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The rate of the acid-catalysed hydrolysis of tert-butyl acetate 
was found to decrease pronouncly in the presence of increasing 
amounts of DMSO. The observed activation energy decreased pro
gressively with increasing DMSO content of the medium and the 
change was attributed to a gradual interconversion of the two 
concurrent and competing reaction mechanisms AALl and A Ac2. 
The overall reaction rate was analysed theoretically as two indi
vidual rate constants corresponding to the respective mechanisms. 
The percentage contribution of each mechanism was then estimated 
and found to be concordant with the values determined experi
mentally by others using 180 tracer technique. The proportion of 
the AALl mechanism was found to increase both with increasing 
temperature and decreasing DMSO content. The relative abundance 
of the transition state belonging to each of the involved mecha
nisms was discussed in the light of the solvating power of the 
binary DMSO-H20 solvent system. The effect of the molar concen
tration of water as well as the dielectric constant of the medium 
on the reaction kinetics was studied. The thermodynamic para
meters of activation showed strong dependence on solvent com
position and their values were determined by the relative contri
butions of the two mechanistic routes of the reaction. 

INTRODUCTION 

Extensive studies of the effect of solvents on the rates of simple hydrolysis 
reactions in which one mechanism only (AAc2 or AALl) is involved have been 
increasingly reported in the last decades1 • However, only relatively little infor
mations are available on the solvent effects on hydrolysis reactions proceeding 
via mixed mechanisms2--6• Thus, tert-butyl acetate is known to hydrolyse in 
acid solution simultaneously by unimolecular as well as bimolecular me
chanisms7-9. The electron release from the tert-butyl group allows for the 
formation of the carbonium ion, (CH,,),.C+, and hence facilitates the unimo
lecular alkyl-oxygen bond fission. On the other hand, the decrease in the water 
concentration of the reaction mixture favours the bimolecular acyl-oxygen 
fission, in relation to the unimolecular one. Several experimental evidences 
have been reported for the differentiation between a unimolecular hydrolysis 
mechanism, whose critical complex contains no covalently bound water mole
cule, and a bimolecular mechanism with a transition complex containing a 
water molecule in addition to the proton and the substrate2•10• Amon15 these 
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evidences are the values of the activation energies8, activation entropies11 , 

activation volumes12 and the use of the Zucker-Hammett hypothesis13• The 
objective of the present work was to calculate the contribution of each mecha
nism under various conditions of temperature and solvent composition using 
only purely kinetic data. This was carried out also to ·investigate the effect of 
dimethyl su}phoxide (DMSO), a dipolar aprotic solvent with unique properties14 

on the present reaction, particularly because the salvation requirements of 
the two concurrent mechanisms in this solvent system are expected to be 
strongly dependent on solvent composition. 

EXPERIMENTAL 

Materials and Procedure 

Tert-butyl acetate was prepared as described before1". The boiling point of the 
pure ester was 97-98 °c at normal pressure. Dimethyl sulphoxide (BDH) was 
purified by distillation twice from calcium hydride under reduced pressure, the first 
and last portions were rejected and the middle fraction boiling at 70 °c and 8 mmHg* 
was collected. The purified DMSO had a melting point of 18.5 °c. The water used 
in the kinetic experiments was freshly distilled from alkaline potassium perman
ganate. 

The kinetic experiments involved a direct analysis of the acid produced during 
the reaction coursetu. In all rate measurements at temperatures higher than 30 °C, 
allowance was made for the volume change of the solvent with temperature. 

Calculations 

The first-order rate constants k' ulJs for the overall reaction in water and in 
the mixed solvents were calculated from the slopes of . the linear plots of log 
[a/(a - x)] against time. The observed rate constant k' obo includes two specific rates, 
one due to the unimolecular mechanism k 1' and the other due to the bimolecular 
mechanism k/, i. e., 

(1) 

At constant acid concentration, the remarkable dependence of the hydrolysis ratE: 
of an ester on the water concentration of the solvent can be represented generally 
by the following expression17 (k being a proportionality constant): 

dx = k [H O]' (a - x) 
dt 2 

in which the overall reaction rate is assumed to be proportional to the y 11
' power 

of the molar water con,eentration of the solvent mixture and (a - x) being the 
ester concentration. As the water concentration can be taken as practically constant 
during the course of the reaction, k [H20J' will be equal to the experimental rate 
constant k' obs· Assuming that the rates of the AAc2 and AALl mechanisms are 
proportional to the first10 and nthrn power of the water concentration, respectively, 
then y will be equal to n + 1. 

