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In this paper, a comprehensive review of several strategies applied to improve the Low Voltage Ride-Through
(LVRT) capability is presented for grid-connected wind-turbine-driven Doubly Fed Induction Generator (DFIG).
Usually, the most proposed LVRT solutions in the literature based on: hardware solutions, which increase the system
costs and software solutions, which increase the control system complexity. Therefore, the main objective of this
study is to take into account grid requirements over LVRT performance under grid fault conditions using software
solution based on Higher Order-Sliding Mode Control (HOSMC). Effectively, this control strategy is proposed to
overcome the chattering problem and the injected stator current harmonics into the grid of the classical First Order
Sliding Mode (FOSMC). Furthermore, the resultant HOSMC methodology is relatively simple; where, the online
computational cost and time are considerably reduced. The LVRT capacity and effectiveness of the proposed control
method, compared to the conventional FOSMC, are validated by time-domain simulation studies under Matlab on
a 1.5MW wind-turbine-driven DFIG.
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Sveobuhvatan pregled LVRT mogućnosti i kliznog režima upravljanja vjetroagregata spojenog na mrežu
s dvostruko napajanim asinkronim generatorom. U ovom radu, prikazan je sveobuhvatan pregled strategija
primjenjenih za poboljšanje sposobnosti rada tijekom prolaznih smetnji niskog napona mreže za vjetroagregat s
dvostruko napajanim asinkronim generatorom (DFIG). Uobičajeno, većina predloženih LVRT rješenja u literaturi
temelji se na: hardverskim rješenjima, što povećava troškove sustava i softverskih rješenja te složenost sustava
upravljanja. Stoga je glavni cilj ovog istraživanja da se uključuje i zahtjevi mreže kroz ponašanje LVRTa u uvje-
tima mrežnih kvarova korištenjem softverskog rješenja zasnovanoga na kliznom režimu rada višeg reda (HOSMC).
Efektivno, ova upravljačka strategija je predložena kako bi se prevladali oscilacije i ubacivanje harmonika struje
statora u mrežu klasičnim metodama kliznog režima rada prvog reda (FOSMC). Nadalje, rezultantna metodologija
HOSMC je relativno jednostavna; gdje su online računski zahtjevi i potrebno vrijeme značajno smanjeni. LVRT
kapacitet i učinkovitost predložene metode upravljanja, u usporedbi s konvencionalnim FOSMC potvr�ene su sim-
ulacijama u vremenskoj domeni u Matlabu na 1.5MW vjetroagregatu s DFIG-om.

Ključne riječi: Vjetroagregat, DFIG, LVRT, HOSMC, FOSMC.

1 INTRODUCTION
Induction generators, especially Doubly Fed Induction
Generators (DFIG) are used a lot in Wind Energy Con-
version Systems (WECS) application [1], [2]. Simple in-
duction generators have some weaknesses such as reactive
power absorption and uncontrolled voltage during variable
rotor speed. These problems are solved by installation of
DFIG and power electronic converter or controllers [3],
[4]. The particular feature of the DFIG is that the gen-
erated power by the rotor converter is only a small part
from the total provided power with its stator directly con-
nected to the utility grid [5], [6] and [7]. Therefore, the

size, the cost and losses of the power converter are smaller
compared to a full size power converter. When the sta-
tor and rotor of DFIG are both connected to the grid, Low
Voltage Ride-Through (LVRT) capability is considered as
a primordial challenge in wind turbines design [8]. LVRT
requires wind turbines to remain connected to the power
system during grid voltage dips. Therefore, many research
papers focus on studying the dynamic response of wind
farms during and after the clearance of the fault without
disconnection from the grid.

In [9], the effects of voltage drops caused by faults
on DFIG’s to overcome grid fault conditions are studied.
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Fig. 1: Operating voltage range for WECS.

