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Previous research6- 9 has shown that the Toth equation describes 
well the adsorption of hydrocarbons on carbon adsorbents, especi­
ally on Nuxit-Al charcoal. This fact is probably connected with the 
quasi-gaussian energy distribution function, which is related to 
T6th's equation. In this paper, the parameters of the above men­
tioned equation have been discussed once again and recent results 
on this subject were taken into account. The modified Toth equa­
tion has also been generalized for the case of adsorption from 
multicomponent gas and liquid mixtures on solids of quasi­
-gaussian energy distribution. 

INTRODUCTION 

The investigations of the physical adsorption of gases and liquids on 
solids are inseparably connected with the problem of heterogeneity of adsorbing 
surfaces. Many empirical and theoretical equations, describing the adsorption 
on heterogeneous surfaces have been proposed. One 'Of them is Toth equation1: 

N(p)= N 
[ 

Pm ] l / m 
e b* +pm 

(1) 

where N(p) is the adsorbed amount when pressure of a gas in thermodynamic 
equilibrium with an adsorbate is equal to p, Ne is a constant connected with 
the monolayer capacity (both N and Ne are expressed in the units of mass or 
volume of an adsorbate per gram of an adsorbent), m is the heterogeneity 
parameter from the interval (0,1), and b* is a constant connected with the 
characteristic adsorption energy. The exact definitions and physical meaning 
of the parameters appearing in eq. (1) will be given in section 2, where the 
modified form of the equation (1) will be discussed. 

Up to now, this equation has been used to describe the monolayer2- 4 

and multilayer" adsorption of single gases and the monolayer adsorption of 
binary gas mixtures6- 9, especially on charcoal. Our recent studies10 have dealt 
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with the description of the bilayer adsorption from binary gas mixtures using 
the Toth equation. 

In this paper we shall discuss the adsorption from multicomponent gaseous 
and liquid mixtures using the Toth equation. In the case of mixed-gas ad­
sorption we shall generalize the method proposed in Refs. (8, 9) . However, 
application of the Toth equation to adsorption from solutions in the whole 
concentration region will be discussed for the first time as the paper of 
Jossens et al.11 deals with the adsorption from dilute solutions only. Additi­
onally, we shall discuss once more the parameters b* and m, by taking into 
consideration recent experimental and theoretical studies of this problem. 

ADSORPTION OF SINGLE GASES 

Starting from the theoretical dvscussion outlined in Ref. (2) we propose 
the slightly different form for Toth adsorption isotherm (1), namely: 

[ 
Pm ] l /m 

{}*(p) = N(p)/N = . 
c bm + p"' 

(2) 

where b* = bm. Then, the constant b is analogous to the Langmuir constant 
and may be. expressed by: 

b = K exp (- :00 /RT) (3) 

where K is the function of temperature only and is defined by the ratio of 
the molecular partition funcUons corresponding to molecules in the bulk and 
adsorbed phases, whereas · c0 is the characteristic adsorption energy (in the 
case of Langmuir equation, c0 is the adsorption energy of a homogeneous 
surface). The parameter Ne is expressed through the monolayer capacity, N 0 , 

by the following equation1 : 

(4) 

where p0 is the value of p when the monolayer becomes completely filled up. 
so that N (p0 ) = N 0 • According to the above definition of the monolayer capa­
city, N 0 , eq. 4 is equivalent to the statement that an infinite increase of the 
equilibrium pressure p is not required to fill up a monolayer. Thus, defining 
the relative coverage of the entire surface by: 

{}(p) = N(p)/N
0 (5) 

we obtain 

[ 

bm + m] 
{}*(p) = {}(p) Po :

0 
1/m 

(6) 

Eq. 6 leads us to the conclusion that {J.* (p) can vary in the interval 

1/m 

and since the expression on the right ha.ind side of the above inequality is 
always smaller than unity, the surface coverage thus also becomes smaller 
than unity. 
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Now, let us discuss the heterogeneity effect connected with the Toth 
equation. As was suggested earlier2•8 the parameter m has a unique value for 
a given adsorbent which does not depend on the nature of the adsorbate and 
temperature. In the case m = 1, eq. 2 reduces to the ordinary Langmuir 
adsorption isotherm and it corresponds to a homogeneous surface, whereas 
m approaches zero as the heterogeneity of the adsorbent becomes higher. 

