
74

POLYTECHNIC & DESIGN Vol. 3, No. 1, 2015.

EXTENDING PHP WITH MODULES

MODULARNO PROŠIRENJE PHP-A

Davor Lozić, Alen Šimec
Tehničko veleučilište u Zagrebu

Abstract

The purpose of this article is to show how to
extend PHP and build modules. Since PHP is
built mostly with C, one must be familiar with
C or at least with some programming constructs
like variables, loops, structures, unions, macros
etc. PHP modules are built when standard PHP
abilities doesn’t fit developer’s needs and when
a developer wants to create a set of function or a
library for which he doesn’t want to provide the
original source code. Since PHP is an interpreted
language, it’s hard to hide the original source
code. Before creating a module, this paper will
also explain how PHP variables are handled
internally and what tools one must have for
creating PHP modules. Source code in this paper
will work on Debian Linux distribution, but with
small modifications, it should also work on other
Linux distributions.

KeyWords: Internet, php, modules, source code,
variables, Debian Linux

Sažetak
Cilj ovog članka je pokazati kako proširiti PHP i
izraditi module. Kako je PHP napravljen pomoću
C-a, potrebno je poznavati C ili barem neke
jednostavne programske konstrukte kao što su
varijable, petlje, strukture, unije, makroi itd.
PHP moduli se rade u slučaju kada programeru
osnovna funkcionalnost PHP programskog jezika
nije dovoljna ili kada programer želi napraviti
set funkcija ili biblioteku funkcija za koju ne želi
prikazati izvorni kôd. Kako je PHP interpretirani
jezik, teško je skriti originalni izvorni kôd. Prije
izrade modula, članak objašnjava i kako su PHP
varijable implementirane interno te što je potrebno
imati za izradu PHP modula. Izvorni kôd u ovom

članku radit će na Debian Linux distribuciji, ali s
manjim promjenama trebao bi raditi i na bilo kojoj
drugoj distribuciji.

Ključne riječi: Internet, php, moduli, izvorni kod,
varijable, Debian Linux

1. Introduction

1. Uvod

PHP is an acronym which stands for “PHP: Hypertext
Preprocessor” and is widely used in web development
on server side [1]. The language is written in C and
through history it had many forms and purposes but
the PHP version 3 was the first version that closely
resembles PHP as it exists today[2].

Also, PHP is a general-purpose, scripting
and high-level programming language. General-
purpose means the language is designed to be used
in a wide variety of application domains. Word
“scripting” means the language is not compiled;
rather, it is analyzed and executed line by line in
runtime. High-level means that most developers
does not need to know how the language works
with memory, does not do anything “under the
hood” and gives a certain level of abstraction
from the details. When a developer needs to create
a function but does not want to give the source
code, function could be written in C, compiled as
a module and be added to PHP.

For compiling additional modules, it is crucial
to understand some concepts about PHP internals
and how it actually works. This paper will start
with how PHP variables are represented internally,
how to write a simple PHP function in C and then
how to compile it and create a module.

DOI: 10.19279/TVZ.PD.2015-3-1-09

75

POLYTECHNIC & DESIGN Vol. 3, No. 1, 2015.

2. Zvalue

2. Zvalue (zend value) struktura

In PHP, there are actually eight different types of
variables [2]: integers, floating point numbers,
strings, Booleans, arrays, objects, resources and
null type.

Since C programming language is statically
typed, a developer cannot put integers in Boolean
variable or strings into floating point variable
but PHP can. This is possible with unions in C.
Actually, every PHP variable is a _zvalue_
value union and this is how the union is
implemented: [4]
typedef union _zvalue_value {

 long lval;

 double dval;

 struct {

 char *val;

 int len;

 } str;

 HashTable *ht;

 zend_object_value obj;

} zvalue_value;

It is worth noticing that string variables save
the start of the string and the length of the string
so “\0” values in PHP strings practically doesn’t
have any special meaning.

Now, the problem is how would PHP know
is there integer or string inside union. PHP has
_zval_struct:
struct _zval_struct {

 zvalue_value value;

 zend_uint refcount__gc;

 zend_uchar type;

 zend_uchar is_ref__gc;

};

_zval_struct has zvalue_value inside
and _zval_struct represents a single PHP
variable. Type inside structure tells about variable
type inside union, refcount__gc tells to garbage
collector how many pointers are pointing to the
same variable:
$variable = 10;

$variable2 = $variable;

$variable3 = $variable2;

PHP is smart enough not to create another
_zval_struct but to increment refcount__gc
variable.

is_ref__gc tells to PHP is the variable maybe
just a pointer to another variable:
$variable = 10;

$variable2 = &$variable;