A classical controller: Proportional–Integral (PI) was de-
signed for the control techniques of DFIG when grid faults
occur like during voltage dips [10] and unbalanced grid
voltages [11]. LVRT control of wind turbines with DFIGs
under symmetrical voltage dips is dealt in [8]. In [12],
a control scheme for limiting the dc-link voltage fluctua-
tion has been applied to the Grid Side Converter (GSC).
However, the performance of the DFIG depends on the ap-
propriate choice of the PI gains, which the optimization of
gains takes a lot of time [13, 14]. Thereby, if the controllers
have bad performances in systems with DFIG driven by
wind turbine, the quality and the quantity of the gener-
ated power can be influenced. A hybrid current control
scheme was introduced in [15], implemented in the Rotor
Side Converter (RSC) and GSC of DFIG, to enhance low
and high voltage ride-through capabilities of DFIG-based
wind turbines. A control technique of the GSC is proposed
in [16], in order to direct the rotor power flow during grid
fault conditions. Rotor current controller based on adaptive
internal model control is designed in [17]; with different
adjustment mechanisms similar to Lyapunov theory, fuzzy
and adaptive neuro-fuzzy inference system to improve the
voltage sag ride through. One of the most important mat-
ters involved in WECS improvement is linked to the inclu-
sion of new robust control strategies, based on low com-
putational time, cost algorithms capable of optimizing the
system efficiency, while, reducing structural loading.

The present paper can be seen as a continuation of the
above-mentioned works. An overview of the recently pub-
lished LVRT schemes is discussed. Then, in the second
part, this study focuses attention on the improvement of
a method, which allows better performances of the whole
system under study, using LVRT software solution based
on Lyapunov theory. The main contribution of this study
is to test the High Order Sliding Mode Control (HOSMC)
based on Super-Twisting Algorithm (STA) to ensure the
DFIG controllability under symmetrical voltage drop. The

grid code considered in this work is similar to that of E.ON
[19], as shown in Fig.1.

2 AN OVERVIEW FOR DFIG LVRT SOLUTIONS

In the previous circumstances, the WECSs were intended
to be disconnected during the grid fault conditions and any
Low Voltage Ride-Through (LVRT) solutions were consid-
ered. In [20] an overview of the latest research about the
LVRT is provided for wind turbine based DFIG. Generally,
the state of art for DFIG LVRT solutions are categorized as
seen in Fig.2.

The hardware solutions:

In [21] an overview of some solutions of the LVRT
capability development is shown for different types of
WECSs based on fault protection schemes. [22] Shows an
overview of internal protection systems of WECSs based
DFIG. In [23] a novel protection scheme for transient rotor
current is suggested to improve the performance of DFIG
under grid fault. In [24] a proposed protection strategy for
DFIG, which incorporates a series-dynamic-resistor, a dc-
link chopper and a crowbar with a synchronised switching
control.

In [9, 25], a Flexible AC Transmission System
(FACTS) device such as Static Synchronous Compensator
(STATCOM) is proposed to improve the LVRT ability for
wind generation systems based DFIG. In [26] a FACTS
system based STATCOM for DFIG to alleviate the effects
of grid faults is proposed. In [27, 28] a FACTS device
connected in series with the grid called Dynamic Voltage
Restorer (DVR) to mitigate the effect of the voltage drop
in the electrical grid under fault conditions is suggested. In
[29] the use of DVR for enhancement of DFIG LVRT is
investigated.

The software solutions:

In [30] an overview of studies issues related to model-
ing, analysis and advanced control of LVRT of wind tur-
bines with DFIG is presented. In [31] a comprehensive
review about LVRT techniques and controllers for differ-
ent wind generation systems is shown. In [32] a study
of the coupling between excitation control and the elec-
tromagnetic method for DFIG under symmetric grid fault
condition is proposed. In [33, 34] a vector-based hystere-
sis current controller for LVRT competence improvement
of DFIG is presented. In [20] a modified VC to fulfil the
LVRT requirements from the distribution or transmission
electrical grid is discussed.

In [35] a novel LVRT software solution based dual-
sequence decomposition method to diminish the oscilla-
tions and improve the DFIG’s LVRT ability during unbal-
anced electrical grid is suggested. In [36] a fuzzy logic
controller is synthetized for wind generation based DFIG
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Fig. 2: Categories of the LVRT solutions for the WECS based DFIG.

under electrical grid fault conditions. In [18, 51] sliding
mode control for DFIG LVRT competence enhancement is
investigated.

