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The sum of topological distances in the molecular graph, the 
Wiener number, is used for a topological characterization of mono­
cycles. Various other mathematical models based either on the 
adjacency matrix or on the distance matrix of a system, which were 
earlier used mostly for studying molecular branching, are now also 
applied to monocyclic structures in order to learn if they would 
be of use in characterizing molecular cyclicity. 

In this work we wish to describe the application of the topological indices 
and especially that of the Wiener number, W (G) , to monocyclic systems. In 
the past the Wiener number was used only for studying molecular branching1• 

Wiener2 in his studies on additive physical parameters of acyclic hydrocarbons 
has introduced a path number W which is defined as the sum of the distances 
between any two carbon atoms in the molecule in terms of carbon-carbon 
bonds. We call this path number the Wiener number of the graph\ W (G). It 
can be shown that the Wiener number is equal to half the sum of the off­
-diagonal elements of the distance matrix of the graph1, D (G), 

1 
W (G) = - ~ Dii (G) 

2 (i , j) 

where Dii are off-diagonal elements of the distance matrix.a 

(1) 

The Wiener ·number is applied to monocyclic structures in order to learn 
if it is sensitive to the change of ring size since this change is well reflected in 
their physical and chemical properties4 • 

Let the number of atoms in the cycle be denoted by N. The following 
equations were derived in an inductive way (the method is described in detail 
elsewhere1

) for the Wiener number W (G) and the mean value of the Wiener 
number, 

2W 
W(G) = N(N-1) (la) 

(called the mean topological distance), in the cyclic molecular graph5: 

*Permanent address: »Ruder Boskovic« Institute, P .O.B. 1016, 41001 Zagreb, 
Croatia, Yugoslavia 
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(a) N = 2 k + 1 (for odd cycles) 

W (cycle)= 
N 3 - N 

8 

N + 1 
W (cycle) = --4-

(b) N = 2 k (for even cycles) 

Na 
W (cycle) = 8~ 

N' 
W (cycle) = 4 (N - l) 

(2) 

(3) 

(4) 

(5) 

Let the mean topological distance in the molecular graph, W (G), be taken 
as the inverse measure of the relative cyclicity. It is easy to conclude that the 
relative cyclicity decreases with the increase of the number of atoms in the 
cycle. The increase of the number of at-oms in a monocyclic system would 
make it more and more similar to an infinite chain and eventually its cyclic 
character would disappear. 

RuLe 1. - When the number of atoms in a monocyclic system increases, 
the relative cyclicity decreases, but the decrease is smaller following the 
transition from even to odd than from odd to even cycles: 

A W (even --+ odd) < AW odd -+ even) (6) 

In order 1Jo prove this rule let us consider the subsequent increase of the 
number of atoms in the three monocyclic structures: odd -+ even -+ odd. The 
following equations hold: 

N 
t:i. W (odd --+ even) = 4 (N _ l) 

N-2 
t:i. W (even --+ odd) = 4 (N _ l) 

and from these follows the relation, 

f'o.. W (odd -+ even) - t:i. W (even --+ odd) = 2 (N - l) > 0 

(7) 

(8) 

(9) 

by which the inequality (6) is proven. Here N is the number of atoms in the 
intermediate even cycle. 

It <is also of interest to compare the Wiener numbers of the monocyclic 
compounds with those of their linear carbon skeleton isomers. 

RuLe 2. - The Wiener numbers of molecular graphs decrease when linear 
molecules cyclize. 

W (cycle) < W (chain) 

W (cycle) < W (chain) 

(10) 

(11) 

To prove rule 2 we make the use of the equation for the change upon the 
cyclization process6: 
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N 3 -aN 
W (chain)- W (cycle)= 24 > 0 (12) 

where a= 1 for N = odd and a= 4 for N = even, respectively. 

Figure 1 ilustrates the two topological rules by a comparison between the 
boiling points and the Wiener numbers of several chains (representing alkanes, 
C0 H 20+J and the corresponding cycles (representing cycloalkanes, C0 H 20 ) . An 
additional illustration is given later in Table I. 

