
32
Review DOI: 10.2478/aiht-2018-69-3051

 
The efficiency of lactic acid bacteria against pathogenic 
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Mycotoxins are produced by some fungal species of the genera Aspergillus, Penicillium, and Fusarium and are common 
contaminants of a wide range of food commodities. Numerous strategies are used to minimise fungal growth and mycotoxin 
contamination throughout the food chain. This review addresses the use of lactic acid bacteria, which can inhibit fungal 
growth and participate in mycotoxin degradation and/or removal from contaminated food. Being beneficial for human 
and animal health, lactic acid bacteria have established themselves as an excellent solution to the problem of mycotoxin 
contamination, yet in practice their application in removing mycotoxins remains a challenge to be addressed by future 
research.
KEY WORDS: Aspergillus; biological methods; Fusarium; inhibition; LAB; Penicillium

Mycotoxin contamination of feed and food is a 
significant issue worldwide. Mycotoxins are a large group 
of secondary metabolites produced by the Aspergillus, 
Penicillium, and Fusarium genera, and pose serious risks 
for human and animal health (1-4). Fungal growth and 
mycotoxin production may occur in the field and/or during 

storage, if the temperature and humidity are favourable 
(4-8).

The main sources of mycotoxins are cereal grains 
(including wheat, barley, oats, corn, and rice) and their 
products, nuts, almonds, fruits, coffee, spices, and legumes 
(5, 6, 9-11) (Table 1).
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Table 1 The main sources of mycotoxins

Mycotoxin Species of fungi Main source References

Aflatoxins Aspergillus flavus,
Aspergillus parasiticus

peanuts, oilseed cereals,
cow’s milk, sorghum, spices (12-18)

Ochratoxins
Aspergillus ochraceus,

A. sulphureus,
Penicillum verucosum

cereal grain storage, feed,
grapes, wine, coffee (19-23)

Trichothecenes

Fusarium poae,
F. sporotrichioides,

F. acuminatum,
F. equiseti

wheat, barley, maize, oat, buckwheat, 
sorghum, feed (1, 24-34)

Zearalenone
Fusarium graminearum,

F. culmorum,  
F. cerealis

maize, wheat, barley, oat, sorghum, rice, 
pea, feed (1, 26, 35-40)

Fumonisins Fusarium verticillioides,
F. proliferatum

maize and other cereals and their 
products, asparagus (41-44)

Patulin Penicillum expansum,
P. cyclopium apples, pears, apple juice (45-47)
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As they enter the food chain, mycotoxins can also 
contaminate eggs, milk, and meat and accumulate in 
different organs or tissues (9, 11, 48).

Long-term exposure to mycotoxins has also been 
associated with carcinogenic, mutagenic, teratogenic, 
oestrogenic, haemorrhagic, immunotoxic, nephrotoxic, 
hepatotoxic, neurotoxic, and immunosuppressive adverse 
health effects (48-51).

Because of these risks, the EU has set down limits for 
several important mycotoxins in food and feed: aflatoxins 
(AFs), ochratoxin A (OTA), fumonisins (FBs), zearalenone 
(ZEA), trichothecenes [principally deoxynivalenol (DON), 
T-2, and HT-2 toxins], and patulin (PAT) (9).

A number of studies have investigated the options of 
eliminating these compounds (52-54), and arrived at the 
conclusion that the best way to solve the problem is to 
prevent mycotoxin formation. To do that, the following 
rules need to be observed: (i) plant materials should be 
stored in a cold and dry environment, (ii) plants should be 
harvested without delay, (iii) crops should be rotated in the 
field to prevent adaptation of pathogenic microorganisms 
to a specific monoculture, and (iv) agricultural crops should 
be handled carefully to prevent mechanical damage, which 
renders them vulnerable to contamination (52, 53, 55).

There where prevention fails, chemical, physical, or 
biological methods of detoxification step in (56-58). Some 
of these methods, such as the use of ozone (59-62), alkaline 
hydrogen peroxide (63), or gamma irradiation (64, 65) have 
more promising results than ammoniation (66) or heat 
treatment (67-69).

