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Asymptotic distributions of least square
estimations in a regression model with singular

errors∗

Mirta Benšić†

Abstract. We study some problems of the parameter inference
which are in connection with wide sense stationary long memory
processes. Here we present the asymptotic behaviour of the corela-
tion matrix and the limit distributions of the LSE for the regression
coefficients in some types of linear models with singular Gaussian
and non-Gaussian errors.
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Sažetak.Asimptotske distribucije procjenitelja dobivenog
metodom najmanjih kvadrata u regresionom modelu sa sin-
gularnim greškama. U ovom radu proučeni su neki problemi proc-
jene parametara vezani uz stacionarne procese u širem smislu koji
dugo pamte. Opisano je asimptotsko ponašanje korelacione matrice
i granične distribucije procjenitelja dobivenog metodom najmanjih
kvadrata za regresione koeficijente u nekim tipovima linearnih mod-
ela s Gaussovim i ne-Gaussovim singularnim greškama.

Ključne riječi: problemi najmanjih kvadrata, asimptotske dis-
tribucije, regresija

1. Introduction

Estimation problems for linear regression parameters are of great interest in
statistical applications and they are widely treated in the mathematical and
statistical literature (see for example [1], [4], [2]). Among them, the models with
discrete time parameter and independent errors and so called ”short memory”
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models were studied in a great deal. These results guarantee that the LSE often
has very desirable statistical properties.

Nowadays the models with ”long memory” errors have been researched. The
papers [3], [6], [9], [11], [12] indicate that in these models the LSE may be very
good, too.

In this paper we present the asymptotic theory of the LSE of regression
coefficients of the continuous time stationary processes with unbounded spectral
density (singular noise).

2. The model

Let us consider the continuous time regression model of the form

ν(t) = aτg(t) + η(t), t ∈ R,

where g(t) = [g1(t), . . . , gn(t)]τ is the known vector function, g : R → Rn, whose
coordinate functions gi(t) form a linearly independent set of real functions,
being positive on [0, T ] and square integrable over the same interval for all
T > 0 and i = 1, . . . , n. a = [a1, . . . , an]τ is the unknown vector of parameters.
η(t), t ∈ R, is the stationary stochastic process of errors which fulfills the
following conditions:

1. Eη(t) = 0, Eη2(t) < ∞.

2. η(t), t ∈ R, allows a representation:

η(t) = G(ξ(t)),

where:

(a) ξ(t) is a measurable, m.s. continuous, stationary Gaussian process
with E(ξ(t)) = 0, E(ξ2(t)) = 1;

(b) The covariance function of ξ(t) has the following form:

B(| t |) = cov(ξ(0), ξ(t)) =
L(| t |)
| t |α , 0 < α < 1,

where L(t) is a real slowly varying function for large values of t (see
e.g. [7]), bounded on each finite interval;

(c) The covariance function B(t) has a spectral density f(| λ |) which is
a decreasing function for | λ |≥ λ0, λ0 ∈ R+;

(d) G(t) is a real, possible nonlinear Borel function such that
EG2(ξ(0)) < ∞.
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It can be observed that in the case of assumption 2.(d) the function G(t) allows
the expansion

G(t) =
∞∑

i=0

Ci

i!
Hi(t), Ci =

∞∫

−∞
G(t)Hi(t)φ(t) dt, i ∈ N0,

where
φ(t) =

1√
2π

e−
t2
2 ,

and {Hi(t) : i ∈ N0} are Hermite polynomials with a unit leading coefficient
forming a complete orthogonal system in the Hilbert space L2(R, φ(t)dt).

3. The integer m ≥ 1 exists such that C1 = C2 = . . . = Cm−1 = 0, Cm 6= 0.
We say that m = rang G (see e.q. [1,2]).

4. For the vector function g(t), given α and m, the following limits exist and
are finite:

l = lim
T→∞

d(T )−1

1∫

0

1∫

0

g(Tu) g(Tv)τ du dv

| u− v |mα
d(T )−1,

L = lim
T→∞

d(T )−1 V1(T ) d(T )−1,

V1(T ) =

1∫

0

g(uT ) g(Tu)τ du =
1
T

V (T ),

d(T ) = diag (g1(T ), . . . , gn(T )).

Also let l be the regular matrix.

We can see that our model is the model with stationary errors and the long-
term dependence.

The problem we have been dealing with is estimating by the vector parameter
a using observations of the random process ν(t) during the time interval [0, T ].
For this we have chosen the LS estimator. Here we have given some of its
asymptotic properties.

