CCA-1098

YU ISSN 0011-1643 541.61:547.82:547.52 Original Scientific Paper

Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode^a

L. Klasinc^b und I. Novak

»Ruđer Bošković« Institut, 41001 Zagreb, Kroatien, Jugoslawien

M. Scholz und G. Kluge

Sektion Chemie der Karl-Marx-Universität Leipzig, DDR-701

Received November 23, 1977

Es werden die He I und He II Photoelektronenspektren (PE) des Benzols, Toluols, Chlorbenzols, Pyridins und der 3 isomeren Picoline und Chlorpyridine vorgestellt und auf der Grundlage von Berechnungen mit einem modifizierten CNDO-Verfahren diskutiert. Aus der experimentell und theoretisch relativ gesicherten Zuordnung des Benzols und des Pyridins lassen sich innerhalb der verwendeten MO-Methode für die berechneten Orbitalenergien ϵ_i Korekturfaktoren ermitteln, die nach bestimmten Symmetrieeigenschaften klassifiziert werden können.

Mittels dieser Größen werden die PE-Spektren der substituierten Benzole und Pyridine zugeordnet.

EINLEITUNG

Die Photoelektronenspektroskopie (PES) stellt heute für den theoretischen Chemiker ein wertvolles experimentelles Mittel zur Erfassung der elektronischen Struktur der Moleküle dar. Eine enge Verbindung zur Quantenchemie ermöglicht, die elektronischen Energiezustände in Molekül auch relativ vollständig zu erfassen und zu interpretieren.

Die direkte Korrelation der berechneten Orbitalenergien ist in jedem LCAO-MO-Verfahren wegen der schwer abzuschätzenden Fehler, die bei Annahme von Koopmans Theorem¹ entstehen, problematisch².

Die Berechnung der Ionisierungsenergien als Differenz der Gesamtenergien zwischen Molekül und Ion bereitet gegenwärtig noch beträchtliche Schwierigkeiten³⁻⁴ und ist zusätzlich mit einem außerordentlich hohem Zeit- und Kostenaufwand verbunden.

Eine wesentliche Alternative für die direkte Berechnung der Ionisierungsenergien bieten einige Ansätze auf der Basis von Vielteilchenstörungstheorien⁵⁻⁹. Selbst im genäherten Formalismus sind jedoch Verfahren dieser Art bereits mit einem beträchtlichen Aufwand verbunden und daher für größere Moleküle und

^a XVI. Mitteilung: Über MO-Berechnungen an Heterocyclen. XV. Mitt.¹⁶

 $^{^{\}rm b}$ auch an der Naturwissenschaftlich-mathematischen Fakultät der Universität Zagreb, 41000 Zagreb.

Routineuntersuchungen z. Z. noch ungeeignet. Einer relativ unkomplizierten Verfahrensweise, der wir uns in der vorliegenden Arbeit zugewandt haben, ist die Annahme zugrunde gelegt, daß eine Korrektur der Orbitalenergien bis zu einem gewissen Grade über die Auswertung von Symmetrieeigenschaften der Wellenfunktion für die zugehörigen Eigenwerte nach Justierung erfolgen kann. Dieses Vorgehen entspricht einem bereits von Almlöf et al.¹⁰ an der Reihe einiger Azabenzole beschriebenen Verfahren. Aus diesem Grunde wurde auch die etwas unkonventionelle Bezeichnung für $D_{\infty h}$ von Almlöf et al.¹⁰ hier übernommen.

EXPERIMENTELLE METHODEN UND DETAILS ZUR BERECHNUNG

Die Photoelektronenspektren des Chlorbenzols, Toluols, Pyridins sowie der isomeren Picoline und Chlorpyridine wurden sowohl mit He I- als auch mit He II-Anregung an einem Vacuum Generator UV-G3 Spektrometer vermessen¹¹. Die Verbindungen waren von kommerzieller Herkunft und wurden vor der Messung durch Destillation gereinigt. Alle He I-Spektren wurden bei niedriger (ca. 30 meV) und hoher (15 meV) Auflösung aufgenommen und durch Zugabe von Argon und Xenon zum Probenstrom in situ geeicht. Die vertikalen Ionisierungsenergien sind im He I-Bereich auf \pm 0.02 eV und im He II-Bereich auf \pm 0.05 eV genau*

Die Berechnung der Orbitalenergien wurde mit einem modifizierten CNDO-Verfahren in der Parametrisierung von Sichel, Whitehead und Wratten¹²⁻¹³ (CNDO/SWW--Version¹⁴) durchgeführt. Diese Parametrisierung erwies sich als günstig sowohl für die Berechnung von Elektronenspektren¹⁴, Dipolmomenten¹⁵ und lieferte auch bei der Berechnung der Orbitalenergien organischer Heteroverbindungen im Vergleich zu anderen semiempirischen und ab initio-Verfahren gute Ergebnisse¹⁶⁻¹⁷.