However, contamination with several mycotoxins at the 
same time lessens the efficiency of detoxification, as some 
mycotoxins are less sensitive to the method than others.

Recently, a new approach to the removal of mycotoxins 
emerged, and microorganisms such as propionic 
fermentation bacterium Saccharomyces cerevisiae, and 
lactic acid bacteria (LAB) have come into focus. This article 
reviews the current uses of the latter as promising probiotics 
in mycotoxin removal.

Lactic acid bacteria

Lactic acid bacteria (LAB) are Gram-positive, 
nonsporulating, air and acid tolerant, organotrophic, 
fermentative rods or cocci producing lactic acid. They do 
not use oxygen as an electron acceptor. Not possessing 
catalase, they synthesise superoxide dismutase, removing 
reactive oxygen species. All the lactic acid bacteria are 
anaerobic, while some of them tolerate low levels of oxygen 
in the environment. Currently, only a few are considered to 
be probiotic, and, together with prebiotics, these have been 
used in nutrition and treatment of people and farm animals, 
such as pigs. When homofermentative, LAB ferment 85 % 
of glucose into lactic acid. In heterofermentation (70) the 
yield is 50 % plus ethanol and CO2.

There are a variety of industrially important genera, 
including Lactococcus, Enterococcus, Oenococcus, 
Pediococcus, Streptococcus, Leuconostoc, and Lactobacillus 
species (71). Yet, LAB have been used to preserve food and 
beverages since the beginnings of agriculture (72). Different 
strains of LAB have been passed down from generation to 
generation through culinary traditions and fermented food. 
Currently, LAB play a significant role in the world food 
production, performing major bioconversions in fermented 
dairy products, vegetables, and meat. They are also essential 
for the production of silage, coffee, wine, cocoa, sourdough, 
and many indigenous fermented foods (73-75). LAB 
improve flavour, texture, and shelf-life of food products 
(76).

LAB inhibit fungal growth

Lactic acid bacteria have the ability to control the 
growth of various fungi. Inhibition of toxigenic fungi has 
been demonstrated many times over (77-81). Generally, 
this antagonistic effect is owed to low-molecular-weight 
compounds produced by the LAB, such as organic acids 
(acetic and lactic acid), hydrogen peroxide, proteinaceous 
compounds, reuterin, hydroxyl fatty acids, and phenolic 
compounds (Table 2). Organic acids can be native to food 
or added to it. They are products of carbohydrate metabolism 
and are safe to use for food preservation. Lactic acid lowers 
pH, which inhibits the growth of various microorganisms 
or even kills susceptible bacteria (89). In heterofermentation, 
LAB can produce acetic acid and trace amounts of propionic 
acid, both of which have a higher content of undissociated 
forms at a given pH of the lactic acid. In addition to their 
effect on the fungus membrane, they also inhibit the 
absorption of amino acids (89). Low pH also increases the 
antifungal activity of various salts of propionic acid (90). 
A particularly interesting component involved in the 
inhibition of fungal growth is reuterin, a compound of 
glycerol fermentation produced by various LAB genera 
under anaerobic conditions (91). Reuterin suppresses the 
activity of ribonuclease, the enzyme involved in the 
biosynthesis of DNA (98). It inhibits the growth of the 
Fusarium and Aspergillus species. Therefore, to enhance 
these effects, simply add glycerol to LAB cultures.

Lactic acid bacteria can produce various types of fatty 
acids that improve the sensory quality of fermented 
products. One such fatty acid, caproic acid, has a strong 
antifungal activity. It may be synergistic with propionic, 
butyric, or valeric acids (92).

The best period of incubation to inhibit the growth of 
toxin-forming fungi is about 48 h and the best temperature 
is from 25 to 30  °C (93). These conditions favour the 
production of organic acids, which in turn, inhibit the 
growth of pathogenic fungi.
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AFG2), while A. flavus is usually found on cereals and 
produces only the B1 and B2 aflatoxins (13, 18) (Table 1). 
AFB1 in dairy mammal feed is strongly associated with 
aflatoxin M1 (AFM1) in milk (104). Other, less common 
species include A. nomius, A. toxicarius, A. tamarii, A. 
pseudotamari, and A. bombycids (15, 140, 141).