3 DFIG MODELLING

Based on the assumption of linear magnetic circuits, the
stator and rotor voltages expressions of the DFIG under
balanced operating condition can be written as follows [37,
38]:

Vs =

[
vds
vqs

]
=

[
Rs ids + dφds

dt − ωs φqs
Rs iqs +

dφqs
dt + ωs φds

]
(1)

Vr =

[
vdr
vqr

]
=

[
Rr idr + dφdr

dt − (ωs − ω) φqr
Rr iqr +

dφqr
dt + (ωs − ω) φdr

]
(2)

Where ids, iqs, idr and iqr are, respectively, the direct and
quadrature stator and rotor currents. Rs andRr are stator
and rotor resistances. ωs, ω are stator and rotor electrical
angular speeds, with ω = p ·Ωg , p is the pair pole number.

The stator and rotor fluxes can be expressed as:

φs =

[
φds
φqs

]
=

[
Ls ids +M idr
Ls iqs +M iqr

]
(3)

φr =

[
φdr
φqr

]
=

[
Lr idr +M ids
Lr iqr +M iqs

]
(4)

Where Ls, Lr and M are stator, rotor and mutual in-
ductances.

The active and reactive powers at the stator are defined
as: {

Ps = vds ids + vqs iqs
Qs = vqs ids − vds iqs (5)

The principle of this technique is based on stator flux
orientation in such a way that the stator flux vector is
aligned into d-axis [38, 39]. This approach is achieved by
setting the quadrature component of the stator flux to the
null value:

φs = φds ⇒ φqs = 0 (6)

Using the condition mentioned above and the neglected
per phase stator resistance, which is a convincing approxi-
mation for WECS grid connected, the voltages can be de-
duced as: {

vds = 0
vqs = ωsφs = Vs

(7)

When replacing the rotor flux (4) in (2) and using the
above condition (7), the rotor voltages become:
{

vdr = σLr
didr
dt +Rridr − σLrωriqr

vqr = σLr
diqr
dt +Rriqr + σLrωridr + ωr

M
Ls
φs

(8)
Where Vs the stator voltage magnitude is assumed con-

stant, ωr = ωs − ω = g ωs is the slip frequency, g is the
slip range and σ = 1 − M2

Ls Lr
is the leakage coefficient.

Accordingly, with regard to (6), the fluxes are simplified
as specified below:

{
φds = Lsids +Midr
0 = Lsiqs +Miqr

(9)
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From Eq. (9), the stator currents can be deduced as:
{

ids = φds−Midr
Ls

iqs = −M
Ls
iqr

(10)

By using (5), (6) and (10), the stator active and reactive
powers can then be expressed only versus these rotor cur-
rents as: {

Ps = −Vs MLs iqr
Qs = −Vs MLs

(
idr − φs

M

) (11)

4 DFIG CONTROL STRATEGY

This section shows the design of the Sliding Mode
Control (SMC) based on Lyapunov application. The slid-
ing surface specifies the relative degree of a system, and,
therefore, the order of the applicable SMC [40, 41, 42 and
46]. As the system is of first-order relative degree in grid
connected, it may be controlled applying First-Order Slid-
ing Mode Control (FOSMC) or High-Order Sliding Mode
Control (HOSMC) [43, 44]. The synthesis of the two
SMCs is detailed in subsequent sections.

4.1 First Order Sliding Mode Control

Since the optimal power tracking control method is applied
to define the reference of the active power, the first-order
sliding surfaces representing the error between the mea-
sured powers and their references can be expressed as fol-
lows:

Sdq =

[
Sd(Qs)
Sq(Ps)

]
=

[
e (Qs)
e (Ps)

]
(12)

Where e (Qs) = Q∗s − Qs and e (Ps) = P ∗s − Ps. Then,
their derivatives are:

Ṡdq =

[
Ṡd(Qs)

Ṡq(Ps)

]
=

[
Q̇∗s − Q̇s
Ṗ ∗s − Ṗs

]
(13)

Substituting the expression of powers of (11) in (13), the
derivatives of sliding surfaces become:

Ṡdq = F1 +D1 Vr (14)

Where

F1 =




Q̇∗s+
Vs

M
σLrLs

(−Rridr + σLrωriqr)− Vs φsLs
Ṗ ∗s +

Vs
M

σLrLs

(
−Rriqr − σLrωridr − ωr MLsφs

)