Für den Benzol- und den Pyridingrundkörper wurden die experimentellen Geometrien¹⁸ verwendet. Für die entsprechenden Substituenten gelten folgende Geometriedaten: $R(C-CH_3) = 1,54$ Å, R(C-H in $-CH_3) = 1,09$ Å, R(C-CI) = 1,706 Å.**

Die Justierung der Korrekturfaktoren für die einzelnen Orbitalenergien erfolgte an den experimentellen Photoelektronenspektren des Benzols und des Pyridins, wobei die Zuordnung nach Berechnungen von Niessen et al.¹⁹⁻²⁰ als richtig vorausgesetzt wurden.

ERGEBNISSE UND DISKUSSION

Die Ergebnisse an den substituierten Benzolen und Pyridinen werden in den Tabellen I—III und den Abbildungen 1—4 vorgestellt. Für alle Moleküle wurde analog¹⁰ eine Pseudo- $D_{\infty h}$ -Symmetrie angenommen, ferner für die *meta*und *ortho*-substituierten Moleküle aus Korrelationsgründen eine Pseudo- C_{2v} --Symmetrie. Die Tabellen I und II enthalten zunächst die Orbitalenergien der berechneten Moleküle nach der CNDO/SWW-Methode. Auf zwei wesentliche Fehler, die in der Orbitalsequenz des Benzols und des Pyridins im Vergleich zu ab initio-Berechnungen^{19–20} auftreten, sei zu Beginn hingewiesen.

1. Das $1F_{u}$ '-Orbital wird im Vergleich zu den anderen σ -Orbitalen energetisch zu hoch berechnet.

Aus Abbildung 1 wird ersichtlich, daß es sich um ein MO mit 3 senkrechten Knotenflächen, die durch die Atomzentren im Molekül verlaufen, handelt.

2. Das energetisch am tiefsten liegende π -Orbital (1S_u) wird in der Relation zu den σ -Orbitalen zu stabil berechnet. Eine Verbesserung der Reihenfolge kann durch einen σ/π -Wichtungsfaktor für das Überlappungsintegral analog der CNDO-Version von Del Bene und Jaffe²¹ erreicht werden. Für das Pyrrol

^{* 1} eV = 1,608 19 \times 10⁻¹⁹ J

^{** 1} Å = 10^{-10} m

TABELLE I

Orbitalenergien der Benzolderivate

Symm.	Korr.	Benzol	CH3	Cl	
σ-Orb.					
2Dg ''	0,865	12,78	11,97	12,44	
2Dg '	0,925	12,78	12,65	11,98	σcl
				13,52	
2Pu''	0,905	16,64	15,48	15,61	
2Pu '	0,870	16,64	16,62	16,90	
lFu'	0,970 0,860	15,57	15,09 <i>C-CH</i> 3 antib. 18,19 <i>C-CH3 bindend</i>	16,18	
lFu''	0,785	19,89	18,91	18,87	
2Sg	0,785	22,30	21,47	21,37	
LDg''	0,785	24,71	23,75	23,54 25,82	σcı
.Dg'	0,785	24,71	24,86	25,04	0.
.Pu''	0,785	29,96	$28,18$ $C-CH_3 \text{ antib.}$ $31,84$ $C-CH_3 \text{ bindend}$	30,10	
lPu'	0,785	29,96	29,98	30,26	
Sg	0,785	34,88	. 34,99	35,07	
-Orb.					
Pg''	0,865	11,11	10,87	10,70	
33-1-1		et		13,38	^π Cl
Pg'	0,865	11,11	11,10	11,44	
Su	0,800	15,89	15,61 <i>C-CH₃ antib.</i> 18,45	16,54	
			C-CH, bindend		