Conditions favouring aflatoxin production are humidity 
above 13 % and temperature between 24 and 37 °C (142), 
which are mostly encountered in the countries with 
subtropical and tropical climates (143-145). In recent years, 
aflatoxins in maize have also been reported in southern 
Europe. This is probably due to climate change and adaptive 
abilities of the Aspergillus spp. (146).

Agricultural commodities get contaminated with 
aflatoxigenic fungi before and at the harvest, processing, 
transport, and storage (147), especially peanuts, cereals, 
and their products (148, 149), as well as animal feeds (16, 
150-152).

Motameny et al. (117) investigated the removal of AFB1 
from a gastrointestinal model with L. rhamnosus, L. 
plantarum, and L. acidophilus and found that L. plantarum 
was the most successful (28 %), followed by L. acidophilus 
(22  %) and L. rhamosus (18  %). Elsanhoty et al. (120) 
compared the ability of viable and heat-treated L. 
acidophilus, L. rhamnosus, L. sanfranciscensis, and 
Bifidobacterium angulatum to remove AFBs (AFB1, AFB2, 
AFG1, and AFG2) from PBS liquid medium. Among the 
four tested strains, L. rhamnosus was the most efficient in 
the initial binding of all these aflatoxins and confirmed 
superior efficiency after 4 washes, which suggests that it 
forms the most stable complexes with these aflatoxins.

Hernandez-Mendoza et al. (124) studied the binding of 
AFB1 by Lactobacillus reuteri and L. casei at different pH 
(6, 7.2, and 8) and incubation time (0, 4, and 12 h). Both 
strains showed the highest AFB1-binding capacity at pH 7.2 
after 4 and 12 h of incubation (67.8 and 55.6 % for L. casei 
and 80 and 80 % for L. reuteri, respectively).

Corassin et al. (112) compared the AFB1-binding ability 
of L. delbrueckii spp. bulgaricus, L. rhamnosus, and B. 
lactis in combination with heat-killed S. cerevisiae. This 
combination ensured complete mycotoxin binding (100 %).

Khoury et al. (113) compared the AFM1-binding 
efficiency of L. bulgaricus and S. thermophilus in PBS. L. 

Removal of mycotoxins with the LAB

Numerous studies have demonstrated that many LAB 
species can remove mycotoxins. Removal efficiency ranges 
from small amounts to almost complete removal (94-99). 
The most efficient species are Lactobacillus rhamnosus, L. 
acidophilus, L. plantarum, L. lactis, Streptococcus 
thermophilus, and Bifidobacterium bifidum. Each species 
acts differently and on different mycotoxins. The most 
versatile seems to be L. rhamnosus, which efficiently 
removes several mycotoxins at once (96, 100-103). 
Reduction is even higher at pH  4 (100). Other crucial 
parameters include LAB cell viability and mycotoxin 
concentrations (104). There are several mechanisms of 
removal, but the most efficient is binding to the bacterial 
cells (105). LAB cell surfaces bind various molecules such 
as toxins and metal ions (106, 107). Their cell walls contain 
peptidoglycan matrices, neutral polysaccharides, teichoic 
and lipoteichoic acid, and a protein S layer. However, 
binding is based on the adsorption capacity of mycotoxins 
to the cells and not on enzyme activity. This is where 
peptidoglycan and exopolysaccharides play an important 
role (108). In fact, thermally inactivated LAB exhibit higher 
removal capacity, due to changes on the cell surface. 
Mycotoxin binding is permanent only if the LAB are dead, 
whereas the living bacteria may release some of the 
mycotoxin content with time (109). Bueno et al. (110) 
proposed a mathematical model to illustrate the attachment 
of AFB1 to LAB and S. cerevisiae, taking into account two 
processes: adsorption and desorption. This model shows 
that AFB1 binds to a number of sites in LAB.

Another method of mycotoxin removal is adhesion 
(111). Its efficiency correlates with the bacterial 
concentration, but some of the toxin content is released with 
time and is therefore not permanent.

Table 3 lists the LAB that can remove mycotoxins.

