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A choice of norm in discrete approximation∗

Tomislav Marošević†

Abstract. We consider the problem of choice of norms in
discrete approximation. First, we describe properties of the standard
l1, l2 and l∞ norms, and their essential characteristics for using as
error criteria in discrete approximation. After that, we mention
the possibility of applications of the so-called total least squares and
total least lp norm, for finding the best approximation. Finally, we
take a look at some nonstandard, visual error criteria for qualitative
smoothing.
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Sažetak. Izbor norme za diskretnu aproksimaciju. Raz-
matramo problem izbora norme pri diskretnoj aproksimaciji. Prvo
opisujemo svojstva standardnih normi l1, l2, l∞ i njihove bitne značajke
za uporabu kao kriterija greške kod diskretne aproksimacije. Zatim
spominjemo mogućnost primjena tzv. potpunih najmanjih kvadrata
i potpune najmanje lp norme za nalaženje najbolje aproksimacije.
Konačno navodimo i neke nestandardne, vizualne kriterije greške
pri kvalitativnom glad̄enju.

Ključne riječi: diskretna aproksimacija, l1 norma, l2 norma,
l∞ norma, potpuni najmanji kvadrati, potpuna najmanja lp norma,
kriteriji greške

1. Best discrete approximation problem

Approximation problem for a real, continuous function f(x) on a certain interval
[a, b] is considered in literature (cf. [?], [?], [?], [?], [?]) from several aspects:
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• a choice of a model or a form of the corresponding approximation function
F (a, x), with an unknown vector of parameters a = (a1, a2, . . . , an)T , and
setting up a criterion for quality of approximation, i.e. a distance function
d(f(x), F (a, x)) in a metric space, resp. a norm ‖F (a) − f‖ in a normed
linear space;

• the best approximation existence problem;

• the problem of uniqueness of best approximation;

• characterization of a solution;

• methods for solving the approximation problem.

Here we are going to consider the question of a choice of norm in ap-
proximation of a function f , especially in the case of discrete approximation,
when the values of the function are given only at finitely many points (xi, fi),
i = 1, . . . , m.

A criterion for the quality of approximation is usually determined by means
of norms.

Definition 1. The lp norm of the function f given at some finite data points
set X = {xi : i = 1, . . . ,m}, is defined by

lp(f) = ‖f‖p =

(
m∑

i=1

|f(xi)|p
)1/p

, 1 ≤ p < ∞ .

For p = ∞ as a limit case, the l∞ norm is defined by ‖f‖∞ = max
i∈{1,...,m}

|f(xi)| .

Definition 2. The function F (a∗, x) is said to be the best approximation of the
function f in the norm ‖ · ‖p, if it holds

‖F (a∗)− f‖p ≤ ‖F (a)− f‖p, ∀a ∈ P ⊆ Rn .

In that way, the approximation problem is reduced to the problem of min-
imization of the functional S : Rn → R, S(a1, a2, . . . , an) = ‖F (a) − f‖p

(or rather, equivalently, of the functional ‖F (a) − f‖p
p). In general, the best

approximation in the lp norm is different from the best approximation in the
lq norm (p 6= q). The lp norms can be generalized by introducing the weights
(w(xi), i = 1, . . . , m).

If the approximating function F (a, x) is linear in parameters aj , j = 1, . . . , n,
i.e. if F (a, x) = xT · a, then it holds (cf. [?])

1 ≤ p < q ≤ ∞ ⇒ min
a∈Rn

‖Xa− f‖q ≤ min
a∈Rn

‖Xa− f‖p

(where X is a corresponding data matrix, and f is a vector of values of the
dependent variable).
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2. The l2, l1 and l∞ norms

The three norms most frequently used in the practice are:

• the l2 norm (the least squares or Euclidean norm);

• the l1 norm (the least absolute deviations);

• the l∞ norm (the Chebyshev norm).

The important relations among these norms are stated by the following well
known theorem in the discrete case (cf. [?]).

Theorem 1. For every v ∈ Rm it holds ‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1 and

‖v‖1 ≤
√

m‖v‖2 ≤ m‖v‖∞ .

The shapes of balls in the l2, l1 and l∞ norms in a normed linear space R2 are
shown in Figure 1.
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Figure 1. The shapes of balls in the l2, l1 and l∞ norms

The l2 norm. It is used traditionally and almost universally for practical
applications in the approximation theory (cf. [?], [?], [?]). In the beginning of
19th century Legendre (1804) suggested the use of the l2 norm for approximation
of a solution to the inconsistent system of linear equations (respectively for the
equivalent problem of approximation of a function which is given at the finite
number of data points), and similar problem was considered by Gauss (cf. [?],
[?]).

The l2 norm is differentiable, and in the case when an approximating function
F (a) is linear with respect to parameters a = (a1, . . . , an)T , the approximation
problem becomes a well known linear least squares problem (cf. [?]). Since the
l2 norm is strictly convex, in this case the best approximation exists in the l2
norm, it is unique and depends continuously and smoothly on a function which
is approximated (cf. [?]).

