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Robust tracking control is of great importance for the surface vessels applications. This paper addresses the
design of a trajectory tracking controller for fast underactuated ships in the presence of model uncertainties with-
out velocity measurements in the yaw and surge directions. An observer-based trajectory tracking controller is
proposed for the fast underactuated ship model. Then, the dynamic surface control approach is effectively ex-
ploited to propose a tracking controller considering the actuator dynamics. An adaptive robust controller is also
used to compensate both the parametric and non-parametric uncertainties in the fast underactuated ship model. A
Lyapunov-based stability analysis is utilised to guarantee that tracking and state estimation errors are uniformly
ultimately bounded. Simulation results are presented to illustrate the feasibility and efficiency of the proposed
controller.
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Upravljanje pozicijom električki pokretanog brzog površinskog vozila korištenjem unaprijedne projek-
cije izlazne povratne veze. Robusno praćenje je pitanje od velikog praktičnog značaja za površinska vozila. Ovaj
se rad bavi projektiranjem regulatora za praćenje trajektorije za brze podaktuirane brodove s modelima nesigurnosti
bez mjerenja brzine u smjerovima zaošijanja i uzdužnog napredovanja. Regulator za praćenje putanje zasnovan
na observeru predložen je za brz podaktuiran model broda. Upravljanje površinskom dinamikom je učinkovito
iskorišteno kako bi se predložio regulatora za praćenje trajektorije s obzirom na dinamiku aktuatora. Tako�er su
primjenjene adaptivne robusne tehnike kako bi se nosile sa parametrijskim i neparametrijskim nesigurnostima u
modelu brzog podaktuiranoga broda. Analiza stabilnosti temeljena na Lyapunovu se koristi kako bi se zajamčilo da
su pogreške praćenja i estimacije stanja Adaptivni robusni regulator tako�er se koristi kako bi kompenzirao param-
etarske i neparametarske nesigurnosti u brzom podaktuiranom brodskom modelu. Analiza stabilnosti temeljena na
Lyapunovu se koristi kako bi se zajamčilo da su pogreške praćenja i procjene stanja jednoliko konačno ograničene.
Prikazani su simulacijski rezultati koji ilustriraju izvedivost i učinkovitost predloženog regulatora.

Ključne riječi: Dinamika aktuatora, adaptivno upravljanje, model nesigurnosti, izlazna povratna veza, praćenje
trajektorije

1 INTRODUCTION

The motion control of underactuated surface vessels has at-
tracted a great deal of attention from the control and ocean
engineering communities over the past years due to the im-
portant applications of such systems in transportation, en-
vironmental surveying and offshore installations. An im-
portant motion control problem is the trajectory tracking
which is involved in the design of a controller to force
a vessel to track a geometric path with associated tim-
ing law [1]. Ship control problems are challenging due
to the fact that the motion of underactuated surface ves-
sels posses more degrees of freedom to be controlled than
the number of independent inputs under nonintegrable sec-
ond order non-holonomic constraints [2]. In particular,

only surge force and yaw moment are available in such
vessels whereas there are three degrees of freedom (yaw,
sway and surge direction). Since, the ships in question do
not meet Brocket theorem [3], there isn’t any time invari-
ant feedback control law for asymptotical stabilizing the
ship dynamics. Motivated by the challenging nature of the
problems and numerous practical applications of the ships,
many researchers proposed various controllers to solve the
trajectory tracking and path following problems of under-
actuated ships [4-25].

Many of the previous works has been widely used
backstepping technique. However, explosion of complex-
ity because of repeated differentiations of virtual con-
trollers in the design procedure, is a drawback of this tech-
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nique. In [6], two control laws based on Lyapunov’s direct
method and combined cascade-backstepping approach are
designed under a sufficient condition for persistent exci-
tation. The work in [6] is improved and a robust control
law is developed in [9]. A controller based on backstep-
ping technique is proposed in [12] to tackle both stabili-
sation and tracking problems, under constant disturbances.
To eliminate the aforementioned problem of backstepping
technique, DSC (dynamic surface control) is employed in
[22] and a controller is proposed which is much simpler
than the backstepping-based controllers. However, uncer-
tainties are ignored in this work. The reader is referred to
[26] for DSC technique.

In practice, ships are usually not equipped with the ve-
locity sensor. Therefore, estimates of the velocities are es-
sential for feedback control. Since, the position measure-
ments are corrupted by noise, differentiation of the posi-
tion to obtain the velocities is not effective. So, an observer
should be used to get the velocities. However, designing an
observer-based output feedback trajectory tracking control
of ships is a challenging task due to the existence of un-
measured velocities in the ship dynamics (especially in the
coriolis matrix). Also, the underactuation of these vessels
makes the design of the output feedback controller more
challenging. In [23], a global output feedback tracking
controller was proposed based on backstepping technique.
It is shown that the tracking errors are globally asymptoti-
cally converge to a ball containing the origin. But, the sys-
tem loses its stability in the presence of large disturbances.
Also, the parametric uncertainties and model uncertain-
ties are ignored in this work. By transforming the inertia
matrix into a symmetric form, two adaptive controllers (a
full-state feedback controller and an output feedback con-
troller) in the presence of parametric uncertainties are pro-
posed in [24]. However, non-parametric uncertainties are
ignored in the design of the controller. In [25], by applying
sampled-data control theory based on the Euler approxi-
mate model, a state feedback controller and reduced-order
observer are designed. Then, an output feedback discrete
time controller is obtained by combining the controller and
observer. However, this work does not consider uncertain-
ties or disturbances in the design of the controller.