Aflatoxins

This group of compounds is formed mainly by the 
species Aspergillus flavus and A. parasiticus, commonly 
found in soil and in stored agricultural produce (137-139). 
A. parasiticus often contaminates oilseeds and produces 
B1, B2, G1, and G2 aflatoxins (AFB1, AFB2, AFG1, and 
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Table 2 Antifungal compounds produced by LAB
LAB Compounds References
Lactobacillus reuteri Reuterin (82)
L. plantarum Peptids – cyclo (Leu-Pro), cyclo (Phe-Pro) (83)
Pediococcus acidilactici Phenolic compounds (84)
L. reuteri Acetic acid, phenyllactic acid (85)
L. plantarum 3-phenyllactic acid (86)

L. paracasei subsp. paracasei Lactic acid, propionic acid, acetic acid, succinic acid, 
hydroxyphenyllactic acid, 3-phenyllactic acid (86)

L. plantarum 3,6-bis(2-methylpropyl)-2,5-piperazinedion (87)
L. plantarum 2-hydroxy-4 methylpentanoic acid (77)
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Table 3 The ability of lactic acid bacteria to reduction of mycotoxins

Mycotoxins Bacteria Matrices References

Aflatoxin

Lactobacillus bulgaricus
phosphate buffer saline, skim milk;

UHT skim milk;
milk and yogurt

(94)
(112)
(113)

Lactobacillus plantarum

phosphate buffer saline, skim milk;
silage extract medium;
phosphate buffer saline;

ruminant gastrointestinal model;
maize grain;

(94)
(114)

(115, 116)
(117)
(118)

Lactobacillus gasseri phosphate buffer saline, skim milk (94)

Lactobacillus rhamnosus

phosphate buffer saline, skim milk;
UHT skim milk;

silage extract medium;
phosphate buffer saline, dough, baladi bread;

in vitro digestion model;
phosphate buffer saline;

ruminant gastrointestinal model;
MRS broth

(94, 119)
(112)
(114)
(120)
(121)
(122)
(117)
(100)

Lactobacillus casei

phosphate buffer saline;
female rats;
maize grain;

in vitro digestion model;

(115, 123, 124)
(125)
(118)
(121)

Lactobacillus fermentum phosphate buffer saline; (115, 122)

Lactobacillus acidophilus

in vitro digestion model;
ruminant gastrointestinal model;

maize grain;
phosphate buffer saline, skim milk

(121)
(117)
(118)
(119)

Lactobacillus brevis maize grain (118)
Lactobacillus delbruekki maize grain (118)

Lactobacillus reuteri
female rats;

phosphate buffer saline;
phosphate buffer saline, skim milk

(125)
(124)
(119)

Lactobacillus johnsonii phosphate buffer saline;
phosphate buffer saline, skim milk

(124)
(119)

Lactobacillus sanfranciscenis phosphate buffer saline, dough, baladi bread (120)

Lactococcus lactis LAPTg medium;
phosphate buffered saline

(126)
(116)

Streptococcus thermophilus milk and yogurt (113)
Enterococcus avium Phosphate buffer saline, skim milk (94)

Enterococcus faecium LAPTg medium;
phosphate buffer saline

(126)
(127)

Pediococcus pentosaceus phosphate buffer saline, skim milk;
phosphate buffer saline

(94)
(122)

Bifidobacterium lactis phosphate buffer saline, skim milk;
UHT skim milk

(94)
(112)

Bifidobacterium bifidum phosphate buffer saline;
phosphate buffer saline, skim milk

(124)
(119)

Bifidobacterium longum in vitro digestion model (121)
Bifidobacterium angulatum phosphate buffer saline, dough, baladi bread (120)

Ochratoxin A

Leuconostoc mesenteroides MRS agar, PDA agar, coffee meal extract agar (95)
Lactobacillus brevis MRS agar, PDA agar, coffee meal extract agar (95)

Lactobacillus plantarum sodium phosphate buffer;
MRS agar, PDA agar, coffee meal extract agar

(128)
(95)

Lactobacillus helveticus MRS medium (102)
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Mycotoxins Bacteria Matrices References

Ochratoxin A

Lactobacillus bulgaricus
sodium phosphate buffer;