Statistical considerations show that the l2 norm is the most suitable choice
for smoothing the data in the case when additive data errors εi, i = 1, . . . , m,



150 T. Marošević

have a normal distribution (i.e. εi ∼ N(0, σ2), because then the influence of
errors εi is minimized by means of use of the l2 norm (cf. e.g. [?]).

Nonlinear least squares problems are also widely analyzed (cf. [?], [?]), and
within that framework, especially the so-called separable problems (cf. [?], [?],
[?]).

The l∞ norm. One of its characteristics is that it considers only those
data points where the maximal error appears. The best approximation in the
l∞ norm is obtained by minimizing the maximal distance. In 1799 Laplace
suggested such a criterion (nowadays called the l∞ norm) for approximative
solving of inconsistent systems of linear equations; Fourier (1824) studied a
similar problem. In the second half of 19th century Chebyshev made the first
systematic analysis of this norm (because of that, the l∞ norm is also called the
Chebyshev norm, cf. [?]).

In the practice this norm is used if the data errors are very small with respect
to an approximation error (cf. [?]). Characterization of the best approximation
in the l∞ norm is described by the so-called alternating property, from which
an exchange algorithm for obtaining the best l∞ approximation is derived (cf.
[?]). In discrete case, computing of an l∞ approximation can be expressed as
the linear programming problem (cf. [?]). The l∞ norm is not strictly convex,
so the best approximations are not necessarily unique.

The l1 norm. As late as the middle of eighteenth century R. Boscovich
determined a criterion by which absolute deviations of data are minimized,
among all lines which pass through a centroid of data points. In 1789 Laplace
gave an algebraic analysis of this problem, which was also considered by Gauss
(cf. [?], [?], [?]). By approximation in the l1 norm, all deviations of error curve,
respectively of errors at data points, are equally valued regardless of whether
they are close to zero or to extremal values. This criterion is suitable for use
if the errors are subjected to outliers or wild points, because the magnitude of
big errors does not lead to the difference of the best approximations (cf. [?]).

The theory of l1 approximations for the finite data points sets is somewhat
more different with respect to the properties of continuous l1 approximations
on the interval, what is opposite to the situation in l2 and l∞ approximations,
where there is not a significant difference between analysis of ‘continuous’ and
‘discrete’ cases (cf. [?]).

Since the l1 norm is not strictly convex, the best l1 linear approximation is
not necessarily unique. The problem of linear l1 approximation can be trans-
formed into a linear programming problem. Linear l1 approximation (regression)
is widely analyzed (cf. [?], [?], [?], [?]). Nonlinear approximation in the l1 norm
is less researched. In a discrete nonlinear case, best approximations with respect
to the l1 norm need not necessarily exist, as well as with respect to the l2 and
l∞ norm (cf. [?], [?]).



A choice of norm in discrete approximation 151

3. New approaches

a) Total least squares method. If the given data contain additive errors in
both the dependent (εi, i = 1, . . . , m) and the independent variable (δi), then
one can observe orthogonal distances d2

i = ε2
i + δ2

i and their sum

Φ(a1, . . . , an, δ1, . . . , δm) =
m∑

i=1

d2
i =

m∑

i=1

(
(F (a, xi + δi)− fi)2 + δ2

i

)
,

where it is necessary to find minimum min
(a1,...,an,δ1,...,δm)

Φ(a1, . . . , an, δ1, . . . , δm).

The idea of total least squares can be generalized by introducing a total least
lp norm, or rather the total lp approximation problem

min
(a1,...,an,δ1,...,δm)

m∑

i=1

(
(F (a, xi + δi)− fi)p + δp

i

)
,

(cf. [?], [?], [?]).

b) Visual error criteria. The use of standard mathematical norms in vec-
tor spaces for measuring the distance between the true curve and the estimated
curve can be inappropriate from the graphic viewpoint, in respect of a visual
image about distances between the curves in a plane.

Therefore, the ideas about ‘qualitative smoothing’ have been appearing, by
which the curves (i.e. functions) are estimated through qualitative features.
In such a case, a visual image of distances between the curves is taken into
consideration by means of nonstandard error criteria (cf. [?]). The curves are
viewed as the sets of points in a plane. The distance between the set Gf of
points of the true curve f and the set Gf of points of the estimated curve f are
observed. For example, one uses the Hausdorff distance defined by

dH(Gf , Gf ) = max{supD(Gf , Gf ), sup(D(Gf , Gf )} ,

where D(Gf , Gf ) = {d((x, y), Gf ) : (x, y) ∈ Gf} is the set of distances from
the points of the set Gf to the set Gf , and d((x, y), G) = inf(x′,y′)∈G ‖(x, y)−
(x′, y′)‖2 denotes the distance from the point (x, y) to the set G.

Furthermore, one can define various so-called asymmetric error criteria and
symmetric error criteria. Although these criteria seem to be good from the
‘visual impression’ viewpoint, in certain situations the l2 norm has an advantage
for the use due to its important optimal properties (cf. [?]).
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