(15)

D1 =
M

σ Lr Ls

[
Vs 0
0 Vs

]
, Vr =

[
vdr vqr

] T

(16)

The stability Lyapunov theory is used to verify the
zero-convergence of the sliding surfaces, by satisfying the
following condition:

V̇ = ST Ṡ < 0 (17)

Considering the structure of (2), the following control
law derives the applied rotor voltage:

Vr =

[
vdr
vqr

]
=

[
vdr,eq + vdr,n
vqr,eq + vqr,n

]
(18)

Where [vdr,eq, vqr,eq]
T is the equivalent control and

[vdr,n, vqr,n] T is the switching part of the control. The
equivalent control terms, are derived by letting Ṡdq = 0
[45]. Taking into account the equivalent and switching
part, the control law (18) becomes:

Vr =

[
vdr
vqr

]
= (19)

−D−11 F1 −D−11

[
aQ 0
0 aP

] [
sign (Sd (Qs))
sign(Sq(Ps))

]

Where aQ > 0 and aP > 0,
[
vdr,eq
vqr,eq

]
= (20)

[
−σ Lr LsM Vs

Q̇∗s +Rr idr − σ Lrωriqr + σ Lr
M φs

−σ Lr LsM Vs
Ṗ ∗s +Rr iqr + σ Lrωridr + ωrM

Ls
φs

]

The FOSMC described in this work ensures the fast
tracking of the instantaneous active and reactive powers
exchanged between the DFIG and the grid. However, fast
switching may generate an undesirable chattering effect,
which may excite unmodeled high-frequency system tran-
sients, inject broad band harmonics into the grid and even
result in unexpected instability [47, 48 and 51].

4.2 High Order Sliding Mode Control

As an attractive solution to the FOSMC, a High-Order
Sliding-Mode Control (HOSMC) is adopted in this paper.

The second order sliding surfaces are defined as fol-
lows:

Sdq =

[
Sd(Qs)
Sq(Ps)

]
=

[
e (Qs) + bQ

∫
e (Qs)

e (Ps) + bP
∫
e (Ps)

]
(21)

Considering the derivative of (21) and by substituting
the expression of powers of (11), the derivatives of sliding
surfaces become:

Ṡdq = F2 +D2 Vr (22)
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Where

F2 =




Q̇∗s − Vs
Ls

(
bQ φs − idrM

(
Rr
σLr
− bQ

)
−

Mωriqr) + bQQ
∗
s

Ṗ ∗s + VsM
Ls

(
iqr

(
bP − Rr

σLr

)
−

ωridr − ωrM
σLrLs

φs

)
+ bP P

∗
s




(23)

D2 =
M

σ Lr Ls

[
Vs 0
0 Vs

]
, Vr =

[
vdr vqr

] T

(24)
In order to confirm the zero-convergence of the sliding

surfaces, the same condition of Lyapunov theory (17) can
be also used. From the structure of (22) and (23), the rotor
voltageVris derived according to the following control law:

Vr =

[
vdr
vqr

]
=

[
vdr,eq + vdr,ST
vqr,eq + vqr,ST

]
(25)

By lettingṠdq = 0, the equivalent control is derived as
follows: [

vdr,eq
vqr,eq

]
= −D−12 F2 (26)

From (26), (23) and (24), the following expression is
obtained:

[
vdr,eq
vqr,eq

]
=




−σ Lr LsM Vs

(
Q̇∗s + bQ (Q∗s −Qs)

)
+

Rr idr − σ Lrωriqr
−σ Lr LsM Vs

(
Ṗ ∗s + bP (P ∗s − Ps)

)
+

Rr iqr + σ Lrωridr + ωrM
Ls

φs




(27)
Details of Lyapunov approach based on Supper-

Twisting Algorithm (STA) have been presented in [48, 49].
It should be regarded that the STA is notably designed by
two parts; one ensuring that sliding surface Ṡdq = 0is
achieved in finite time, another related to the integral of the
switching variable sign [47, 50 and 51]. The STA given by
[42] can be written as:

