CROATICA CHEMICA ACTA CCACAA 53 (2) 389-396 (1980)

CCA-1216

YU ISSN 0011-1643 UDC 548.547.461.2:546.41 Conference Abstract

In-Vitro-Experiments on the Dissolution of Ca-Oxalate and Ca-Phosphate Renal Calculi by the Tricarboxylic Acids of the Krebs-Cycle. Results and in Vivo Perspectives*

P. Leskovar, R. Hartung, R. Allgayer, and A. Siebert

Urologische Klinik und Poliklinik rechts der Isar der Technischen Universität München, München, BR Deutschland

Received September 6, 1979

INTRODUCTION

The nephrolithiasis is the most frequent urological disease.^{1,2} The stone incidence in general is $1-4^{0/6}$ and can be compared with that of diabetes mellitus.

Hedenberg called attention to the fact that the published data represent pure hospital statistics and don't include the $70-80^{\circ}/_{\circ}$ of stone patients which were not sent to a hospital. Ljunghall and Hedstrand³ estimated the real percentage of stone-formers in the general population to be much higher (13.7°/₀).

An additional problem is the high stone-recurrence rate. Following Alken and Herrmann⁴ respectively Kollwitz et al.,⁵ this recurrence rate is $50^{0}/_{0}$. Ljunghall and Hedstrand³ calculated even a $72^{0}/_{0}$ probability of stone recurrence in absence of any metaphylactic precautions.

In the last years, the stone-incidence is increasing. Schneider² speaks of a weavy course of the stone-incidence: the stone-frequency increased after 1927, dropped to a fifth during and after the world war II and rised steeply since 1948. The increased stone-frequency seems to be related to the raised living standard, social state, increased protein consumption as well as to the raised serum uric acid level.

The high actuality of the prevention and dissolution of urinary stones is obvious. Nowadays only the uric acid calculi and to some extent the cystine calculi, representing 15 to $25^{\circ}/_{\circ}$ of all calculi, can be dissolved perorally. The residual 75 to $85^{\circ}/_{\circ}$ of renal stones, being composed of Ca-oxalate and phosphate, are not accessible to the peroral chemolitholysis.

Using a new quantitative measuring technique, based on the Coulter principle, we were able to test in vitro about 80 substances with respect to their inhibitory and crystal dissolving properties.

^{*} Based on an invited lecture presented at the 5th »Ruđer Bošković« Institute's International Summer Conference Chemistry of Solid/Liquid Interfaces, Cavtat/Dubrovnik, Croatia, Yugoslavia, June 1979.

P. LESKOVAR ET AL.

Here, only the tricarboxylic acids of the Krebs-cycle, the citric, the aconitic and the isocitric acid as well as the structurally similar tricarballylic acid will be presented.

METHODS

Meta- and instable Ca-oxalate solutions as well as suspensions of oxalate and phosphate crystals were treated for 48 hours with test substances of a definite concentration and the size distribution of crystals both in the test and in the reference suspension was evaluated quantitatively by Coulter Counter and Channelyzer. Here, the results can be presented only in a very simplified manner as numbers respectively volumes of crystals in the particular size classes. The efficacy of the tested substances can be deduced directly from the reduction of crystal number and crystal volume after the incubation with the test substance.

In schedules to be presented, the crystal number in the reference suspension is designated by n_{blank} , the corresponding volume by V_{blank} . The crystal number in the test solution after the 48-hour-incubation was denoted (signified) by n_{sample} and the corresponding crystal volume by V_{sample} .

 S_{big} represents the sum of big crystals and S_{tot} the sum of all crystals measured.

RESULTS

In Figure 1, the crystal growth-inhibition from an oversaturated Caoxalate solution in presence of aconitate is demonstrated. The lower values for n_{sample} compared with those for n_{blank} indicate the inhibited respectively the prevented precipitation and growth of oxalate crystals by aconitate. The aconitate proved to be efficaceous not only in the inhibition of precipitation but also in the dissolution of preformed Ca-oxalate crystals (Figure 2).

INHIBITED GROWTH OF CA-OXALATE CRYSTALS IN THE PRESENCE

OF CIS-ACONITATE

d(um)	ⁿ blank	nsample
8,4 - 10,6	4854 <u>+</u> 380	4336 + 340
10,6 - 12,1	4028 + 316	3614 <u>+</u> 308
12,1 - 13,3	3822 <u>+</u> 300	2788 + 218
13,3 - 14,3	3924 + 308	2 - 1 - 1 - 1 <u>2</u> 4 - 1 2 51, 24
14,3 - 15,2	3924 <u>+</u> 308	
15,2 - 16,0	3822 <u>+</u> 300	
16,0 - 16,8	3718 + 292	
16,8 - 17,4	3512 <u>+</u> 276	and an inclusion of the second
17,4 - 18,1	3098 <u>+</u> 242	inie, wo were able n
S _{big}	25.820	2.788
Stot	34.702	10.738

Figure 1.