L. KLASINC ET AL.

TABELLE II

Orbitalenenergien der Pyridinderivate

Symm.	Korr.	Pyridin	4-CH3	3-сн ₃	2-сн ₃	4-C1	3-C1	2-C1
σ-Orb.		-						
2Dg′′	0,865	11,27	10,97	11,08	11,01	11,38	11,26	11,2]
2Dg ′	0,925	13,06	12,84	12,35	σ _N 12,41	12,09 (^o c 13,96	12,32 1 , C-Cl an 13,30	12,55 tib.) 13,0
2Pu''	0.905	15,59	14,04	15,48	15,02	14,33	15,90	15,29
2Pu'	0,870	16,47	16,42	15,42	16,00	16,72	15,60	16,19
lFu'	0,970 0,860	16,28	15,80 (15,83 antib. 18,22 binden	15,52) 18,34 d)	16.78	16,82	16,85
lFu''	0,785	19,69	19,13	18,36	18,83	19,05	18,25	18,78
2Sg	0,785	21,92	20,19	21,65	20,92	20,22	21,74	20,90
1Dg'	0,785	24,81	24,92	23,65	23,64	25,13	25,38	25,32
`1Dg ''	0,785	25,18	24,26	25,24	25,15	23,94 (23,16 antib. 25,99 bindend, σ	23,35) 26,16 c1)
lPu'	0,785	29,98	29,98	28,20	28,51	30,27	30,15	30,15
lPu''	0,785	30,78	28,80 (<i>c-cH</i> ₃ 32,32 (<i>c-cH</i> ₃	30,52 antib. 32,20 binden	30,72) 31,85 d)	30,86	31,03	31,07
lSg	0,785	35,70	35,70	35,74	35,72	35,91	35 <i>†</i> 93	35,88
π-Orb. lPg'	0,865	11,15	11,12	10,94	10,95	11,48	11,94	12,02
lPg''	0,865	11,75	11,46	11,67	11,69	11,18 (c-cl 13,74 (c-cl b	10,97 апті Б. 13,58 indend, т _с	10,86) 13,41)
lSu.	0,800	16,36	16,00 (15,98 antib. 18,54 binden	15,90) 18,53 d.)	16,85	16,88	16,90

TABELLE III

Vertikale Ionisierungsenergien und Zuordnung nach der korrigierten Orbitalsequenz (in Klammern: Bandenlage experimentell nicht erkennbar bzw. unsicher)

Symm.	Benzol	Cl	CH ₃	Pyridin	<i>р</i> -СН ₃	<i>m</i> -CH ₃	<i>о</i> -СН ₃	p-C1	m-Cl	0-C1
σ−Orb.										
2Dg''	11,8	12,26	11,45	9,66	9,41	9,49	9,34	10,01	9,89	10,10
2Dg'	11,8	11,31 12,98	11,86	12,44	12,28	12,28	12,34	11,71 13,07	11,79 13,13	11,48 13,04
2Pu''	14,1	14,41	13,29	13,86	13,29	13,94	13,19	(13,3)	14,88	13,98
2Pu'	14,1	14,85	13,90	14,56	14,37	13,59	13,96	14,89	14,24	14,78
lFu''	15,6	15,53	15,12	15,59	(14,7)	13,94	14,23	15,93	15,82	15,82
lFu'	14,9	15,53	14,08	15,77	15,46	15,15	15,24 15,93	16,26	16,41	16,39
2Sg	16,9	17,18	16,49	17,19	16,55	16,76	16,69	16,76	16,41	16,39
1Dg''	19,1	19,1 [*] (19,7 [*])	18,6*	19,7*	19,7*	20,3*	20,2*	17,21 20,3 [*]	17,25 20,7 [*]	17,32 20,6 [*]
1Dg'	19,1	19,7*	19,1*	19,7*	20,2*	19,5*	19,5*	19,8*	20,1*	20,0*
lPu''	22,7	22,5*	21,6*	23,6*	22,5 [*]	23,8*	23,9*	(23,6*)	(23,8*)	(23,1*)
1Pu'	22,7	23,2*	22,8*	23,6*	23,1*	22,3*	2 2, 3 [*]	23,6*	23,8*	23,1*
lSg	25,9	-	n <u>1</u> 440	1.2	in den re	nisi <u>r</u> sm	1198 - C.1	<u>, 1</u> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-	-
π-Orb.										
1Pg'	9,3	9,64	9,33	9,51	9,61	9,29	9,18	10,21	10,53	10,76
lPg''	9,3	9,07 11,67	9,00	10,48	10,06	10,19	10,25	9,86 12,52	9,54 12,41	9,58 12,08
lSu	12,2	13,21	12,01 (14,7)	13,19	12,86 (14,7)	12,80 15,15	12,79 (14,7)	13,88	13,75	13,98