MRS medium;
dried skim milk

(128)
(102)
(129)

Lactobacillus casei yeast medium, MRS broth;
MRS medium

(130)
(102)

Lactobacillus lactis sodium phosphate buffer;
MRS medium

(128)
(102)

Lactobacillus plantarum sourdough
MRS medium

(131)
(102)

Lactobacillus brevis sourdough;
MRS medium

(131)
(102)

Lactobacillus rhamnosus MRS medium (102)
Lactobacillus sanfrancisco sourdough (131)

Lactobacillus sanfransciscensis MRS medium (102)
Lactobacillus sakei yeast medium, MRS broth (130)

Lactobacillus acidophillus sodium phosphate buffer;
MRS medium

(128)
(102)

Oenococcus oeni MLO culture medium (132)
Streptococcus salivarius subsp. 

thermophilus dried skim milk (129)

Streptococcus salivarius yeast medium, MRS broth (130)
Bifidobacterium bifidum dried skim milk (129)
Bifidobacterium longum sodium phosphate buffer (128)
Bifidobacterium animalis sodium phosphate buffer (128)

Fumonisins

Lactobacillus paraplantarum corn infusion (133)
Lactobacillus lactis corn infusion (96)

Lactobacillus bulgaricus corn infusion (96)
Lactobacillus rhamnosus corn infusion (96)

Lactococcus lactis subsp. cremoris corn infusion (133)
Leuconostoc mesenteroides corn infusion (96)
Streptococcus thermophilus corn infusion (133)

Zearalenon

Lactobacillus paracasei phosphate buffer saline, mice (97)

Lactobacillus plantarum phosphate buffer saline, mice;
silage extract medium

(97)
(114)

Lactobacillus rhamnosus phosphate buffer saline (102, 134)
Streptococcus thermophilus ruminal fluid (135)

Trichotecenes

Lactobacillus plantarum MRS broth (98)
Lactobacillus pentosus ultrapure water (104)
Lactobacillus paracasei ultrapure water (104)

Lactobacillus casei MRS broth (98)
Lactobacillus brevis MRS broth (98)
Lactococcus lactis MRS broth (98)

Patulin

Lactobacillus rhamnosus apple juice;
phosphate buffer saline

(103)
(136)

Lactobacillus acidophilus MRS broth (99)
Lactobacillus delbrueckii ssp. 

lactis
phosphate buffer saline;

MRS broth
(136)
(99)

Lactobacillus plantarum MRS broth (99)

Enterococcus faecium apple juice;
phosphate buffer saline

(103)
(127)

Bifidobacterium bifidum phosphate buffer saline (136)
Bifidobacterium animalis phosphate buffer saline (136)
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bulgaricus showed the highest binding efficiency (87.6 %). 
The same species was also used to investigate its AFM1 
binding in yogurt processing over 6 h. Again, L. bulgaricus 
won with 58.5 %, over S. thermophilus which bound 37.7 % 
of AFM1. It was also found that the binding efficiency 
increased with time.

Sezer et al. (116) investigated the efficiency of LAB (L. 
lactis and L. plantarum) and their bacteriocins in removing 
AFB1 from liquid culture. L. plantarum was more efficient 
than L. lactis (46 % vs 27 %, respectively), but efficacy was 
even higher when combined with bacteriocins. When the 
two strains were combined, AFB1 removal reached 81 %.

Zinedine et al. (100) studied LAB efficiency in 
removing AFB1 from the Moroccan sourdough bread. The 
winner was L. rhamnosus with 44.89 % AFB1 removal at 
pH 6.5 and 30 °C.

Ochratoxin A

There are three major OTA-producing species, 
Aspergillus ochraceus, A. carbonarius, and Penicillium 
verrucosum (153, 154). Other species reported to produce 
OTA include A. niger, A. sclerotioniger, A. lacticoffeatus, 
A. foetidus, A. westerdijkiae, A. steynii and A. tubingensis 
(155, 156).

OTA is common in stored cereal grain, starch-rich food 
such as cereals (including wheat, barley, maize, rice, oat, 
and rye), and edible legume seeds (20). It does not attack 
plants during vegetation, save for the grapevines (23) (Table 
1).