The corresponding rate constants will then be given by: 

k/ = k
2 

[H,O] 
and 

k/ = k 1 [H20]" 

where k2 and k1 are two proportionality constants. 

Therefore, equation (1) becomes 

k'obs =kl [H20]" + k2 [H20] 

* 1 mmHg = 133.332 Pa 

(2) 
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hence 
k' 

__<>l>_s_ = k [H O]n-i + k 
[H20l i z z 

(3) 

Accordingly, a plot of k'
0
b

5
/[H20] against [H20]',_. should yield a straight line with 

a slope and intercept of kt and k2, respectively. A number of trial plots of k' obs/ [H20] 
against several powers of [H20] ranging from 1 to 4 have been made, as shown in 
Figure 1. Best linear plots were obtained with [H20]2, indicating that n amounts 
to 3t. From the values of ki, k2, [H20] and [H20]3, it became possible to calculate 
kt' and k2' at all temperatures and solvent compositions. The results are depicted in 
Table I along with the observed rate constants. The percentage fission by the AALl 
mechanism was calculated using the expression: 

k ' 
O/o A 1 = 1 x 100 

AL k/ + k/ 

TABLE I 

Calculated and Observed Rate Constants for the Overall, Unimolecular and 
Bimolecular Reactions 

t/°C 
DMSO/wt O/o 

0.00 16.25 31.82 42.05 52.04 66.83 81.28 90.72 95.55 

30 

35 

40 

45 

50 

k1' 
k2' 
k{ + k / 
k ' obs 

k1' 
k-2' 
kt' + k o' 
k 'obs 

k{ 
k2' 
k{ + k2' 
k'ubs 

kt' 
k 21 

kt' + k2' 
k'obs 

kt' 
k 2' 
k{ + k 2' 
k 'obs 

584 
122 
706 
635 

1255 
180 

1435 
1259 

2568 
250 

2818 
2754 

4893 
389 

5282 
5129 

9010 
530 

9540 
8511 

347 
104 
451 
452 

764 
155 
919 
891 

1563 
212 

1775 
1840 

2977 
329 

3306 
3388 

5483 
449 

5932 
5888 

200 
86 

286 
288 

439 
127 
566 
589 

898 
176 

1074 
1043 

1711 
274 

1985 
2138 

3151 
374 

3525 
3467 

126 
74 

200 
189 

278 
109 
387 
372 

568 
151 
719 
685 

1081 
235 

1316 
1328 

1992 
321 

2313 
2335 

74 
62 

136 
136 

162 
91 

253 
246 

331 
126 
457 
400 

630 
196 
826 
822 

1161 
268 

1429 
1396 

25 
43 
68 
70 

56 
54 

110 
118 

114 
88 

202 
188 

216 
137 
353 
364 

398 
188 
586 
546 

5 
25 
30 
28 

10 
36 
46 
51 

21 
50 
71 
82 

40 
48 
88 

144 

74 
107 
181 
240 

0.6 
12.3 
12.9 
14 

1.2 
18.0 
19.2 
26 

2.6 
25.1 
27.7 
38 

5.0 
39.0 
44.0 
74 

9 
53 
62 

115 

0.1 
6.0 
6.1 
8 

0.1 
5.8 
5.9 

15 

0.3 
12.0 
12.3 
19 

0.6 
19.0 
19.6 
42 

1 
26 
27 
72 

t The fact that the AALl mechanism, by definition, contains no covalently bound water 
molecule in the t ransition state should not imply that the hydrolysis rate of this mechanism 
is independent of the water concentration, since this is an important kinetic requirement. The 
value of n = 3, however, signifies that 3 water molecules form a hydrogen-bound salvation 
sheath around the transition state of the AALl mechanism. The reason why this does not apply 
to the AAc2 mechanism is that the relatively more polar AAc2 transition state will be preferent
ially solvated by the more polar DMSO molecules of the solvent components•. Evidence for this 
is given by the calculation of dipole moments of the two transition states, and is referred tc 
later on. On the basis of this assumption, we applied the present treatment to the data on 
tert-butyl acetate reported by YrjaniF and Bunton and Wood', who used other techniques in 
the separation procedure, and linear plots of log k'1 vs. log [H20J were obtained with slopes 
ranging between 2.5 and 3. It has to be concluded, therefore, that the water molecule necessary 
for the reaction via the AAc2 mechanism is involved in the transition state, while for the AALl 
mechanism it will be one of the three water molecules in the salvation sheath of the transitior.. 
state. 
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TABLE I con tin. 