Concluding this section we would like to emphasize one point. Namely, 
a very successful application of the Toth equation to many adsorption systems 
can be easily understood when the form of the energy distribution function 
generated by this equation is considered. By definition, the energy distribution 
function (usually denoted by x (e)) informs us what is the contribution of 
adsorption sites with the adsorption energy equal to e. If L1 is the domain 
of e, then the following condition must be fulfilled: 

S x (i;) d i; = 1 
.1 

This equation ensures a proper normalization of x (e), for the summ of all 
contributions due to sites with adsorption energies from L1 must be equal 
to unity. 

As it was pointed out by Toth et al.2, eq. 2 corresponds to a quasigaussian 
energy distribution: 

where 

and 

x( :o) = (rrRTr' A'/"' sin [ ~ arcsin (A}, sin (rrm))] (7) 

A = [X2 + 2 X cos (mrr) + 1r112 

m ( E - E0 ) 
}. = exp - --- ; 

RT 
c:

0 
= RT ln(K/b) 

There is a numerous group of adsorbents having gaussian-like energy distri­
bution functions and charcoal adsorbents belong to this group. This fact is 
probably the main reason why the Toth equation can describe well many 
adsorption systems. 

ISOSTERIC HEAT OF ADSORPTION 

The energy distribution functions can be temperature dependent. However, 
as was shown by Misra12

>13 there exists a self-compensation effect which gives 
practically temperature independent functions. Thus, the isosteric heat of 
adsorption on heterogeneous surfaces may be evaluated by using the appro­
ximate formula proposed by van Dongen and Broekhoff14 : 

Q " (p,T) = 
[ 

o 6 (p, T, <) ] l q" (p, T, c: ) ---a lrl-p- T x (s) d < 

(8) 

S [ 
o 6 (p, T, s) ] 
---- x(s)dc 

L1 0 ln p T ' 

where Q st and q st are isosteric heats of adsorption for heterogeneous and 
homogeneous surfaces respectively, and e is the relative coverage for homo­
geneous surface. 
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On the other hand, the isosteric heat of adsorption, Qst, may be calculated 
directly from the equation of the overall adsorption isotherm15 : 

Q" (p, T) = RT2 [ o ~;p] ii (9) 

Let now assume that the overall adsorption isotherm {} (p) is described by 
the T6th equation 2 (in the further discussion the superscript »*« at the 
symbol {} wil be omitted), i. e., we shall calculate the isosteric heat of adsorption 
Qst in a similar way as 'in the case of the Langmuir equation; (see Appendix 
I) and the function x (c) is given by eq. 7. From eq. 2 we obtain 

ln p = ln b + ln {} - (1/m) ln (1 - '8·m) (10) 

As it was hitherto assumed the heterogeneity parameter m is temperature 
invariant, however, this is not completely true. Recent papers of Jaroniec 
and T6th8 on the adsorption of hydrocarbons on charcoal »Nuxit-Al« have 
shown that the parameter m changes with temperature; with increasing tern-· 
perature the parameter m slowly increases too. This result is easy to under­
stand because with increasing temperature a smaller heterogeneity of the 
adsorbent surface is expected. 

Differentiation of eq. 10 with respect to temperature T leads to the 
expression for the overall isosteric heat of adsorption: 

[a In b] [am J Q" (p, T) = RT2 ---aT ii + RT2 a-T ii F ({}) (11) 

where 

(12) 

and 
{}m ln {} 

F (1'}) = m· 2 ln (1 - {}m) + m (l _ {}m) (13) 

The first term ·on the right hand side of eq. 11 (eq. 12) is expressed by means 
of characteristic adsorption energy, which is somewhat greater for the Toth 
distribution than the average adsorption energy8 and is constant in the whole 
region of the relative surface coverage. The second term on the right hand 
side of eq. 11 depends upon the relative surface coverage and is still negative. 
In the limit{}-+ 0 it increases to zero, while when the relative surface coverage 
approaches unity it decreases. The derivative (om!oT) > 0 because with incre­
asing temperature the parameter m slowly increases too. Let us assume that 
m (T) is a linear function, then (om! oT) = r; = const. and 

Q" = RT2 
[ o ;~ b ] ii + RT2 r; F ({}) (14) 

Figure 1 presents the function F ({}) calculated for different values of the 
parameter m . Thus, the dependence Qst vs: {} is a decreasing function. 