* He II Spektren

Abbildung 1. Symmetrieigenschaften der Orbitalen.

sind die auf diesem Wege erreichten Änderungen in Ref. 16 demonstriert. Eingehende Testrechnungen an verschiedenen Verbindungsklassen (Olefine, Aromaten, Heteroaromaten, konjugierte Karbonylverbindungen u. a.) zeigten jedoch keinen einheitlich zu wählenden Wichtungsfaktor für das in lokalen Koordinaten berechnete $S^{\pi}_{\mu\nu}$ -Überlappungsintegral²², so daß in der vorliegenden Arbeit alle Überlappungsintegrale einheitlich behandelt wurden. Beide genannten Fehler, die die Orbitalsequenz beeinflussen, wurden durch Berücksichtigung bei der Justierung der Korrekturfaktoren erfaßt.

Vorangestellt muß außerdem erwähnt werden, daß die Frage der Zuordnung des lone pairs im Pyridin aus den bisher vorliegenden Rechnungen nicht eindeutig entschieden werden kann, so daß auch die experimentell ermittelte Sequenz σ (N), $\pi_3 \pi_2$, die insbesondere von Heilbronner et al.²³ im Gegensatz zu von Niessen et al.²⁰ vertreten wird, nicht ausgeschlossen werden kann. Das würde aber unserer Rechnung zufolge bei entsprechender Justierung auch für alle 3 Picoline eine Reihenfolge von σ (N), π_3 , π_2 erwarten lassen, wogegen in einer anderen Arbeit von Heilbronner et al.²⁴ für das 2-Picolin, in Übereinstimmung mit unserer Ansicht, die Zuordnung π_3 , σ (N), π_2 getroffen wird.

Bei den methylsubstituierten Molekülen geschieht, wie aus den Tabellen I—II ersichtlich wird, eine Aufspaltung des $1F_u'\sigma$, des $1S_u\pi$ und des $1P_u''\sigma$ in je ein MO mit einer C—CH₃-antibindenden und einer C—CH₃ bindenden Anord-

Abbildung 2. Experimentelle He I und He II (ab 18 eV) Photoelektronenspektren der untersuchten Moleküle, darunter als Strichspektrum die entsprechenden korrigierten Orbitalenergien.

Abbildung 3. Korrelationsdiagramm für Benzol, Toluol und Chlorbenzol. Ordinate: Vertikale Ionisierungsenergien aus den Photoelektronenspektren. Unaufgelöste Systeme sind gestrichelt gekennzeichnet in Richtung der zugehörigen Maxima.

nung der AO's, wobei eine Übertragung des Korrekturfaktors auf das neue $C-CH_3$ -bindende $1F_u'$ -Orbital aus der bereits genannten Sonderstellung dieses MO's nicht so ohne weiteres möglich ist. Die Zuordnung des energetisch stabileren $1F_u'$ -MO's zum Experiment ist deshalb nicht sicher, insbesondere, was eine mögliche Vertauschung mit dem $2S_g$ betrifft.

Die chlorsubstituierten Moleküle sind gekennzeichnet durch die Aufspaltung des $1Pg''\pi$ -, des $2Dg'\sigma$ - und des $1Dg''\sigma$ -Orbitals. Die neu hinzukommenden MO's werden ausschließlich durch einen relativ starken (ca. 60% der Elektronendichte beim $1Pg''\pi$ und $2Dg'\sigma$) bzw. schwachen lone pair Charakter (ca. 45% Elektronendichte beim $1Dg''\sigma$) am Chlor bestimmt.

Abbildung 2 zeigt die experimentellen Photoelektronenspektren und als Strichspektrum darunter die entsprechenden korrigierten Orbitalenergien. Die relativ gute Übereinstimmung zwischen Experiment und Rechnung ermöglicht eine Zuordnung für alle gemessenen Valenzionisierungsenergien der untersuchten substituierten Benzol- und Pyridinverbindungen zu treffen (siehe dazu auch Tabelle III und Abbildung 3 und 4).