Ca-oxa	Ca-oxalate crystals					
	n _{blank}	nsample	V _{blank}	Vsample		
S _{big}	16.732	11.671	25.504	16.457		
Stot	41.416	31.398	39.262	27.416		

DISSOLUTION OF STONE-FORMING CRYSTALS BY CIS - ACONITATE

Hydroxylapatite crystals

.

	ⁿ blank	nsample	V _{blank}	Vsample
S _{big}	10.018	4.338	13.214	5.058
Stot	28.712	14.770	23.854	11.118
00				

Figure 2.

DISSOLUTION OF STONE-FORMING CRYSTALS BY D, I.- ISOCITRATE

Ca-oxalate crystals

	ⁿ blank	nsample	Vblank	Vsample
S _{big}	16.732	4.441	25.504	5.328
s _{tot}	41.416	15.802	39.262	11.690

• . Whewellite/weddellite crystals

	n _{blank}	nsample	V _{blank}	Vsample
S. big	2.168		2,337	-
Stot	12.636	2892	8.223	1.463

Again, a direct comparison of $n_{\rm blank}$ and $n_{\rm sample}$ clearly shows the high efficacy of aconitate.

Aconitate proved to dissolve not only the oxalate but also the phosphate crystals and disintegrated urinary stones (Figure 2). The difference between the number and size of crystals before and after incubation with aconitate is obvious.

In Figure 3, the dissolution of oxalate crystals and of disintegrated oxalate stones (whewellite and weddellite) by isocitrate is demonstrated. Crystal number and volume are markedly reduced after treatment by the sodium salt of isocitric acid.

Isocitrate is also highly efficaceous in the dissolution of various kinds of phosphate crystals, as can be deduced from the lower values both of $S_{\rm big}$ and $S_{\rm tot}$ in the test suspension, compared with the reference suspension (Figure 4).

The high efficiency of sodium citrate in dissolution of artificial oxalate crystals and disintegrated oxalate stones is evident. Like other active substances, citrate is much more effective in inhibiting the precipitation and growth of crystals than in dissolution of existing crystals (Figure 5).

PARTIAL DISSOLUTION OF PHOSPHATE CRYSTALS BY D,L-ISOCITRATE

Brushite crystals

	ⁿ blank	nsample	V _{blank}	Vsample
Shig	7.022	-	9.063	-
Stot	15.904	4.234	14.375	2.305

Hydroxylapatite crystals

	n. blank	105 6	ⁿ sample	V _{blank}	$v_{\texttt{sample}}$
S _{big}	10.018		-	13.214	
Stot	28.712		2.276	23.854	1.113

Struvite crystals

	n _{blank}	an in an	ⁿ sample	V _{blank}	Vsample
S _{big}	7.748	7.337	-	10.069	gid^{2}
s _{tot}	18.904	81223		16.591	toj ²

Figure 4.

	n blank	nsample	V _{blank}	Vsample	
S _{big}	16.732	7.538	25.504	9.683	
Stot	41.416	19.520	39.262	16.587	

PARTIAL DISSOLUTION OF STONE-FORMING CRYSTALS BY CITRATE

Whewellite/weddellite crystals

Ca-oxalate crystals

	ⁿ blank	nsample	v _{blank}	V_sample
s _{big}	2.168	-	2.337	-
^S tot	12.636	1.240	8.222	573
		Figure 5.		

PARTIAL DISSOLUTION OF PHOSPHATE CRYSTALS BY CITRATE

	ⁿ blank	nsample	v_{blank}	Vsample
S _{big}	7.022	e a porta interference dal Anterio del Contra del C	9.063	
Stot	15.904	-	14.375	-

Hydroxylapatite crystals

Brushite crystals

	n _{blank}	nsample	V _{blank}	Vsample
S _{big}	10.018		13.214	х. 1961 — С. С.
Stot	28.712	3.614	23.854	1.765

Struvite crystals

	n _{blank}		nsample		V _{blank}	,	⁷ sample
S _{big}	7.748	246.15	-		10.069	200	
Stot	18.904		826		16.591		382
			Figure	6.			