It appears from the above discussion that introduction of the temperature 
dependent parameter m must lead to taking into consideration the tempe­
rature dependence of the energy distribution function (7). This being so, the 
eq. 8 is not longer valid since it was derived for temperature independent 
energy distribution. Therefore, we will generalize the van Dongen and Broek-
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Figure 1. Function F(il) calculated according to eq. (13) for different values of the parameter m. 

hoff14 equation by taking into account the temperature dependence of the 
energy distribution function. If the relative surface coverage is held constant, 
then the differentiation of the integral adsorption isotherm 

{} (p, T) = f 6 (p, T, c) X (c, T) d c 
.d 

with respect to the temperature gives: 

[ 
Cl 6 (p, T, .<:) ] · [ Cl X (z, T)] 

0 = l _ _ o_ T _ _ iJ x (c, T) d c +I 6 (p,T, c) a T . iJ d s 

(15) 

(16) 

In the above, x (i;, T) is essentially given by eq. 7, however the parameter 
m appearing in this equation is now a function of the temperature. 

The following relationship, true for a local adsorption isotherm fJ (p, T, i;): 

(17) 
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gives ({} = const) 

[ ~ ~L = [a ~n6p] T [ 

0 ~;PL + [ 1 ~ ] P = [ a ~n8p ] T [ i;'2 ] P + [ ~ ~ ] <18> 

and by putting e = const.: 

[ ae] [olnp] 
olnp T oT e [ a e ] [ a e ] q" [ a e ] + (}T P = a ln p RT2 + d T P = o (19) 

" where Q st denotes the overall isosteric heat of adsorption evaluated for tempe-
rature dependent function x (t: , T). The combination of eqs. (18), (19), and (16) 
leads to the following expression 

s q" z (i:, Tl [~0-8-] ct ., 
At Ll olnp T 
Q' = ~~~~--~~~ 

J x (i: , Tl [ a ~nep ] T d i: 

[ 
o X (<:, T)] J e (p, T, i: ) 0 T ct i: 

-RT2 ----- ------

1 x (<:, Tl [ a ~nep ] T d i: 

(20) 

Eq. (20) may be rewritten in a slightly different form: 

A A 

. Q" = Q" - ti.Q" (21) 

,, 
where Q st is given by eq. (8) vhile /';. Qst is a correction term associated with 
making allowances for temperature dependence of the energy distribution 
function. 

The calculation of the isosteric heat of adsorption for different energy 
A 

distributions by using eq. (8) or (20) show that Q81 decreases with increasing 
{P 6. The same effect is observed for Qst calculated from eq. (1). The com­
parison of eq. (8) and (20) indicates the temperature dependence oi the 
parameter m. 

THE GENERALIZED TOTH EQUATION FOR ADSORPTION OF MULTICOMPONENT 
GAS MIXTURES 

For the purpose of generalization of the Toth equation (2) for the 
adsorption of multicomponent gas mixtures, we shall use the method reported 
for the first time in Ref. (17) . This method is based on the simplified integral 
equation, which can be obtained from the generalized integral equation10,18 

if the functional relationship between adsorption energies of the components 
is known. For a great number of mixed-gas adsorption systems, this relation­
ship assumes the following linear form : 

E; -1;, = E;1 = x;1 and i = 2, 3, ... , n (22) 

The quantity Xii is constant for all homogeneous surface patches8. In the 
above equation t: ; is the adsorption energy of the i-th component, 'and n is 
the number of components in the gas mixture. The parameter x; 1 is constant 
if the heterogeneity parameters of i.:th and 1-st component are identical; as 
it has been already mentioned in the introduction, such a condition is satis­
factory for many mixed-gas adsorption systems1•8 >9• Taking into account the 
condition (22) in the Langmuir adsorption isotherm of gas mixtures, we obtain 



where 

and 
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@(n) (p, ci) = 1 +al Z1 

n 

z1 = P1 + ~ r;1 P; 
i=2 

15 

(23) 