55 

60 

65 

ki' 
k2' 
ki' 
k' obs 

ki' 
k 2' 
ki' 
k ' oiJs 

ki' 
k2' 
ki' 
k' obs 

16640 
767 

+ k2' 17407 
17780 

32100 
1058 

+ k / 33158 
33110 

57060 
1461 

+ k/ 58521 , 
57540 

45 

<.D
0 

35 

-A 
0 

~ 25 

""' "' D 

10130 5820 
650 540 

10780 6360 
12460 7450 

19540 11230 
898 745 

20438 11975 
20150 12280 

34720 19950 
1238 1029 

35958 20979 
37690 19190 

3680 2143 736 137 17 
463 387 271 155 77 

4143 2530 . 1007 292 94 
4429 2412 987 417 182 

7096 4134 1419 263 33 
640 534 374 213 106 

7736 4668 1793 476 139 
7586 4386 1536 640 288 

12610 7348 2523 468 58 
883 738 516 295 417 

13493 8086 3039 763 475 
12290 6908 2512 1001 447 

r 15 i--------,_____..,_____.._....__._--t 0 

100 300 500 700 900 1100 

----+-[Hz 0 J 4 
X 10

4 

c 
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Figure 1. Trial plots of Jog k'00J [H20] against different powers of [H20] . 
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The activation energies E and the frequency factors A belonging to the three rate 
constants were obtained from the usual Arrhenius equation18. The entropies, enthal
pies and free energies of activation were calculated using the thermodynamic 
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equations of the absolute reaction rate theory 18• The values of the dielectric constant 
of DMSO-water mixtures were determined by interpolation from the results reported 
by Wolford19 • 

DISCUSSION 

Agreement between Observed and Calculated Rate Constants 
Examination of Table I shows that the sum of the individual rate 

constants (k/ + k/) calculated by equation (3) agrees quite satisfactorily with 
the experimentally determined k'obs· The equation is valid only in media con
taining less than 800/o DMSO. Deviations are observed beyond this limit due 
to the sharp drop of the acidity function of the reaction mixtures20 of high 
content of the organic solvent component. The contributions of each mechanism 
(cf. Table II), based on calculated rate constants were found to be concordant 
with the values determined exp~rimentally by other investigators6-s who used 
180 tracer technique in other solvent mixtures of similar water contents. 

TABLE II 

Contribi.: ·~ion of AAL1 Mechanism 

DMSO O/o AALl 
wt 0/o 

30 °c 35 °c 40 °c 45 °c 50 °c 55 °c 60 °c 65 °c 

0.00 83 88 91 93 94 96 97 98 
16.25 77 81 88 90 92 94 96 97 
31.82 70 78 8'1 86 89 91 94 95 
42.05 63 75 79 82 86 87 92 94 
52.04 45 64 72 76 81 85 89 91 
66.83 37 51 56 61 68 73 79 83 
81.28 16 22 29 45 41 47 55 61 
90.72 5 7 9 11 15 18 23 12 
95.55 1 2 2 3 4 5 8 9 

TABLE III 

Activation Energies and Frequency Factors for the Overall, UnimoLecuLar 
and BimoLecuLar Reactions 

E/(kcal/mol) 
DMSO/wt O/o 

0.00 16.25 31.82 42.05 52.04 66.83 81.28 90.72 95.55 

a) Overall 

Eobs 26.62 25.76 25.13 24.24 23.03 20.60 19.96 19.64 18.42 
log A 14.3 13.5 12.9 12.0 11.0 8.9 8. 1 7.6 6.4 

b) Unimolecular 
Ei 26.80 27.16 26.54 26.10 26.32 26.32 
log A 14.4 14.4 13.8 13.3 13.2 12.7 

c) Bimolecular 
E2 14.33 14.55 14.42 14.42 14.55 14.33 
log A 4.7 4.7 4.6 4.4 4.5 4.2 
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Arrhenius Parameters and the Reaction Mechanism 