INFLUENCE OF TRICARBALLYLATE ON NUCLEATION AND GROWTH OF

d (µm)	n _{blank}		nseeds	nsample
8,4 - 10,6	14.046 +	1102	1.756 <u>+</u> 1	57 3.408 <u>+</u> 368
10,6 - 12,1	12.394 +	972	1.032 +	92 2.478 <u>+</u> 194
12,1 - 13,3	9.192 <u>+</u>	722	749 +	67 516 <u>+</u> 40
13,3 - 14,3	6.300 +	494	516 <u>+</u>	46 –
14,3 - 15,2	5.060 <u>+</u>	396	206 +	18 –
15,2 - 16,0	4.142 +	324		
16,0 - 16,8	3.408 +	268	-	
16,8 - 17,4	2.996 <u>+</u>	234	-	
17,4 - 18,1	1.550 <u>+</u>	120		
S _{big}	32.63	88	1.471	516
Stot	59.07	8	4.259	6402
		Fig	ure 7.	

CA-OXALATE CRYSTALS (IN PRESENCE OF CRYSTAL SEEDS)

PARTIAL DISSOLUTION OF STONE-FORMING CRYSTALS BY TRICARBALLYLATE

Ca-oxalate crystals

	n _{blank}	nsample	V _{blank}	Vsample
S _{big}	16.732	9.915	25.504	13.517
Stot	41.416	26.647	39.262	22.901

Brushite crystals

	n _{blank}	ⁿ sample		V _{blank}	1	Vsamp	le
S _{big}	7.022	3.512		9.063		4.294	
Stot	15.904	10.742		14.375		8.525	
		Figu	re 8				

394

	ⁿ blank	n sample	V _{blank}	Vsample
Sbig	10.018	2.374	13.214	2.718
Stot	28.712	11.360	23.854	7.951

DISSOLUTION OF PHOSPHATE CRYSTALS BY TRICARBALLYLATE

Struvite crystals

Hydroxylapatite crystals

	ⁿ blank	nsample	V _{blank}	Vsample
S _{big}	7.748	2.375	10.068	2.560
s _{tot}	18.904	11.154	16.591	7.729

Figure 9.

In Figure 6, the dissolution of phosphate crystals and crystalline stone--material by citrate is demonstrated.

The sodium tricarballylate presented in Figure 7, was of interest because of its structural similarity with the tricarboxylic acids described and because of its possible renal elimination in an unchanged, litholytically active form. Here, the influence of tricarballylate on growing oxalate crystals is demonstrated. Again, the n_{sample} -values are distinctly lower than the n_{blank} -values.

In Figure 8, the dissolution of Ca-oxalate crystals in presence of sodium tricarballylate is shown. The reduced n_{sample} -values indicate the partial dissolution of stone-forming crystals.

Sodium tricarballylate proved to be efficaceous also in dissolving phosphate crystals, as can be concluded from the distinctly decreased crystal number in the test suspension in comparison to the reference solution (Figure 9).

CONCLUSION

From our experimental data, it can be concluded that all the tricarboxylic acids tested showed a clear inhibitory effect on growing oxalate crystals. There was also a distinct dissolution of oxalate and phosphate crystals as well as of the disintegrated renal calculi.

This seems to be of special importance in connection with our observation of a significantly reduced citric acid excretion in reccurrent stone-formers. In animal experiments, we were able to increase the urinary citric acid level 7.2 to 7.8 fold by malonate and 8 fold by equimolar mixture of oxalacetate and acetate.

P. LESKOVAR ET AL.

REFERENCES

- W. Lutzeyer and H. Melchior, Therapiewoche 26 (1976) 5851.
 H. J. Schneider and H. Hesse, Therapiewoche 26 (1976) 5881.
 S. Ljunghall and H. Hedstrand, Acta Med. Scand. 197 (1975) 439.
 C. E. Alken and G. Hermann, Urol. Int. 4 (1957) 335.
 A. A. Kollwitz, H. Kracht, R. Brauer, and E. Löhe, Urol. Int. 24 (1957) 210. (1969) 318.

SAŽETAK

Laboratorijski eksperimenti otapanja bubrežnih kamenaca kalcijeva oksalata i kalcijeva fosfata u trikarboksilnim kiselinama Krebsova ciklusa. Rezultati istraživanja i perspektive in vivo

P. Leskovar, R. Hartung, R. Allgayer i A. Siebert

Opisani su pokusi koji dokazuju da trikarboksilne kiseline Krebsova ciklusa inhibiraju rast oksalatnih kristala. Isto tako opažen je znatan utjecaj tih kiselina na otapanje i oksalatnih i fosfatnih kristala, kao i samih bubrežnih kamenaca.

UROLOGISCHE KLINIK UND POLIKLINIK RECHTS DER ISAR TECHNISCHE UNIVERSITÄT MÜNCHEN MÜNCHEN, B.R. DEUTSCHLAND

Prispjelo 6. rujna 1979.