3. Asymptotic properties of the LSE of regression coeffi-
cients

If the assumptions 1 and 2 are true for the process

ν(t) = aτg(t) + η(t), t ∈ R,
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then the LS estimator for the vector parameter a on the continuous time interval
[0, T ] has the following form:

â(T ) = V (T )−1

T∫

0

g(t) ν(t) dt, V (T ) =

T∫

0

g(t) g(t)τ dt.

It is to be noted that the matrix V (T ) under our conditions is a real, symmetric,
positive definite matrix for all T > 0.

It is obvious that the estimator â(T ) is unbiased. Also for the correlation
matrix D(â(T )) the following theorem holds:

Theorem 1. If the assumptions 1, 2, 3 and 4 hold for the process

ν(t) = aτ g(t) + η(t), t ∈ R,

with 0 < α < 1
m , then for the correlation matrix D(â(T )) of the LS estimator

of an unknown vector parameter a the following holds:

lim
T→∞

||d(T )−1 V (T )D(â(T )) V (T ) d(T )−1 L−m(T )Tmα−2 m!
C2

m

− l|| = 0. (1)

This theorem makes an analysis of asymptotic behaviour of the correlation
matrix D(â(T )) easier. Therefore, by using it we can prove that LSE in the case
of polynomial regression under our conditions is one consistent estimator in the
sense that the correlation matrix tends to zero matrix (mean-square consistent,
see eg. [5]). The following corollary and example confirm this.

Corollary 1. If the assumptions 1, 2, 3 and 4 are valid for the process

ν(t) = aτ g(t) + η(t), t ∈ R,

with 0 < α < 1
m and let the matrix L be regular. Then for the correlation matrix

D(â(T )) of the LS estimator of an unknown vector parameter a the following
holds:

lim
T→∞

||d(T )D(â(T )) d(T )L−m(T )Tmα m!
C2

m

− L−1 l L−1|| = 0. (2)

Example 1. If we consider the model with g(t) = [tν1 , . . . , tνn ]τ , 0 <
ν1 < . . . < νn, using Corollary 1., we can state that â(T ) is one mean-square
consistent estimator for the vector parameter a.

We can also give one representation for the asymptotic distribution of the
process

X(T ) = R(T )−1(â(T )− a),

R(T ) =
Cm√
m!

Lm/2(T )T 1−m/2V (T )−1d(T )l1,
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where l1 means the regular matrix such that l = l1l
τ
1 . The main result, described

by Theorem 3., is proved using the reduction theorem (Theorem 2.) which makes
it possible to describe an asymptotic distribution for the process

X(T ) = R(T )−1(â(T )− a),

in our model with that of the process

Xm(T ) =
Cm

m!
R(T )−1V (T )−1

T∫

0

g(t) Hm(ξ(t)) dt, (3)

where m = rank G. In fact the following theorems hold:
Theorem 2. If we suppose that the assumptions 1, 2, 3 and 4 are fulfilled

with 0 < α < 1
m , then it holds:

lim
T→∞

E||X(T )−Xm(T )||2 = 0.

This means that if one of the asymptotic distributions for X(T ) or for Xm(T )
exists, then the other one exists as well, and they are the same.

Theorem 3. Let us suppose that the assumptions 1, 2, 3 and 4 hold, that
there exists the vector function g′(u) for which

||d(T )−1 g(uT )− g′(u)|| → 0, as T →∞, (4)

uniformly for u ∈ [0, 1] and

∫

Rm

||
1∫

0

g′(u) eiu(λ1+···+λm)du||2 dλ1 · · · dλm

|λ1 · · ·λm|1−α
< ∞, (5)

where m = rang G. Then the process X(T ) converges in distribution to the
random vector

κ = C

∫

Rm




1∫

0

g′(u) eiu(λ1+···+λm) du


 W (dλ1) · · ·W (dλm)

|λ1 · · ·λm| 1−α
2

,

C =
√

αm

√
m! 2m Γm(1 + α) cosm απ

2

l−1
1 .

∫
Rm W (dλ1) · · ·W (dλm) means a multiple Wiener-Itô integral in the sense of

the book Major [8].
Remark 1. If the model satisfies all conditions of this theorem then the

correlation matrix for κ can be calculated and it is

D(κ) =
1

(m!)2
I.
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Also, from the integral representation for κ it can be stated that for m = 1
κ has a multidimensional normal distribution with the correlation matrix which
guarantees that the marginal distributions are independent and identical.

For m = 2 the integral representation guarantees that each component of κ
has a Rosenblat distribution.

It is to be noted that the polynomial regression with the errors upon our
assumptions satisfies all requirements from this section.
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