TABLE I 

Topological and Information Indices of Monocycles and some Properties 
of Cycloalkanes 

Cycle" N b W(G) In (G) Z(G) so "98 
c 298 

p !:;,. H
0 

29s 

3 1.0 4 56.75 13.37 12.74 
2 4 1.33 0.92 . 7 63.43 17.26 6.37 
3 5 1.5 1.0 11 70.00 19.84 - 18.4& 
4 6 1.8 1.52 18 71.28 25.40 - 29.43 
5 7 2.0 1.58 28 81.82 29.42 -28.52 
6 8 2.29 1.95 43 87.66 33.45 - 30.06 

" Numbers correspond to the cyclic graphs given in Figure 1. 
1 1 1 

" Note , that: N = 4 M1 (G) = 4 M 2 (G) = T F (G) = S (G) = 2 XR (G) , and 2W (G) = R (G) 

0--0--0 A 0-0--0-0 D 
© © 

-42.2• -32.a0 _,,.,. '12 • .50 

W(CO) 4 .s to a 

0--0--0--0--0 0 0--0--0-0--0--0 0 
@ © 

36.1° 49.3° 68.'lo ao.1• 
W(G) 10 ts 35 l? 

~ 0 o--o--0-0--0-0- 0 
98.i.• ~ 0 t .5 US.'10 

© 
1~-5° 

W(G) ~6 "~ - 6/f 

Figure 1. Comparison between the cha ins (depicting alkanes) and the r elated c ycles (depicting 
cy cloalkanes). Number s below each struct ure are boiling points in •c taken from the publication 
of National Bureau of Standards Se!ected Va!ues of Physica! and Ther modynamic Properties 

of Hydrocarbons (1945) . 
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In what follows we will examine the applicability to monocycles of the 
other known topological indices introduced in the past mainly for characteriz­
ation of the acyclic systems. A number of interrelations between the topological 
indices will be presented. 
Rouvray's index7, R (G), is equal to the sum of all elements of the distance 
matrix, 

R (G) = :k Dii (G) 
(i,j) 

(13) 

Hence, (taking into account eq. (1)) the Rouvray index is connected with the 
Wiener number by the expression, 

R(G) = 2W(G) 

Index M1 (G) is ordinarily obtained from the relation8 , 

N 

M 1 (G) = :k D{ 
j ~ l 

while the Randie connectivity index9, XR (G) from a similar relation, 

XR (G) = k (Di DT'i' 
(i , j) 

(14) 

(15) 

(16) 

Di, Di denote the degrees (valencies)5 of the vertices in the graph G, while i, j 
denote adjacent vertices. 

However, the above eqs. (15) and (16) can be simplified for monocycles. 
Monocycles are represented by connected graphs in which all vertices have 
valencies 2. 

,(\ 
\. . ·· .......... _____ ........ · 

Therefore, 

Hence, eqs. (15) and (16) become, respectively, 

M
1 

(cycle) = 4 N 

XR (cycle) = 0.5 N 

(17) 

(18) 

(l!l) 

In addition, because of identity (17) it follows that for this class of 
structures indices M1 (G) and M 2 (G) are identical, 

M
1 

(cycle) = M
2 

(cycle) 

M2 (G) being defined8 as follows, 

M~ (G) = :k Di Di 
(i , j) 

(20) 

(21) 

Platt10 proposed an index, F (G), resulting from considering the first 
neighbour; for each edge the number of adjacent edges is calculated and then 
these numbers are summed for all the edges to give F (G). Therefore, F (G) 
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represents the first neighbours sum. Platt has used his index only for paraf­
fins . Here his index is first extended to cyclic systems. For the case of mono­
cyclic structures a simple formula for F (G) is valid, 

F (cycle) = 2 N (22) 

The Platt index F (G) is also related in a simple way to the Gordon and 
Scantlebury index11 of the graph, S (G). The index S (G) is equal to the number 
of distinct ways in which a C, acyclic fragment may be embedded on the 
skeleton of a given molecule. It can be shown12 that the S (G) index is equal 
to half the value of F (G) , 

1 
S(G) = 2 F(G) 

and consequently for monocycles to a number of atoms within the cycle, 

S (cycle)= N 

(23) 

(24) 

A total interrelation can be thus written for the above topological indices as 
follows, 

N = + M 1 (G) = + M 2 (G) = + F (G) = S (G) = 2 XR (G) (25) 

Since all these indices depend linearly on the number of carbon atoms within 
the ring they could not provide a basis for the deduction of the rule 1, i. e. 
these indices do not reflect the difference in the properties of odd- and even­
-membered cycloalkanes. 