(24 

(25) 

In the above G(nl (p, s1 ) is the relative monalayer coverage on homogeneous 
surface for n-component gas mixture defined as a summ of the coverages 
corresponding to all components; a; is the Langmuir constant of the i-th gas 
and in the case of homogeneous surface it is equal to lib; (see eq. (3)); K; is the 
constant of the i-th component and defined as described earlier (see the discus­
sion following eq. (3)); and the symbols n, p, are n-dimensional vectors: 

n = (1, 2, . . . , n) 

Thus, the overall adsorption isotherm for n-component gas mixture on a 
heterogeneous surface, {}(nh may be represented by the following integral (for 
derivation of. this equation see Appendix II): 

a z 
{) = S i i X (c ) d c 

(n) LI, 1 + ai z1 -1 i . i 
(26) 

Using the T6th distribution for Xi (s1) we get 

[ 
z m ] l /m ti - 1 

(n) blm + zt (27) 

Now, let us consider the adsorption of binary gas mixtures. Then, z1 is the 
function of p 1 and p 2 only. Thus, {}(1 , 2i may be presented graphically in the 
three-dimensional space. Now, if the experimental isotherms are measured at 
selected constant parameters, then {}(i. 2> may be presented in the two-dimen­
sional space, because z1 depends only upon one variable: 

z1 = P (y1 + r 21 Y) =a P for y
1

, y 2 = constant 

z1 = P 1 (l -r21 ) + r 21 P = a* P 1 + {J* for P = constant 

Z1 = P1 + r 21 P 2 = p1 + fl for p2 =constant 

(28a) 

(28b) 

(28c) 

In the above Yi = pJP is the mole fraction of i-th component in the gas phase, 
P = p1 + p 2 + ... + Pn is the total pressure, and in the present case P = p 1 + 
+ p 2 , for we are considering two-component gas mixtures. In practical calcu­
lations, the parameter r 21 may be evaluated by using pure-gas adsorption 
parameters: 

r 21 = a) a
1 

ratio of Langmuir's constants (29a) 

r 21 = bifb2 ratio of T6th's constants (29b) 
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For the purpose of illustration we shall present numerical results obtained 
for adsorption of hydrocarbons on charcoal »Nuxit-Al«19 In Table I the 
pure-gas adsorption parameters b, and Ne, calculated for the 1-st component 
according to eq. 2, have been compared with the adsorption parameters b, 
and Ne obtained from the mixed-gas adsorption data. The parameter r21 was 
calculated by means of the Langmuir parameters (eq. (Wa)) and the Toth 
parameters (eq. (29b)). Both equations give very similar results and may be 
used to calculate r21. In Figure 2 the linear dependences N en> vs. Z1-m for 

TABLE I 

Comparison of T 6th's Parameters Evaluated from the Pure-gas and Mixed-gas 
Adsorption Isotherms of Hydrocarbons on Charcoal »Nuxit-Al« by Using m = 0.38 

Pure-gas adsorpt-
Adsorption system ion parameters of 

Temp. eq. 2 

1-st 2-nd K 
com- com- bi/Torr Nc/cm3 g' 

ponent ponent 

C3Hij C2H4 293 1.91 145.0 

CsH s C2HG 293 1.435 117.3 

i - parameters obtained using r,, from eq. 29a 
ii - parameters obtained for r,, defined b y eq. ~9b 

0.10 · 

0.11 0.14 
-m z, 

Mixed-gas adsorption 
parameters of eq. 27 for 

z1 defined by eq. 28b 

r21 bi/Torr Ne/ cm3 g-1 

0.142 2.727 178.8 
ii 0.097 1.972 151.8 

0.090 1.022 119.1 
ii 0.046 0.756 111.9 

Q 

0.17 

Figure 2. Linear dependences n (~2) vs z,-m for adsorption isotherms (27): <•> C 3H 8-C, 6 at 293 K, 
(0) C3H.-C2H 4 at 293 K on charcoal »Nuxit-Al«. r21 has been calculated from eq. (29b). 
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adsorption isotherm (27) are presented; these lines have been calculated by 
using r21 from eq. (29b). Figure 2 that equation (27) describes well the investi­
gated adsorption systems. 