Beim Toluol sollte die Sequenz $b_1\pi$, $a_2\pi$, $a_4\sigma$, $b_5\sigma$, $b_1\pi$ der ersten Ionisierungsenergien relativ sicher sein. Nicht restlos geklärt, und das trifft auf alle be-

Abbildung 4. Korrelationsdiagramm für Methyl- und Chlor-pyridine. Ordinate: Vertikale Ionisierungsenergien aus den Photoelektronenspektren. Unaufgelöste Systeme sind gestrichelt gekennzeichnet in Richtung der zugehörigen Maxima.

trachteten substituierten Moleküle zu, ist die Zuordnung einiger Ionisierungsenergien im Bereich von ca. 13—17 eV, d. h. eine von der hier vorgeschlagenen abweichende Reihenfolge der 2Pu und 1Fu-Rassen ist untereinander möglich. Die Orbitalsequenz beim Chlorbenzol b₁π, a₂π, b₂σ (Cl), b₁π (Cl), {a₁σ, b₂σ} ist im Spektrum durch die charakteristische Gestalt der π- bzw. lone pair-Bandensysteme leicht erkennbar. Auch die weitere Reihenfolge scheint durch den Vergleich mit den PE-Spektren von Brom-²⁵ und Jodbenzolen²⁶ weitgehend gesichert zu sein.

Die Zuordnung der Picoline läßt die Orbitalsequenz $a_2\pi$, $a_1\sigma$ (N), $b_1\pi$, $b_2\sigma$, $b_1\pi$ für die ersten 5 IP's mit großer Wahrscheinlichkeit erwarten. Beim 4-Picolin berechnet sich eine Vertauschung des $a_2\pi$ mit dem Stickstoff-lone pair. Die Sequenz stimmt mit der von Heilbronner et al.²⁴ getroffenen Zuordnung überein. Übertrieben stark angehoben wird nach der Rechnung offenbar das 2Pu" beim 4-Picolin. Wir halten trotzdem eine Vertauschung mit dem 1Su π aufgrund der relativ konstanten Lage dieses π -Orbitals in allen 3 Picolinen für wenig wahrscheinlich. Mit Vorsicht sind, wie schon erwähnt, die Zuordnungen

L. KLASINC ET AL.

1Su, 1Fu", 1Fu' unter den Bandensystemen mit den Maxima bei 14,37 eV bzw. 15.46 eV zu betrachten.

Bei den chlorsubstituierten Pyridinen sollte es an der Reihenfolge $b_{1\pi}$, $a_{1\sigma}$ (N), $a_{\sigma\pi}$, b_{σ} (Cl), $b_{1\pi}$ (Cl), $b_{\sigma\sigma}$ kaum Zweifel geben. Unsicher dürfte lediglich die Zuordnung der letzten 3 Ionisationsbanden des He-I-Spektrums sein.

Das a_{10} (N) verliert fast völlig den Charakter eines lone pairs mit ca. $40^{0}/_{0}$ Elektronendichte am Pyridinstickstoff, wobei die Delokalisierung in der ortho--Stellung des Chlors am größten ist.

ZUSAMMENFASSUNG

Mit Hilfe einer einfachen Symmetrieapproximation gelingt es in beschränktem Umfang aus berechneten Orbitalenergien Aussagen über die Zuordnung der PES an ähnlichen molekularen Strukturen nach vorheriger Justierung an den bekannten Photoelektronenspektren der Stammverbindungen zu treffen. Damit wird eine Systematisierung und Zuordnung der Photoelektronenspektren für eine Reihe einfacher substituierter Moleküle ohne erheblichen Aufwand im Rahmen semiempirischer Näherungsmethoden möglich, ohne die recht unsichere Korrelation in der Koopmans-näherung gebrauchen zu müssen. Selbstverständlich ist dieses Vorgehen aufgrund seiner starken Spezifik nur auf wenige Molekülsysteme bzw. Molekülreihen beschränkt und keineswegs als Alternative für bereits zu Beginn erwähnte Ansätze zur generellen Lösung dieses Problems gedacht.

Unterstrichen werden sollte jedoch die prinzipielle Bedeutung der MO--Symmetrie für die Abschätzung der nichtsystematischen Abweichungen der Orbitalenergien von den gemessenen Ionisierungsenergien.