In Table III it is readily seen that the overall activation energy Eobs 

decreases with decreasing water content in the mixed solvent; the decrease 
is about 9 kcal/mol* for a solvent change of 0-950/o by wt. of DMSO. Such 
a phenomenon was reported before in few cases of the acid hydrolysis of some 
esters of tertiary alcohols3,7 ,21 • This pronounced change of E with solvent com
position is far beyond the one to be expeded in cases of, e. g., esters hydro
lysing via pure single mechanism22 . The E values assigned for the latter hydro
lyses Tange from 14 to 20 kcal/mol and from 26 to 33 kcal/mol for the AAc2 
and AALl mechanisms, respectively, of the Ingold classification.8 ,10 The fact 
that the activation energy of the present reaction depends strongly on solvent 
composition and that its values lie somewhere between the two ranges 
mentioned above confirms that the reaction proceeds via a mixed mechanism 
comprising both AAc2 and AALl simultaneously. The relative contribution of 
each mech anism is very sensitive to changes in temperature and reaction 
medium. Thus, at higher temperatures in water or highly aqueous media, the 
AALl mechanism prevails while the reverse is true for the AAc2 mechanism 
(cf. Table II). The calculated rate constants for each type of mechanism gave 
good Arrhenius plots and the corresponding activation energies were found to 
be typical for those experimentally determined for the two mechanisms inde
pendently. The frequency factor, A , decreases in a manner parallel to the 
decrease of E with addition of DMSO. For the overall reaction, the value of 
log A changes from 14 to 6 whereas for the unimolecular and bimolecular 
reactions it lies round 14 and 4, respectively. These values agree very well 
with the ranges 14-16 for the AALl mechanism and 4-8 for the AAc2 me
chanism normally obtained for most esteTs23- 26 • 

Role of Salvation Properties of the Medium 

The reaction rate is largely retarded as the content of the organic cosol
vent in the reaction mixture is increased. Thus, at 30 °C the rate in 950/o 
DMSO is 80 times lower than in pure water. On the other hand, the relative 
proportions of the two concurrent mechanisms are dependent on the precise 
nature of the medium. The interchange of these mechanisms can thus be 
rationaHsed as due to a difference in the response of the transition states of 
the two mechanisms towards changes in the solvation properties of the reaction 
medium. Evidence for this finds support in the work of Cox and McTigue4 

·based on activity-coefficient measurements for tert-butyl acetate as well as 
other carbonyl compounds which hydrolyse typically via pure AAc2 and AALl 
mechanisms. One might expect that as the DMSO content of the solvent 
mixture increases, the H20 molecules in the solvation sheaths of H30+ and 
the transition state of the bimolecular mechanism will be gradually replaced 
by DMSO. Hence, at high DMSO contents, the water molecules in the medium 
will be mostly captured by DMSO molecules into the well-known 2 : 1 asso
ciation complexes27- 29, and the AAc2 transition state will be almost entirely 
solvated by the excess DMSO molecules , and will thus be more stabilised and 
facilitated. This is quite evident in Table II where the AAc2 proportion incre
ases at 30 °c from 17 to 990/o as the DMSO content increases from 0 to 95.6°/o 
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(wlw). On the other hand, the salvation requirements of the AAd mechanism 
is quite different in the sense that the transition state is smaller in volume 
and thereby leading to a lower solva1Jvon and less stabilisation relative to that 
of the AAc2 mechanism. In other words, salvation of the AAc2 transition state 
with DMSO is stronger, and hence predominating, than salvation of the AALl 
with water. The net result will be a large drop in the contribution of AALl 
mechanism as the DMSO content is increased. This is in fact found expe
rimentally as seen in Table II. In a highly associated solvent system such 
as the one under investigation, it is quite reasonable to assume that temperature 
will have a different effect on the salvation requirements of the two transition 
states. In Table II it is seen that at a fixed solvent composition the percentage 
contribution of the AALl mechanism increases with increased temperature. 
Supporting this argument is the fact that the stability of the internal structure 
of the binary DMSO-HP solve,nt system is affected largely by temperature ; 
there is even an association decomposition10 of the 2 : 1 complex between 
40 and 60 °C. 

Effect of the Dielectric Constant 

An alternative aspect of the solvent effect can be tested by considering 
the influence of changes in the dielectric constant, D, on the reaction rate. 
Thus, an increase in D causes a consequent increase of the rate. The present 
results, based on an ion-dipole interaction theory30 , were found to give good 
linear plots of log k'obs versus 1/D, though deviating from linearity at low 
dielectric constants (Figure 2). Such deviations are very often observed in binary 
solvent mixtures, whose components differ in their dielectric constants, and are 
attributed to specific solvahon phenomena.18 The negative slopes of the linear 
parts of these plots gave, according to the Laidler-Landskroener treaitment30 , a 
reasonable value for the radius of the transition state, r. , amounting to 
320 pm. 

"' .a 
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Figure 2. Dependence of log k ' oh' on the dielectric constant of the solvent. 
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An approach to the relative polarities of the transition states of the AAd 
and AAc2 mechanisms can be presented using the Laidler's equation31 for 
ion-dipole interactions as applied to both unimolecular and bimolecular rate 
constants. The equation gives values of about 30 and 38 debye for µ*, for the 
dipole moment of the A AL l and AAc2 transition states, respectively. These 
values, though higher than those reported by Laidler31 (26.1 debye) support 
our assumption that the more polar AAc2 transition state will be preferentially 
solvated with DMSO molecules (,u. = 3.9 debye*)32 rather than with water mole
cules (,u. = 1.85 debye)33 ; and th~ reverse is true for the les·; polar AALl tran
sition state. 