Now consider the isosteric heat of adsorption for a given component of 
the binary mixture. From eq. (27) we obtain 

(30) 

Differentiation of eq. 30 with respect to temperature gives 

( 
a ln bl) am -9 .oni ' ( am) lJ. ~2) ln '°'11 .2) = --- +--m·ln(l-u(l?)) --r --a T o T •¥ o T m (1 _ 19 m ) 

(1,2) 

(31) 

where 

--· , - + -- P = const 1 [ a1np1 ) (oa* (iJ(J*)] 
a* P1 + (J* pl l a T {}(J.2) T pl a T) c) T ' . 

(32a) 

1 [ ( a ln P1 ) a fJ ) J --(J P 1 - - - - ( - , p 9 = const. 
P

1 
+ i) T {} o T -

(1.2) 

(32b) 

Applying definition of the isosteric heat of adsorption for the f.irst component, 
i.e., 

(33) 

and combining eqs. (30), (31) and (32), we get 

Q st _ • a* P1 + (J* { [ o ln b1 ] lam) [ 1 -0. m {} ~2> ln -0.h ,2l J 
1(1,2) - RT- -- + - - --ln (1 - (1 2) ) +- ---- -

P1 i) T a T mz ' m (1 - '19 m ) . n.~ 

and 

- - - - p -- , P = const. 1 ( i) /3* ) ( a a* ) } 
a* P 1 + (J* o T 1 o T 

st _ . P1 + (J {(c'Jlnb1 ) (i)m)[ 1 m Ql(l,2) - RT-----v;- aT + o T - m ln (1- -0.(1 ,2) ) 

i) a* i) r 21 
--= - --

c)T oT 

1 bl '°'<i.2) 
a* (l- c'' 0 .2)) 

a* 
- for P = const. 
(J* 

bl '°'<1.2) 

l-{}0.2) 
-(J for p

2 
= const. 

o(J* ar.l 
-- =P - --a T i) T 

i) f1 _ 0 r 21 

OT -P~ dT 

(34a) 

(34b) 

(35a) 

(35b) 

(36) 
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The parameter r 21 is defined by eq. (25). Assuming that temperature depen­
dences of the constants K 1 and K; are identical, we get 

'°'ii =- -- r 
RT~ 21 (37) 

The above assumption is based on the fact, that K's are expressed by the 
molecular partition functions and therefore for molecules characterized by 
the same set of degrees of freedom their molecular partition functions assume 
the same analytical form. Next, when the differences in numerical values of 
parameters' characterizing components of the mixture are not big, and the 
ratio K 1/K 2 is close to unity, then eq. (37) becomes 

! 

a r 21 = r21 ln (l/r ) 
o T T "1 

(38) 

. ' ' ! . . , I 
The relationship (38) should be a good approximation 'in the cas~ of adsorption 
of hydrocarbons with a similar carbon chain lenght. Instead, the relationship 
(37) has a more general significance. It does not work when t~e components 
have a different chemical structure and therefore are characteri*d by different 
sets of degrees of freedom. It doesn't mean, however, that the equations for 
the isosteric heat of adsorption derived in this section have a limited validity. 
The parameter r 21 is defined by eq. (25) and when the analytical expressions 
for all K's are available we can obtain the expression for ca T21fa T) . 

APPLICATION OF THE TOTH EQUATION TO THE ADSORPTION FROM IDEAL 
LIQUID MIXTURES 

Let us consider adsorption of the component »l« from a binary ideal 
liquid mixture »1-2« on a homogeneous surface; · then, the relative surface 
excess bf the component »1«, defined in terms of Gibbs' theory of adsorption20 , 

is equal to : 

(39) 

where l9 1 c1 •2l is the relative coverage of the homogeneous surface formed 
by molecules bf the component »l« , x 1 is the mole fraction of the component 
»l « in the bulk phase, and the superscript »- « refers to adsorption from liquid 

mixtures. As it is known20 , the relative coverage 6 1c1•2l may be expressed as: 

; 

1 + a1 ., x 1 ., i 
- - I 

(40) 

where a 12 is a constant, and x 12 = x1/(l - x 1) ~· x 1 /x 2 • The constant a1,• has 
similar physical meaning as the one used in the lease of mixed-gas adsorption 
(a12 = a1 /a 2), and it may be expressed in the fo~m: 