A number of studies investigated its removal by LAB 
(95, 102, 128-130, 132). Piotrowska and Żakowska (102) 
reported removal by L. rhamnosus as high as 87.5 %. L. 
acidophilus removed 70.5 %, L. lactis 59.6 %, L. brevis 
56.2 %, L. plantarum 56.2 %, L. sanfranciscensis 52.0 %, 
L. helveticus (31.0 %), L. delbrueckii subsp. bulgaricus 
28.3 %, and L. casei 16.6%. In another study, Piotrowska 
and Żakowska (131) investigated OTA removal from flour. 
L. plantarum was the most efficient (56  % removal), 
followed by L. sanfrancisco (51.0 %). A combination of L. 
plantarum, L. sanfrancisco, L. brevis, and S. cerevisiae, 
however, yielded even higher removal of 68 % after 40 h 
of incubation.

Fuchs et al. (128) examined the reactions and the 
relationship between the amount of added mycotoxins (500 
and 1000 ng) and LAB species in a liquid medium. Even 
though they did not establish a clear relationship, the most 
efficient in removing OTA was L. acidophilus (97  %), 
followed by Bifidobacterium longum (58 %), L. plantarum 
(44 %), L. lactis (34 %), L. casei (31 %), and L. bulgaricus 
(29 %).

Mateo et al. (132) tested three factors to investigate the 
dynamics of OTA removal: Oenococcus oeni (10 strains), 
OTA level in medium (2 and 5 µg L-1), and incubation time 
(0, 5, 10, and 14 days). All ten strains eliminated OTA from 
the medium but the highest reduction was 63 % after 14 

days of incubation with the 124M strain in a medium spiked 
with 2 µg L-1 of OTA and 58 % after 10 days of incubation 
with the 6G strain in a medium spiked with 5 µg L-1 of OTA.

In another experiment Kapetanakou et al. (130) used 
Streptococcus salivarius, Lactobacillus sakei, and L. casei 
to reduce varying amounts of OTA, taking into account pH. 
Reduction increased slightly with the amount of added 
mycotoxins. The highest removal of 20 % was observed 
for the two Lactobacillus species at pH 5. The best result 
for S. salivarius was about 10 % at pH 4.

Fumonisins

Fumonisins have been identified and described 
relatively recently. They were first isolated from the strain 
Fusarium verticillioides (formerly F. moniliforme) in 1988 
in South Africa (158). Other producers of fumonisins are 
F. proliferatum, F. napiforme, F. oxysporum, F. dlamini, F. 
nygamai, and Aspergillus niger (which produce fumonisins 
B2, B4, and B6 but not B1) (44, 159-161).

Of the 28 fumonisin analogues, only three are natural 
contaminants of food and feed: FB1 (which makes 70-80 % 
of the three fumonisins), FB2 (15-25 %), and FB3 (3-8 %) 
(162). Fumonisins typically contaminate maize crops, but 
were also reported in other cereals (42) and asparagus (163) 
(Table 1).

Niderkorn et al. (96) tested the ability of several 
bacterial species to remove FB1 and FB2 from a medium at 
pH 4. FB1 was best removed by Leuconostoc mesenteroides 
(82  %), Pediococcus pentosaceus (79 %), L. plantarum 
(74  %), and L. rhamnosus (74  %). FB2 was completely 
(100 %) removed by L. lactis, whereas L. mesenteroides, 
S. thermophilus, P. pentosaceus, L. casei, L. helveticus, L. 
bulgaricus, L. plantarum, and L. rhamnosus removed over 
90 %. Niderkorn et al. (133) also combined L. paraplantarum, 
S. thermophilus, and various treatment methods to eliminate 
FB1 and FB2. The best binding result (37 %) was observed 
with S. thermophilus in trichloroetic acid. Under the same 
conditions L. paraplantarum bound 19 % of the mycotoxin. 
With HCl S. thermophilus bound 24 %. Binding with other 
treatments did not exceed 15 %. FB2 binding rate was much 
higher than that of FB1, and the highest was observed with 
trichloroacetic acid (76 % for S. thermophilus and 65 % for 
L. paraplantarum) and HCl (65 % for S. thermophilus and 
51 % for L. paraplantarum). These findings indicate that 
the method of detoxification, pH, and bacterial concentration 
play the key role in fumonisin removal. Methods that 
degrade cell wall surface structures increase the mycotoxin 
binding area. Binding can be further improved by increasing 
the concentration of peptidoglycans.