[
vdr,ST
vqr,ST

]
=




cQ
γ
√
|S(Qs)|sign(S(Qs))+
dQ
∫
sign(S(Qs)) dt

cP
γ
√
|S(Ps)|sign(S(Ps))+
dP
∫
sign(S(Ps)) dt


 (28)

Where γ = 1/2 to guarantee the real second order sliding
mode and cP , cQ and dP , dQ are positive gains. Substitut-
ing the control law (25), (27) and (28) into the derivative
of sliding surfaces (22) gives:

Ṡdq =
−M Vs
σ Lr Ls




cQ
√
|Sd(Qs)|sign (Sd(Qs))+
dQ
∫
sign (Sd(Qs)) dt

cP
√
|Sq(Ps)|sign (Sq(Ps))+
dP
∫
sign (Sq(Ps)) dt




(29)

Admitting that sgn(s) = s/|s| , the time derivatives of
(29) becomes:

S̈dq = − M Vs
σ Lr Ls




cQ

2
√
|S(Qs)|

Ṡ(Qs) + dQ
S(Qs)
|S(Qs)|

cP

2
√
|S(Ps)|

Ṡ(Ps) + dP
S(Ps)
|S(Ps)|




(30)
Assuming that |S(Qs)| = δQand|S(Ps)| = δP , when the
sliding regime is reached, these gains are close to zero. Us-
ing the expression of sliding surfaces in (21), the following
expression can be rewritten from Eq. (30):




ë (Ps) +

(
bP + cP M Vs

2σ Lr Ls
√
δp

)
ė (Ps)

+ M Vs
σ Lr Ls

√
δp

(
1
2bpcP +

dp√
δp

)
e (Ps)

+
bp dpM Vs
σ Lr Lsδp

∫
e (Ps) = 0

ë (Qs) +

(
bQ +

cQM Vs

2σ Lr Ls
√
δQ

)
ė (Qs)

+ M Vs
σ Lr Ls

√
δQ

(
1
2bQcQ +

dQ√
δQ

)
e (Qs)

+
bQ dQM Vs
σ Lr LsδQ

∫
e (Qs) = 0

(31)

Taking the time derivative of (31), the third-order differen-
tial equations of the error dynamics are:
{ ...

e (Ps) + α1 ë (Ps) + α2 ė (Ps) + α3 e (Ps) = 0...
e (Qs) + α1 ë (Qs) + α2 ė (Qs) + α3 e (Qs) = 0

(32)
Therefore, once δP , δQ are fixed the STA is tuned by an
adequate selection of bP , bQ, cP , cQ, dP , dQ, through the
following third-order characteristic equation:
(
s2 + 2 ξ ω0 s+ ω2

0

)
(s+ k ξ ω0) =

s3 + (2 + k) ξ ω0︸ ︷︷ ︸
α1t

s2 +
(
1 + 2 k ξ2

)
ω2
0︸ ︷︷ ︸

α2t

s+ k ξ ω3
0︸ ︷︷ ︸

α3t

(33)
Where s is Laplace operator, k is high gain- k > 10-, con-
ducts to a pair of dominant poles with respect to a third one
placed at s = −k ξ ω0. Hence, it can be taken into account
that the error dynamics are absolutely defined through ξ
damping coefficient and ω0 natural frequency. Consider-
ing that α1 = α1t, α2 = α2t and α3 = α3t expressions for
α1, α2 and α3 provided in (32), as well as those for α1, α2

and α3t considered in (33), the latter three conditions give
the following equations:





b3P − (2 + k) ξ ω0 b
2
P+(

1 + 2 k ξ2
)
ω2
0 bP − k ξ ω3

0 = 0
b3Q − (2 + k) ξ ω0 b

2
Q+(

1 + 2 k ξ2
)
ω2
0 bQ − k ξ ω3

0 = 0

(34)

{
cP = 2σ Ls Lr

M Vs

√
δp [(2 + k) ξ ω0 − bP ]

cQ = 2σ Ls Lr
M Vs

√
δQ [(2 + k) ξ ω0 − bQ]

(35)
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{
dP = σ Ls Lr

M Vs
δp k ξ ω

3
0

dQ = σ Ls Lr
M Vs

δp k ξ ω
3
0

(36)

It is worth mentioning that the coefficients in (34) coin-
cide with those of (33), excepting the negative signs of the
squared and the autonomous terms. The three values for
bP , bQ are equal to the poles of characteristic (33), while
their real parts have opposite signs. The real parts of the
chosen poles must essentially be negative to guarantee the
stability of the studied system. Figure 3 shows the block
diagram of the HOSMC scheme for DFIG.