(41) 
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where_ c12 is the difference of adsorption energies c1 and c2 • 

According to Refs. (21) and (22) the relative coverage 1f 1ci.2J on a hetero­
geneous surface may be defined by the following integral: 

- - -r> 1(1,2) (x1 2) = S 81(1,21 (x12' <12) qi (<12) d <12 

!l12 

(42) 

where q; (c1 2) is the distribut~on function of c 12 normalized to unity, and Q1 2 

is the integration region for c12• Using the Toth energy distribution function 
in eq. (42) which in the case of adsorption from binary liquid mixtures takes 
the form (see Appendix III) 

<p (<
1

) = (ii RTt1 A 1Jm sin [(1/m) arcsin (A J. sin (rr; m))] (43) 

with 

and from eq. (40) for 8 1 c1 , 2) we get 

(44) 

or 

(45) 

where m and b12 are constants analogous to the constants m and b in the 
case of gas adsorption. The differential adsorption heat 

Ql" =RT" L -- (olnx ?) 
- a T il1c1,2) 

(46) 

corresponding to the Toth isotherm (43) is equal to: 

( -) (-)[ - olnb am - --
Q1 2 =RT~ a T i2 + RT2 a T m-21n (l-1'>;'(1,2)) + ~ 51,2) 1: ~ 1(~] 

m (l - r> 1(1,2)) 

(47) 

Eq. (47) is formally analogous to the eq. (11) . 
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In the similar way as for mixed-gas adsorption, eq. (43) may be generalized -to the adsorption of multicomponent ideal liquid mix tures . Then,8 1cn> is 
given by the expression23 : 

(48) 

= t:;1 = %;1 for i = 2, 3, .. . , n - 1 be constant for the whole adsorbent surface, 
then 

where 

and 

n-1~ 

z1 = x 1,, (1 + ~ r i1 X;1) = y x 1n 
i = 2 

(49) 

(50) 

(51) 

The overall adsorption isotherm {}1\nJ may be expressed by the equation similar 
to eq. (26): 

(52) 

Using the Toth distribution for rp (0111) we get 

x111 
{}>1 (n) = - ------- - - (53) 

[b ~ + (y x l ,,) m] l/m 

Generalizing the above considerations it can be stated that the heterogeneity 
of adsorbing surface in the case of adsorption from n-component liquid mix­
tures may be taken into account in the similar way as in the adsorption of 
(n -1)-component gas mixtures. 

For the purpose of examination of eq. (43) the linear dependences 

,....., ,....., - - ,....., -
Nr{l,2) = (NC x12fb1)-m + Nc-m (54) 

have been calculated for adsorption of benzene from isooctane and ben­
zene from CC14 on aerosil. These adsorptio·n systems w ere investigated ex­
perimentally by Larionov24 • For small values of x 1 · v alues of the surface 

excess N ici,2) are approximately equal to N1c1 , 2» and they may be used to calcul­

ate the parameter m , Ne and b12 (where Ne = N1 cJ.. 2) + N2c1, 2i). Figure 3 shows 
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2 

3 5 

Figure 3. Linear dependences'ii;~"l , 2) vs . x 12-m for binary liquid mixtures on aerosil: (1) benzene­
-(2)isooctane at 303 K (dashed line): m = 0.45, and (1) benzene-(2)CC14 at 303 K (solid line -0 ); 

m = 0.45, and 338 K (solid line -•); m = 0.50. 

that the experimental values of [Ni(1,2, pn for x 1 ~ 0.1 lie on straight lines. 
Thus, the adsorption data measured below x 1 ~ 0.1 may be used for preli-

minary calculation of Ne, m, and b12 ; these parameters may be used as starting 
ones in the bestfit procedure optimizing the adjustable eq. (44), to the 
experimental data from the whole concentration region. 