Now, PHP is really smart when optimizing
variables. If the refcount__gc is 3 and
$variable changes its type and value, PHP doesn’t
change other 9 variables, instead it just creates
another _zval_struct only for $variable.
$variable = 10;

$variable2 = $variable;

$variable3 = $variable2;

/* only $variable get a new _zval_struct

*/

$variable = “now it’s a string”;

3. PHP-src and PHPize

3. Php izvorni kôd i phpize

First, a developer must get PHP source code and
that is very easy thing to do with Git:
git clone https://github.com/php/php-src.

git

Now, since creating PHP modules could be
pretty straightforward in many cases, there is a
tool which can create a skeleton for a developer
and it is called ext_skel. For creating modules,
developer needs phpize which can use the
created skeleton and your code and then create a
module. On Debian Linux (and on many Debian
derivatives) you could probably get the tool with:
apt-get install php5-devel

Now, a developer must go to the downloaded/
cloned source code and go to the ext folder and
execute ext_skel and provide the module name
which will, in this paper, be called myext:
cd ext

./ext_skel –extname=myext

Inside myext folder, there is a config.m4 which
needs to be edited. Remove comments so the file

76

POLYTECHNIC & DESIGN Vol. 3, No. 1, 2015.

contains this (watch for indentation, “[“ needs to
be in the same indentation level as “PHP_ARG_
ENABLE”):
PHP_ARG_ENABLE (myext, whether to enable

myext support,

[--enable-myext Enable myext

support])

Now, phpize must be executed, which will
prepare the module:
phpize

./configure --enable-myext

Now, inside myext.c there is a function called
PHP_FUNCTION (confirm_myext_compiled) and
this is could be one of the PHP functions.
A developer can rename or add new functions
inside extension but they need to be declared
inside myext_functions[]. Now, the function
will print “Hello World”:
PHP_FUNCTION(confirm_myext_compiled){

 php_printf(“Hello World\n”);

}

Compilation and installation step is easy:
make

make install

Extension needs to be enabled inside php.ini
file and the HTTP server needs to get restarted:
extension=myext.so

sudo /etc/init.d/apache2 restart

Now, inside HTTP server’s root folder, there
must be a test file, for example, myext.php.
<?php

// Hello World

confirm_myext_compiled();

What about sending parameters? Function
zend_parse_parameters gets parameters and
puts them inside zval’s. In this example, confirm_
myext_compiled is getting a string and instead
printing “Hello World”, it will print “Hello “ and the
provided string or a number. Here, binary safety is
not a concern so printf function should be enough:
PHP_FUNCTION(confirm_myext_compiled){

 zval *arg;

if(zend_parse_parameters(ZEND_NUM_ARGS()

TSRMLS_CC, "z", &arg) == FAILURE) {

return;

}

 switch (Z_TYPE_P(arg)){

 case IS_NULL:

 php_printf("Hello NULL\n");

 break;

 case IS_LONG:

 php_printf("Hello %ld\n", Z_

LVAL_P(arg));

 break;

 case IS_DOUBLE:

 php_printf("Hello %.2f\n", Z_

DVAL_P(arg));

 break;

 case IS_STRING:

 php_printf("Hello %s\n", Z_

STRVAL_P(arg));

 break;

 default:

 php_printf("Error type!\n");

 }

}

Again, recompiling, installing and restarting a web
server:
make

make install

/etc/init.d/apache2 restart

Now, testing should be easy enough:
confirm_myext_compiled(5);

echo "
";

confirm_myext_compiled("test");

echo "
";

confirm_myext_compiled(0.5);

echo "
";

confirm_myext_compiled(null);

echo "
";

And the result should be as expected:
Hello 5

Hello test

Hello 0.50

Hello NULL

Function zend_parse_parameters has
TSRMLS_CC. TSRM is Thread Safe Resource

77

POLYTECHNIC & DESIGN Vol. 3, No. 1, 2015.

Manager [5] and it is not a subject in this
paper. String “z” could be any of the provided
combinations which are telling to PHP what
parameters it could expect [3]:

It is possible to put strictly double inside a
double variable instead of zval, with a specifier d.
double d;

if(zend_parse_parameters(ZEND_NUM_ARGS()

TSRMLS_CC, "d", &d) == FAILURE) {

return;

}

There are some modifiers which can tell more
about passed parameters to PHP:

So, creating a function which gets a Boolean,
double and an optional integer is easy:
zval_bool b;

double d;

long l;

if(zend_parse_parameters(ZEND_NUM_ARGS()

TSRMLS_CC, "bd|l", &b, &d, &l) ==

FAILURE) {

return;