5 SIMULATION RESULTS

Grid voltage faults could induce a high transient current
into the rotor circuit, which may breakdown the power con-
verters and result in disconnection of DFIG wind turbines
from the power network. Henceforth, the grid fault miti-
gation is becoming a more challenging problem for wind
power farms with uninterrupted injected power. Where-
fore, in this section, some simulations are done in order to
analyze only the influence of the grid fault condition on the
dynamic behavior of the generator.

Fig.4 shows the block diagram of the vector control
scheme for DFIG based on HOSMC/FOSMC, which is de-
signed in the Simulink environment. In this simulation,
wind speed varies from 8.9 m/s to 7.8 m/s as shown in Fig.
5. At 1.5 s the positive-sequence voltage drops to 40 % for
a time of 0.5 s, as shown in Fig. 6a.

The SPWM module is used in order to generate the
IGBT gate control signals to drive the IGBT converter.
The switching frequency of converter is set to 1 kHz; the
nominal DC converter is set to 2000 V. A Phase-Locked-
Loop (PLL) estimates the frequency, the grid voltage mag-
nitude and the stator angle. The accurate estimation of
these variables is necessary for both control strategy and
grid connection. All the simulations have been elaborated
with a fixed-step size of 0.5 ms in order to consider digi-
tal implementation in future works. In practice, the con-
trollers’ parameters are never determined according to in-
equalities. Therefore, the suitable technique is to adapt the
controller parameters during computer simulations. Fur-
thermore, theses simulations are done in order to compare
between two approaches HOSMC and FOSMC in sensi-
bility to external perturbations (grid fault conditions). The
system quantities are labelled in per-unit notation. The pa-
rameters of the WECS are reported in Appendix A.

It can be clearly observed from Fig.5b, that during the
period of the grid voltage drop, there are fluctuations in the
generator speed with using FOSMC compared with that of
HOSMC.

The stator angle tracking is shown in Fig. 6b. It is no-
ticed that the variations of grid voltage do not cause change

in voltage angle. The reactive power produced by the gen-
erator is controlled at 0 pu. Indeed, the unity power factor
is guaranteed at the stator side, by maintaining the reactive
power at zero. Fig.7a, b show the active and reactive sta-
tor powers. As can be seen, the presence of oscillations in
the occurrence of the fault. It is realized from these fig-
ures, that that the dynamic response of the generator, dur-
ing voltage dip, when controlled with the HOSMC is im-
proved compared with that obtained when the generator is
controlled with the FOSMC. The responses react quickly
with less overshoots. Further, the steady state error after
the clearance of fault is eliminated when the HOSMC is
applied. The constant power behavior can support the grid
during voltage sag. In Fig.8a, b, the errors of stator active
and reactive powers with HOSMC and FOSMC are dis-
played. It can be seen, that during and after the grid fault,
the control policy with HOSMC has a good performance
against external disturbances and chattering is significantly
reduced.

Fig.9a, b show the stator currents of the generator; it is
clear that the frequency of the stator currents is the same
as that of the grid. For comparison, the transient behav-
ior of DFIG with conventional FOSMC shown in Fig.9a,
where it can be noticed that this control is not capable to
suppress the current overshoots at the stator winding to
around 1.644 pu. In the other hand, it is clearly indicated
that with the proposed HOSMC, the stator currents are re-
duced to around 0.8793 pu and may not exceed their tol-
erable limits and without triggering the protective devices.
Figs. 10 and 11, respectively, give the stator current har-
monic spectra under normal and fault conditions for differ-
ent control strategies. Obviously, conventional FOSMC re-
sults in higher stator current harmonic distortion than that
from proposed HOSMC.

It is distinct from Fig.12b, that the proposed HOSMC
is capable to reduce peak transient rotor currents to around
0.889 pu avoiding the tripping of the RSC, while the value
for the FOSMC is about 1.417 pu (Fig.10a). In addi-
tion, it is clearly shown in the figures that compared
with FOSMC, the current transient period of the proposed
HOSMC scheme decays faster and lasts only in the fault
period.