LITERATUR

- 1. T. Koopmans, Physica 1 (1934) 104.
- 2. B. Kellerer, L. S. Cederbaum und G. Hohlneicher, J. Electron Spectr. Rel. Phen. 3 (1974) 107.
- 3. W. Meyer, J. Chem. Phys. 58 (1973) 1017.
- 4. P. Siegbahn, Chem. Phys. Lett. 8 (1971) 245.
- 5. L. S. Cederbaum, Theor. Chim. Acta 31 (1973) 239.
- 6. L. S. Cederbaum, J. Phys. **B8** (1975) 290. 7. S. Biskupic, L. Valko und V. Kvasnicka, Theor. Chim. Acta **38** (1975) 149.
- 8. D. P. Chong, F. G. Herring und D. Mc Williams, J. Chem. Phys 61 (1974) 78.
- 9. D. P. Chong, F. G. Herring und D. Mc Williams, J. Chem. Phys. 61 (1974) 958.
- 10. J. Almlöf, B. Roos, U. Wahlgren und H. Johansen, J. Electron Spectr. Rel. Phen. 2 (1973) 51.
- 11. L. Klasinc, B. Kovač und B. Ruščić, Kem. Ind. (Zagreb) 23 (1974) 569.
- 12. J. M. Sichel und M. A. Whitehead, Theor. Chim. Acta (Berl.) 11 (1968) 220, 239, 254, 263; 7 (1967) 32.

- 13. R. J. Wratten, Chem. Phys. Lett. 1 (1967) 667.
 14. U. Ziegler, H. J. Köhler und M. Scholz, Z. Chem. 15 (1975) 109.
 15. M. Scholz, N. Fuhrmann und K.-H. Pokrandt, Z. Chem. 15 (1975) 401.
 16. N. Fuhrmann, K.-H. Pokrandt und M. Scholz, Z. Chem. 16 (1976) 417.
 17. M. Scholz und G. Kluge, in Vorbereitung.
- 18. L. E. Sutton Tables of Interatomic Distances and Configurations in Molecules
- and Ions, Spec. Publ. No. 11 (London 1958) und Spec. Publ. No. 18 (London 1965). 19. W. von Niessen, L. S. Cederbaum und W. P. Kraemer, J. Chem. Phys. 65 (1976) 1378.
- 20. W. von Niessen, G. H. F. Diercksen und L. S. Cederbaum, Chem. Phys. 10 (1975) 345.

- 21. J. Del Bene und H. H. Jaffe, J. Chem. Phys. 48 (1968) 1807, 4050; 49 (1968) 1221; 50 (1969) 563, 1126.
- 22. M. Scholz und G. Kluge, unveröffentlichte Resultate.
- 23. C. Batich, E. Heilbronner, V. Hornung, A. J. Ashe III, D. T. Clark, U. T. Cobley, D. Kilcast und I. Scanlan, J. Amer. Chem. Soc. 95 (1973) 928.
- 24. E. Heilbronner, V. Hornung, F. H. Pinkerton und S. F. Thames, Helv. Chim. Acta 55 (1972) 289.
- 25. T. Cvitaš und L. Klasinc, Croat. Chem. Acta 50 (1977) 291.
- 26. T. Cvitaš, H. Güsten und L. Klasinc, J. Chem. Soc. Perkin II, (1977) 962.

SAŽETAK

Fotoelektronski spektri supstituiranih piridina i benzena, i njihova interpretacija pomoću CNDO/SWW metode

L. Klasinc, I. Novak, M. Scholz i G. Kluge

Snimljeni su He I i He II fotoelektronski spektri benzena, toluena, klorbenzena, te triju izomernih pikolina i klorpiridina. Spektri se diskutiraju na temelju rezultata računa dobivenih jednom modificiranom CNDO metodom. Iz eksperimentalno i teorijski potkrepljene asignacije spektara benzena i piridina moguće je unutar te metode dobiti korekcijske faktore za računate orbitalne energije ε_i , te ih klasificirati prema određenim simetrijskim svojstvima. Pomoću tih veličina dana je asignacija spektara supstituiranih benzena i piridina.

INSTITUT »RUĐER BOŠKOVIĆ« 41001 ZAGREB i

Prispjelo 23. studenog 1977.

SEKTION CHEMIE DER KARL-MARX UNIVERSITÄT DDR 701 LEIPZIG