APPENDIX I 

Consider the problem of calculation of the isosteric heat of adsorption for 
equations, which predict filling up a monolayer at finite adsorbate pressure. For the 
Toth equation we can write 

where 

and 

Thus 

with 

p '" ) 1/m -{}·h b m ( b "' + p"' - ( , Po, ) 

{} = N (p)/N
0 

ln p = ln {} + ln b ~ (1/m) ln [f (b, p
0

, m) - {}"'] 

f (b, p 0 , m) = [h (b, p 0 , mW'" 

(AI-1) 

(AI-2) 

Equations (9) and (AI-2) give 

Q ~t =RT~ ( aalnTb) + RT2 ( aaTm) [m-2 ln [f (b, Po' m) - {}"'] + {}"' ln {} ] 
m (f (b, p

0
, m) - {}"') 

-(a f (b~ ~' m)_) [m (f (b, Po, m)-{}"'Jr' (AI-3) 

For p0 -... oo the function f (b, p0 , m)-... 1, and Q" calculated from eq. (AI-3) tends to 
the isosteric heat of adsorption calculated from eq. (11). 
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APPENDIX II 

In Ref. (18) the following integral representation of {}(nJ (p) has been derived: 

{}(n) (p) = f @(n) (p, E) X(n) (E) d E (AII- 1) 
Lln 

where E = (c1, c,,, . .. , e,,) is the n-dimensi.onal vector of adsorption energies ei, "<n> (e) 

is the n-dimensional distribution of E, normalized to unity, An is the integration region 
of c, and 6(n) is a relative monalayer coverage on homogeneous surface for n-com­
ponent mixture. 

Let us consider the following transformation: 

c i = "ii + <1 for i = 2, ... , n (AII-2) 

where "ii is constant for the entire adsorbent surface. Then, the function e (n) (p, f) 

depends on p an d .;
1 

only, i. e., 

(AII-3) 

Inserting eq. (AII-3) into eq. (AII- 1) we obtain 

{}(n) (p) = J e(n) (p, cl, " e1 + "1 •.. ' "111 +cl) . cs z (c) d c" d E:l' ... 'de,,) d f1 (AII-4) 
Ll1 

Denoting the expression 

by z
1 

(E1) and putting eq. (23) for 6(n)> eq. (AII-4) gives eq. (26). 

APPENDIX III 

It has been shown in Ref. (21) that equations describing adsorption of single 
gases on solids are formally identical with those for adsorption of binary liquid 
mixtures on solids. For example: the adsorption of gas »1« on a homogeneous surface 
can be described by Langmuir's equation: 

a1 Pi e CP l = 
i , 1 + ai P1 

(AIII- 1) 

However, the adsorption from an ideal binary liquid mixture on a homogeneous 
surface is described by Everett's equation (40). Eqs. (AIII-1) and (40) are formally 
identical. The same is observed for the integrals (15) and (42) , describing the 
adsorption of single gases and binary liquid mixtures on heterogeneous surfaces. 
Thus, from the viewpoint of mathematics, the functions (7) and (43) /appearing in 
the integrals (15) and (42)/ have the same properties. However, the physical meaning 
of these two functions is slightly different; the function (7) depends on adsorption 
energy :;, whereas, the function (43) depends on the difference of adsorption energies 
of both components. It results from different definitions of surface heterogeneity 
in gas and liquid adsorption. In the case of gas adsorption the surface is hetero­
geneous when adsorption sites have different values of <, whereas, in the case of 
liquid adsorption th e surface is heterogeneous when sites have different values 
Of c12· 
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SAZETAK 

Studij adsorpcije iz plinskih i tekucih smjesa na cvrstim tijelima s kvazi-Gaussovom 
raspodjelom energije 

A. Patrykiejew, M. Jaroniec, A. Dqbrowski i J. Toth 

Ranija istrazivanja su pokazala da T6thova jednadzba dobro opisuje adsorpciju 
ugljikovodika na ugljikovim adsorbentima a posebno na Nuxit-Al ugljenu. Ta cinje­
nica vjerojatno je povezana s kvazi-Gaussovom raspodjelom energije koja je pove­
zana s T6thovom jednadzbom. U ovom radu razmatrani su ponovno parametri spo­
menute jednadzbe uzimajuci u obzir nove podatke. Modificirana T6thova jednadzba 
je poopcena za slucaj a.dsorpcije iz visekomponentnih plinskih i tekucih smjesa na 
cvrstim tijelima s kvazi-Gaussovom raspodjelom energije. 
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