}

4. Benchmarking

4. Test brzine

Hiding source code is not the only advantage
when writing extensions in C. C programming
language is faster. In this paper, a function which
gets two integers and returns a sum, is examined,
both C and PHP version of code.
C version, pretty simple:
PHP_FUNCTION(confirm_myext_compiled){

 long l1, l2;

 if(zend_parse_parameters(ZEND_NUM_

ARGS() TSRMLS_CC, "ll", &l1, &l2) ==

FAILURE) {

 return;

}

 RETURN_LONG(l1 + l2);

}

PHP version, even simpler:
function php_version($a, $b){

 return $a + $b;

}

On some systems, there is a need for extending
PHP timeouts since the test script will be longer
than 30 seconds (which is default on many
systems):
set_time_limit(1000);

If this function is not working, inside php.ini
max_execution_time should be altered. php.ini
could be easily found with:
php --ini

The whole testing script is here:

<?php

set_time_limit(1000);

function php_version($a, $b){

 return $a + $b;

}

$before_php = microtime(true);

for ($j=0 ; $j<100000000; $j++) {

 php_version(5, 10);

}

Specifier C type Description
b zend_bool Boolean
z zval * Any variable

L long
Integer with
truncation

d double Float

s char *, int
String (value
and length)

l long
Integer with

rollover

Modifier Meaning
| (pipe) All specifiers beyond this point are

optional
! If NULL is passed, leave the C variable

unmodified
/ Separate value so that changes made to

it by the C implementation do not effect
the PHP variable passed to the function.

78

POLYTECHNIC & DESIGN Vol. 3, No. 1, 2015.

$after_php = microtime(true);

$result_php = $after_php - $before_php;

echo "PHP version: " . $result_php;

echo "
";

$before_c = microtime(true);

for ($i=0 ; $i<100000000; $i++) {

 confirm_myext_compiled(5, 10);

}

$after_c = microtime(true);

$result_c = $after_c - $before_c;

echo "C version: " . $result_c;

echo "
";

$faster = $result_php - $result_c;

echo "C version is faster for: " .

$faster;

$percentage = (1 - ($result_c / $result_

php)) * 100;

echo "
";

echo "That is " . sprintf("%.2f%%",

$percentage) . " faster";

The result on my machine:
PHP version: 22.995001077652

C version: 19.179035186768

C version is faster for: 3.8159658908844

That is 16.59% faster

5. Conclusion

5. Zaključak

Writing modules in C is harder than writing
plain PHP functions but, as benchmarking
showed, execution time is faster and therefore if
a developer needs to write many functions which
needs massive calculations, it’s definitely a better
option. A developer could examine the created .so
file inside modules folder with objdump. In this
paper, it’s done with the next line:
objdump -M intel -D myext.so

This is what is generated for zif_confirm_
myext_compiled:
b60: push rbx

b61: mov rbx,rsi

b64: lea rsi,[rip+0x5c]

b6b: xor eax,eax

b6d: sub rsp,0x10

b71: lea rcx,[rsp+0x8]

b76: mov rdx,rsp

b79: call 9a0 <zend_parse_parameters@

plt>

b7e: cmp eax,0xffffffff

b81: je b93 <zif_confirm_myext_

compiled+0x33>

b83: mov rax,QWORD PTR [rsp]

b87: add rax,QWORD PTR [rsp+0x8]

b8c: mov BYTE PTR [rbx+0x14],0x1

b90: mov QWORD PTR [rbx],rax

b93: add rsp,0x10

b97: pop rbx

b98: ret

b99: nop DWORD PTR [rax+0x0]

There are ways to improve generated code but
it’s still less than code generated while executing
plain PHP functions and it’s a lot harder to find
out how the function works and what it does.

79

POLYTECHNIC & DESIGN Vol. 3, No. 1, 2015.

6. References

6. Reference

[1] http://news.netcraft.com/ar-
chives/2013/01/31/php-just-grows-grows.
html

[2] https://line.do/php-evolution/8oq/vertical
[3] https://github.com/sgolemon/phptek2013/

blob/master/params/README.md

[4] http://www.phpinternalsbook.com/zvals/
basic_structure.html

[6] http://devzone.zend.com/303/extension-
writing-part-i-introduction-to-php-and-
zend/

Alen Šimec - nepromjenjena biografija nalazi
se u časopisu Polytechnic & Design
Vol. 1, No. 1, 2013.

AUTORI · AUTHORS

Davor Lozić (dlozic@tvz.
hr), student at the Polytechnic
of Zagreb, currently working
as a senior software engineer
at Informatička podrška d.o.o.
creating web-based applications

with ExtJS and CakePHP. Interested in application
security, internal work of operating systems and low-
level programming.

Korespondencija:
alen@tvz.hr