Hosoya's index13 Z (G) is calculated by means of the expression, 

Z (G) = L p (G ; k) (26) 
k= O 

where p (G; k) is the number of ways in. which k edges may be selected in 
such a manner that two of them are never connected, whereas m is the 
maximum number of k for G. This topological index has already proved 'its 
applicability to cyclic systems by providing useful correlations with their 
molecular properties. One may assume on the basis of the results in Table I 
that the Hosoya index, after a convenient normalization, could reflect the 
different molecular properties of odd- and even-membered cycloalkanes. Ho­
wever, the simplest way of normalization by dividing by the number of carbon 
atoms failed . On the other han:d the data from Table II show that the 
cyclization is accompanied with a regular 'increase in the Hosoya number, i.e. 
the rule 2 could be also derived using this topological index. 

Statistical analysis of the distance matrix on the basis of information 
theory14 , taking into account that the distance matrix of a graph is a sym­
metric matrix with the consequence that its upper triangle preserves all the 
information about the corresponding system, leads to the relation for the 
topological index1 called the information on the distances in the graph G, 
Io (G), 

N (N-1) N (N-1) 
/

0 
(G) = log2 

2 2 

n 

~ ki log2 ki 
j = l 

(27) 
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TABLE II 

Cycle" N 11 wcycl. (G)" /1 Ifj'cl. (G) -11 zcycl. 

3 1 2.58 
2 4 2 3.24 
3 5 5 8.46 
4 6 8 9.40 
5 7 14 17.08 
6 8 20 18.47 

" Numbers correspond to the cyclic graphs given in Figure 1. 

!J .6. X cyc l lzation = X elm.In - Xcyc lc 

1 
2 
3 
5 
7 
9 

(G) -11 s~§i1. 

7.7 
10.69 
13.40 
21.55 
20.42 
23.85 

where n is the number o'f different sets of matrix elements and N (N - l) is the 
2 ' 

total number of upper off-diagonal elements in D (G). ki denotes the number 
of times the distance di appears in the off-diagonal triangular submatrix of th0 
distance matri:is: D (G). The logarithm is taken at basis 2 for measuring the 
information content in bits. 

Eq. (27) can be normalized by dividing Io (G) with N (N
2
- l) . The index 

thus 'Obtained represent·s the mean value of the information on distances in 
G, Io (G), 

(28) 

The calculated values of the topological and information indices of mono­
cycles are given in Table I together with some properties of gaseous cyclo­
alkanes10. 

The change in the Wiener number, information index, and Hosoya index, 
upon the process o.f cyclization, ~ Xcyclization = X (chain) - X (cycle), and the 
change in the entropy of the same process are given in Table II . Values for 
W (chain)16 are taken from ref. 1. The positive values of ~H0 

298 reflect the ring 
strain in 3- and 4-membered rings. 

Several interesting points may be learned from the Tables. First, the 
inspection of Tables reveals that the two rules introduced for monocycles are 
reflected well in the listed molecular properties thus indicating that these 
properties depend to a certain extent on the topological nature of the mo- . 
lecular skeleton. Sec,ondly, the Wiener number, the information index, and 
the Hosoya number are thus shown to be sensitive to the change in the ring 
size. Thirdly, almost all the other investigated indices depend solely on the 
tot:al number of atoms within the cycle and cannot result in supporting rule 1. 
Hence, they are less applicable to the cyclic structures than the Wiener 
number, the information and Hos·oya indices, respectively. However, among 
these three quantities the information indices, as seen from Tables I and II, 
reflect the two topological rules on monocyclic systems in a more convincing 
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way than the other two indices. Therefore, the information indices might be 
very suitable for structural studies and correlations with a variety of mole­
cular properties17,18. 
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SAZETAK 

0 karakterizaciji monociklickih struktura 

D. Bonchev, Ov. Mekenyan, J. V. Knop, i N. Trinajstic 

Zbroj topoloskih udaljenosti u molekulskom grafu, nazivan Wienerovim brojem, 
upotrijebljen je za karakterizaciju monociklickih struktura. Razliciti matematicki 
modeli koji se temelje na matrici susjedstva ili na matrici udaljenosti dane strukture, 
ranije upotrebljavani za izucavanje grananja molekule, primijenjeni su takoder na 
monociklicke sustave, s ciljem da se ispitaju mogu li se upotrijebiti za karakterizacije 
prstenastih molekula. 

VISA SKOLA ZA KEMIJSKU TEHNOLOGIJU, 
BURGAS I SVEUCILISTE U DDSSELDORFU, 

DDSSELDORF 
Prispje lo 25. svibnja 1979. 




