The properties of many silver halide/surfactant systems were recently
reviewed; they made it apparent that N-alkyl pyridinium and quinolinium
salts are good examples of the just cited cationic surfactants which can
diminish or reverse the negative charge of AgX/X⁻ suspensions. More specif-
ically, it was demonstrated in AgBr and AgBr/I dispersions containing excess
halide that the reversible Langmuir adsorption of these colorless organic
cations increased with the length of their alkyl chain and yielded free energies
of adsorption which ranged up to 11 kcal/mol. Adsorption parameters were
insensitive to changes of silver halide composition or crystal habit, but for
cations with 12 or more methylene groups, the limiting area/cation became
independent of alkyl chain length. The resulting molecular areas were
consistent with a surfactant orientation such that its cationic head was bound
to the silver halide and the alkyl chain turned towards the gelatin solution.\(^8\)

During these adsorption determinations, it was unexpectedly observed
that the cationic surfactants destabilized silver halide/halide surfaces, e.g.,
N-dodecyl pyridinium pts (P₁₂) caused well-defined cubic AgBr to recrystallize
to spherical particles.\(^7\). This recrystallization was evaluated quantitatively with
Rayleigh scatter in the presence of surfactants having various structures and
concentrations. It was thus established that the Ostwald ripening rate of
silver bromide at pBr 3 exhibited the concentration dependence for added
N-alkyl pyridinium salts illustrated in Figure 3. It also became apparent that
these AgBr growth rates obtained with the pyridinium salts closely paralleled
their adsorption isotherms.

This acceleration of AgBr recrystallization and ripening by organic cations
which themselves are not Ag⁺-ligands was interpreted in terms of Br⁻ co-
adsorption with the cationic surfactant. It was suggested that this Br⁻

![Figure 3](Image)

Figure 3. Growth kinetics (dA/dt) of AgBr/Br⁻ in aqueous gelatin at various concentrations
of decyl, dodecyl and hexadecyl pyridinium salts.\(^8\)
counterion adsorption, which was independently determined, sufficiently enriched the Br⁻ concentration in the electrical double layer to facilitate formation of mobile silver bromide/bromide complexes, e.g., AgBr₂⁻, which are known to accelerate AgBr recrystallization.

Unlike the cited pyridinium or quinolinium surfactants, cationic cyanine dyes (and differently charged analogs) tend to stabilize silver halide surfaces against recrystallization because they are irreversibly adsorbed. It appears that any anionic silver complexes that are formed in association with the irreversibly bound dye cation are also immobilized and thus they cannot participate in the silver halide recrystallization process.

DOES THE CRYSTAL HABIT OF SILVER HALIDE INFLUENCE SURFACE REACTIONS?

The answer to this question would be negative if we were to base all conclusions only on the just-cited observations. These showed that in sulfite solution both cubic and octahedral AgBr surfaces dissolved at similar initial rates and, furthermore, that the adsorption properties of gelatin and of simple cationic surfactants were insensitive to AgBr crystal habit.

However, a different answer emerges when consideration is given to the interaction of cyanine dyes and of bromide ions with cubic and octahedral AgBr surfaces. Although the zero-point of charge of AgBr dispersions and their thermodynamic constants for Br⁻ adsorption are not sensitive to the substrate's crystal habit, nearly twice as much Br⁻ is associated with octahedral than with cubic surfaces (Table). This dependence of Br⁻ coverage on AgBr crystal habit is reproducible and suggests that anions such as thiocyanate, or certain nitrogen acids having an affinity for Ag⁺ similar to that of Br⁻, should also exhibit a dependence of surface coverage on AgBr crystal habit.

Moreover, the present results demonstrate that only a small fraction of the geometrically available AgBr/solution interface is involved in Br⁻ adsorption at lattice sites.

As recently summarized, the situation for dye adsorption is different. Many cyanines are strongly bound to the AgX surface in a close-packed array, and it was demonstrated that a reversibly adsorbed anionic thiocarbocyanine yielded free energies, enthalpies, and entropies of adsorption that were essentially identical for both cubic and octahedral AgBr. Furthermore, this dye and its analogs exhibited limiting areas per adsorbed molecule that were the same for both AgBr types, yet the dye's surface spectra clearly and strikingly varied with the substrate's crystal habit. This dye behavior remains poorly understood, and investigations are continuing to determine how the orientation and stacking of dye molecules is controlled by the crystallographic index of silver halide surfaces.
REFERENCES


13. J. Padday and A. Herz in Ref. 1b, p. 25.

14. G. Levenson in Ref. 1b, p. 437.


SAŽETAK
Površinske reakcije vodenih disperzija srebrnih halida
A. H. Herz
Prikazani su rezultati istraživanja interakcija kationskih površinski aktivnih tvari, cijaninskih boja, zelatine, bromidnih iona i drugih liganada srebrnog iona s disperzijama srebrnih halida kontrolirane veličine čestica, sastava i kristalnog habitusa. Pretpostavivši da je kristalni habitus osnovna varijabla i za adsorpciju i za kinetičke procese rekristalizacije (Oswaldova sazrijevanja) i otapanja, rezultati su diskutirani s obzirom na slobodnu energiju, entalpiju i entropiju adsorpcije bromidnih iona, te orijentaciju adsorbata na kubičnom i oktahedralnom AgBr.

RESEARCH LABORATORIES
EASTMAN KODAK COMPANY
ROCHESTER, N. Y. 14650


A. H. HERZ

Površinske reakcije vodenih disperzija srebrnih halida

A. H. Herz

Prikazani su rezultati istraživanja interakcija kationskih površinski aktivenih tvari, cijaninskih boja, zelatine, bromidnih iona i drugih liganada srebrnog iona s disperzijama srebrnih halida kontrolirane veličine čestica, sastava i kristalnog habitusa. Pretpostavivši da je kristalni habitus osnovna varijabla i za adsorpciju i za kinetičke procese rekristalizacije (Oswaldova sazrijevanja) i otapanja, rezultati su diskutirani s obzirom na slobodnu energiju, entalpiju i entropiju adsorpcije bromidnih iona, te orijentaciju adsorbata na kubičnom i oktahedralnom AgBr.

RESEARCH LABORATORIES
EASTMAN KODAK COMPANY
ROCHESTER, N. Y. 14650

U.S.A.