The amplitude of the stator flux is constant at the
steady-state and rotates synchronously with the grid volt-
age. Instantly after the apparition of the voltage drop,
forced and natural flux components will be induced in the
stator flux. During voltage drop, the forced component is
rotating with the grid frequency; afterward, the natural flux
is static with the stator.

Fig. 13a, b show the trajectory of the stator flux. Before
the voltage sag, the stator flux traces a circle with radius
equal to 1 pu. The flux of the stator with HOSMC is very
well centered compared with that obtained with FOSMC.
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Fig. 3: Block diagram of HOSMC scheme for DFIG.

When the voltage sag starts, the circle radius decreases as
the diminution of the voltage and the center of the circle
is displaced accordingly to the natural component of the
stator flux [52]. After the clearance of the voltage sag, the
natural component of the stator flux is attenuated and the
trajectory of the stator flux becomes centered again. How-
ever, it is noticed from these figures that compared with
HOSMC, the stator flux trajectory of the FOSMC scheme
is not well centered with an important transitory and slowly
decays. The rotor flux in Fig.14a, b show ripples superim-
posed on its circular trajectory due to the frequency switch-
ing of PWM.

6 CONCLUSION

The most challenging problem for Doubly Fed Induction
Generator (DFIG) wind turbines grid-connected is to inject

uninterrupted electrical power with grid faults mitigation.
Hence, high transient rotor currents could be induced by
these faults, which may breakdown the power converters
and the disconnection of DFIG from the electrical grid.
Therefore, in this paper, two categories of Low Voltage
Ride Trough (LVRT) solutions, i.e., hardware and software
are comprehensively reviewed. Among the suggested ap-
proaches in literature, the cost of applying software solu-
tions is lower than most of the hardware approaches.

According to the developed review, this paper, presents
software LVRT solution with an advanced control tech-
nique of stator powers, exchanged between the DFIG and
the grid, based on stator flux orientation and Lyapunov
theory designed. This proposed control strategy based on
High Order Sliding Mode Control (HOSMC) must miti-
gate the effects of control action on the system structure
and the produced power quality, while maintaining accept-
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Fig. 4: Simulink block diagram of the wind-turbine-driven DFIG.

Fig. 5: (a) Wind speed, (b) Generator speed.

Fig. 6: (a) Grid voltage, (b) Stator angle

able performance during voltage sags.

Through simulations, the proposed control scheme has
been proved suitable for this WECS application. The

HOSMC has shown better LVRT performance and relia-
bility than First Order Sliding Mode Control (FOSMC),
practically, the absence of chattering phenomenon with an
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Fig. 7: (a) Stator active power with HOSMC and FOSMC, (b) Stator reactive power with HOSMC and FOSMC

Fig. 8: (a) Errors of stator active power with HOSMC and FOSMC, (b) Errors of stator reactive power with HOSMC and
FOSMC

Fig. 9: Stator currents: (a) with FOSMC, (b) with HOSMC

ameliorated system stability. It can also be demonstrated
that HOSMC approach can protect the generator against
harmful over-currents in the rotor windings when grid volt-
age dips, and then the life time of mechanical and electrical
systems is prolonged without significantly increasing the
complexity of the LVRT software solution. Moreover, the
particular attractive feature of the control law approach de-
signed following this HOSMC, compared with FOSMC, is

the smoothness of the converter firing angle and providing
less harmonics in stator currents into the grid during nor-
mal and fault conditions with a reduced chattering. All the
computer simulations have been designed with a fixed-step
size of 0.5 ms in order to consider digital implementation
at experimental validation in future works.

In this part, simulations are investigated with a 1.5 MW
generator connected to a 690V/50 Hz grid [53]. The pa-
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Fig. 10: Harmonic spectra of the injected stator currents during normal condition: (a) with FOSMC, (b) with HOSMC

Fig. 11: Harmonic spectra of the injected stator currents during fault condition: (a) with FOSMC, (b) with HOSMC

Fig. 12: Rotor currents: (a) with FOSMC, (b) with HOSMC.

rameters of the turbine and the generator are presented in
the table below.
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