Zearalenone

Zearalenone (ZEA), also known as the F-2 toxin, is the 
third most common mycotoxin in plants, maize in particular 
(1, 26, 35). It is one of the strongest non-steroid oestrogens 
found in nature (164) produced by certain Fusarium species, 
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mainly F. graminearum, F. culmorum, F. semitectum, F. 
equiseti, and F. cerealis (32, 165, 166). Fusaria are among 
the most pathogenic toxin-forming fungi. Unlike other 
mycotoxins, ZEA reaches its maximum levels at 16  % 
humidity and temperature below 25 °C (167), usually before 
harvest. High levels were also detected in animal feed 
containing improperly stored maize (26, 32). Apart from 
maize, zearalenone can contaminate wheat, barley, oat, 
sorghum, rice, and peas (26, 38, 39, 40) (Table 1).

El-Nezami et al. (134) tested ZEA removal from 
culturing media with L. rhamnosus. In one experiment, it 
was about 60 % and in another (102) 64 % from phosphate 
buffer and lipase with heat-killed bacteria. Acid-killed 
bacteria removed 59 % of the mycotoxin.

Niderkorn et al. (135) tested the ability of S. thermophilus 
to bind ZEA and its metabolites (α- and β-ZOL) in ruminal 
fluid. Feed (50 % maize grain and 50 % alfalfa hay) alone 
bound 73 % of ZEA and its metabolites almost immediately 
and 69 % after 18 h. When S. thermophilus was added to 
the feed, binding rose to 91 % at first and dropped to 67 % 
after 18 h. When feed was eliminated as an experimental 
factor, S. thermophilus alone bound 83 % and 46 % of ZEA 
and its metabolites, respectively.

In another study (168), L. plantarum was combined 
with the Tunisian montmorillonite clay as absorbent. Clay 
alone bound 87 %, of ZEA, L. plantarum alone bound 78 %, 
while the combination bound as much as 94 % after 24 h.

Čvek et al. (111) reported that ZEA binding rose with 
LAB concentrations in MRS agar (99.12 % for L. plantarum 
and 84.71 % for L. rhamnosus at the concentration of 8 
log10 CFU mL-1) and dropped with incubation time (60-70 % 
after 72 h).

Trichothecenes

Fungi producing trichothecenes B (deoxynivalenol and 
its derivatives as well as nivalenol) mostly affect wheat and 
other crops (169). They include Fusarium culmorum and 
F. graminearum, which are also responsible for the 
biosynthesis of ZEA (1, 26, 170). Conditions favouring 
trichothecenes production are 21-25 °C and >0.95 % water 
activity, depending on Fusarium species (32, 171).

The primary sources of deoxynivalenol (DON) in the 
food chain are cereals, including wheat, barley, maize, and 
oat (2, 25-27, 30-33). It was also found in buckwheat, 
sorghum, and processed food such as flour, bread, pasta, 
beer, and malt (29, 34) (Table 1).

Franco et al. (104) investigated its removal by L. 
plantarum, L. pentosus, and L. paracasei. The study was 
conducted in three variants; (i) with viable cells, (ii) with 
pasteurised cells, and (iii) with sterilised cells. Sterilised 
unviable cells showed the best results when used alone; L 
plantarum bound 67 % of the toxin, L. pentosus 47 %, and 
L. paracasei 57 %.

Zou et al. (98) investigated the removal of DON and 
T-2 from MRS agar with L. lactis, L. brevis, L. casei, and 

L. plantarum over 0, 24, 48, and 72 h of incubation. The 
best results were observed at 48 h, while at 72 h the binding 
rate did not change. L. plantarum was the most successful 
in reducing both DON and T-2 levels (from 1 to about 
0.8 µg mL-1).