Thermodynamic Functions of Activation 

Table IV contains the values of the activation parameters for the overall, 
unimolecular and bimolecular reactions. All parameters are strongly dependent 
on solvent composition. The enthalpy of activation, t,.H=t=, for the overall 
reaction decreases by about 10 kcal/mol on passing from water to 950/o DMSO. 
This change is accompanied by a change in mechanism, and therefore the 
values is more or less constant for the separated unimolecular and bimolecular 
reaotions. For the overall reaction the entropy of activation, t,.S=t=, requires the 
values between +4.9 and -31.2 e. u.** Thi:; strong decrease of t,.S=I=, is also 
indicative of a decrease in the AALl mechanism and a subsequent increase 
in the AAc2 mechanism as the medium becomes enriched in DMSO. However, 
the values of t,.S=I= for the separated unimolecular and bimolecular reactions 
vary, from 5 to -2 and from -38 to -41 e. u. , respectively. Generally, car
boxylic esters following the AALl mechanism during hydrolysis should be 
characterised by more positive entropies of activation relative to those hydro
lysing by the AAc2 mechanism, and a particularly large entropy differential 

TABLE IV 

Thermodynamic Parameters of Activation at 40 °c 

Parameter 
DMSO/wt O/o 

0.00 16.25 31.82 42.05 52.04 66.83 81.28 90.72 95.55 

/'1 G=t= I (kcal/mol) 
/'iH=l=/(kcal/mol) 
/'iS=t=/(cal/mol K) 

/'iG=t=/(kcal/mol) 
/'iH=l=/(kcal/mol) 
/'iS=l=/(cal/mol K) 

24.47 
26.00 

4.9 

24.52 
26.18 

5.3 

24.73 
25.14 

1.3 

24.83 
26.54 

5.4 

25.03 
24.51 

-1.7 

a) Overall Reaction 
25.35 25.68 26.15 26.67 27.13 27.56 
23.62 22.41 19.98 19.34 19.02 17.80 

-5.6 -10.5 -19.7 -23.4 -25.9 -31.2 

b) Unimolecular Reaction 

25.18 25.46 25.78 26.46 
25.92 25.48 25. 70 25. 70 

2.4 0.1 - 0.3 -2.4 

c) Bimolecular Reaction 
/'iG=l=/(kcal/mol) 25.90 26.07 26.19 26.27 26.32 26.62 
/'iH=t=/(kcal/mol) 13.71 13.93 13.80 13.80 13.93 13.71 
/'iS=l=/(cal/mol K) -38.94 -38.79 -39.59 -39.84 -39.59 -41.25 

* 1 D = 3.34 · 10-3° C m. 
** 1 e. u. = 4.184 JK-1 mo1-1. 
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between the two mechanisms should be observed11 . These requirements are 
amply fulfilled by the data in Table IV indicating good consistence between 
the values calculated according to our seperation procedure and those generally 
assigned for the respective mechanisms. The values of ~G=I= , the free energy 
of activation, for the overall reaction varies much less tha n does ~H=f. or 
~S:f:. This weak d ependence is due largely to the linear compensation between 
~H:f: and ~S:f: . 
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SAZETAK 

Kinetika, aktivacijski parametri i mehanizam kisele hidrolize 
tert-butilacetata u vodenoj otopini DMSO 

F . Y. Khalil i M . T. Hanna 

Kisela hidroliza tert-butilacetata proucavana je u smjesama DMSO-H20 razli
cita sastava. Poznato je da u tim okolnostima tert-butil hidrolizira istovremeno i 
monomolekularnim i bimolekularnim mehanizmom. U ovom radu izracunan je dopri
nos svakoga od tih mehanizama i to jedino na temelju kinetickih podataka. lzracu
nane vrijednosti slazu se s eksperimentalnim vrijednostima, koje su odredili drugi 
autori pomocu 180-obiljezivacke tehnike. Nadeno je da su doprinosi pojedinih meha
nizama jako ovisni o temperaturi reakcijskog medija. Udjel mehanizma AA1l pove
cava se s porastom temperature i smanjenjem udjela DMSO, a obrnuti odnos vrijedi 
za mehanizam AAc2. Energija aktivacije i termodinamicki parametri za ukupnu 
reakciju kao i za pojedinacne A;1 1 l i AAc'z reakcije izracunani su i razmotreni. 
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