Patulin

Patulin is the best known mycotoxin, toxic to both plants 
and animals and associated with fruit and fruit preserves 
(45-47). It was first isolated from Penicillium patulum in 
1940. The Joint Food and Agriculture Organization - World 
Health Organization Expert Committee on Food Additives 
has limited the maximum tolerable daily intake of this 
mycotoxin to <0.4 mg kg-1 of body weight per day.

Patulin is a dangerous mycotoxin produced under 
improper storage conditions of various products. Therefore, 
numerous studies have been conducted to reduce it. Hatab 
et al. (136) tested the efficiency of viable and unviable 
Bifidobacterium bifidum, B. animalis, L. rhamnosus, and 
L. lactis at 37 °C for 24 h varying the pH. The best results 
were obtained at pH 4 with unviable bacteria, as follows 
(in the descending order): B. bifidum (54.8 %), L. rhamnosus 
(52 %), L. lactis (35.6 %), and B. animalis (21.3 %). The 
same authors (103) also investigated the efficiency of L. 
lactis, L. rhamnosus, L. helveticus, B. animails, B. bifidum, 
and Enterococcus faecium in patulin reduction in apple 
juice varying two factors: temperature (30 and 37 °C) and 
patulin concentrations (100, 150, and 200 µg mL-1). The 
most efficient reduction (about 80 %) was observed with 
L. rhamnosus (strain 6224) at patulin concentration of 
100 µg mL-1 and temperature of 30 °C.

Hawar et al. (99) reported the highest reduction rate 
from 100 to about 50 µg mL-1 at pH 2 and the lowest at 
pH  9 (to about 85  µg  mL-1). They also found that the 
reduction rate dropped with higher CFU.

CONCLUSIONS

Many studies have demonstrated varying efficiency of 
LAB in removing mycotoxins from a variety of matrices. 
Removal mainly relies on mycotoxin binding to LAB cells 
and inactivation by antifungal products such as acetic acid.

Rendering LAB cells unviable with high temperature 
or acids seems to increase their mycotoxin-binding 
efficiency. This is quite likely related to the LAB cell wall 
components, mainly peptidoglycans and exopolysaccharides. 
The binding mechanisms, however, are not yet fully 
understood, and remain to be investigated by future 
research.

The most efficient LAB strains could be applied in 
various cereal products and livestock feed to increase food 
safety. Washing the products with suitable LAB preparations 
could also bind and remove mycotoxins. Preparations could 
also be used in cases of fungal infection in animals. 
Livestock may be fed these compounds at an early stage of 
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fungal infection, as they not only provide nutrients but also 
act as pharmaceuticals.

Despite the promising research findings, several 
questions need to be answered by future tests. As raw 
materials are subjected to ever more complex technological 
processes to meet consumer requirements, these questions 
include optimal timing, pH, methods for inactivating 
bacterial cells, and LAB concentrations that would yield 
best results. Future studies should also focus on identifying 
the exact mechanisms of mycotoxin binding to render it 
permanent. In the future, LAB will be used more widely in 
processing raw food liable to contamination with 
mycotoxins. At this stage, reducing mycotoxins in practice 
seems like a challenge to be addressed by new technological 
schemes.
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Djelotvornost mliječnokiselinskih bakterija protiv patogenih plijesni i mikotoksina

Mikotoksini su sekundarni proizvodi pojedinih vrsta plijesni rodova Aspergillus, Penicillium i Fusarium koji često 
zagađuju raznovrsne prehrambene proizvode. Stoga se u suzbijanju tih plijesni i zagađenja mikotoksinima primjenjuju 
mnoge strategije kroz cijeli prehrambeni lanac. U ovome se prikazu raspravlja o primjeni mliječnokiselinskih bakterija, 
kojima se već stoljećima sprječava razvoj i rast plijesni, a koje sudjeluju i u razgradnji mikotoksina i/ili u njihovu uklanjanju 
iz zagađene hrane. Budući da su korisne za ljudsko i životinjsko zdravlje, mliječnokiselinske bakterije izvrsno su rješenje 
problema sa zagađenjem mikotoksinima, ali je njihova primjena još pred izazovima, koje će riješiti buduća istraživanja.
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