In this paper, motivated by [27], we address the diffi-
culties in designing the output feedback controller for tra-
jectory tracking of underactuated fast ships including ac-
tuator dynamics and in the presence of uncertainties. The
DSC methodology and adaptive robust techniques in con-
junction with a linear observer are employed to design an
output feedback tracking control system. The main con-
tributions of the paper are listed as follows: (i) This is
the first attempt for the development of an adaptive robust
controller for fast underactuated ships including actuator
dynamics, which does not require velocity measurements;

(ii) In contrast to [23-25] all types of uncertainties are con-
sidered in the design of the controller. The adaptive robust
controller is designed such that it estimates the unknown
constants of an upper bounding function of the lumped un-
certainty because of unknown parameters of the system,
external disturbances and unmodelled dynamics; (iii) in
contrast to previous output feedback controllers [23, 24],
the proposed controller has a simpler structure and does not
require any transformation matrix in the design of the con-
troller. A Lyapunov-based stability analysis shows that all
signals in the closed-loop system are uniformly ultimately
bounded (UUB) and converge to a small ball centered at
the origin.

The remainder of the paper is arranged as follows. The
problem formulation is presented in the next section. De-
velopment of the tracking controller and Lyapunov-based
stability analysis of the closed-loop control system are
given in section 3. In section 4, simulation results are pro-
vided to evaluate the effectiveness of the proposed con-
troller. Conclusions are given in section 5.

2 PROBLEM FORMULATION
Notations Throughout this paper, λmax(•) (λmin(•)) de-
notes the largest (smallest) eignevalue of a matrix. ‖x‖ :=√
xTx is used as Euclidean norm of a vector x ∈ <n

while the norm of a matrix A is defined as the induced
norm ‖A‖ :=

√
λmax(ATA), the matrix In denotes n-

dimensional identity matrix, Blkdiag{•} shows block-
diagonal form of matrices.

2.1 Kinematics and Dynamics of Underactuated
Ships

Consider a class of underactuated ships whose mathemati-
cal model in a horizontal plane is described as follows [29]:

ẋ = u cosψ − v sinψ,
ẏ = u sinψ + v cosψ,

ψ̇ = r,
(1)

u̇ = m22

m11
vr − d11

m11
u+ 1

m11
τu + 1

m11
τwu(t),

v̇ = −m11

m22
ur − d22

m22
v + 1

m22
τwv(t),

ṙ = m11−m22

m33
uv − d33

m33
r + 1

m33
τr + 1

m33
τwr(t),

(2)

where η = [x, y, ψ]T denotes the position, i.e. surge and
sway displacements, and orientation, i.e. the yaw angle
with coordinates in the earth-fixed frame of the ship, the
vector V = [u, v, r]T represents the surge, sway and an-
gular velocities in the body-fixed frame, and the positive
constant terms dii > 0 and mii > 0, 1 ≤ i ≤ 3 denote the
hydrodynamic damping and ship inertia including added
mass in surge, sway and yaw, and τu and τr denote re-
quired force and torque which are provided by the actua-
tors, τwu(t), τwv(t), τwr(t) ∈ < are constants and time-
varing bounded disturbances. The kinematic model (1) can
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be expressed as follows:

η̇ = S(ψ)υ + δ(v, ψ). (3)

where υ = [u, r]T is a new velocity vector in the surge
and yaw directions, and δ(v, ψ) ∈ <3 denotes a vector of
unmatched disturbance as follows

S(ψ) =




cosψ 0
sinψ 0

0 1


 , δ(v, ψ) =



−v sinψ
v cosψ

0


 . (4)

Because we have focused on designing a controller for un-
deractuated ship with only surge force and yaw moment
available, we considered the actuated dynamics of the ves-
sel as follows:

M1υ̇ + C1(v)υ +D1υ − τw1(t) = τa, (5)

where M1 is a symmetric positive-definite matrix, C1(v)
is the centripetal and coriolis matrix, D1 is the hydrody-
namic damping matrix which is real and strictly positive,
i.e., D1 > 0, τw1(t) is the vector of forces and moments
induced by environmental disturbances, τa = [τu, τr]

T is
the vector of actuators inputs, such that

M1 =

[
m11 0

0 m33

]
, C1(v) =

[
0 −m22v

(m22 −m11)v 0

]
,

D1 =

[
d11 0
0 d33

]
, τw1(t) =

[
τwu(t)
τwr(t)

]
. (6)

Property 1 M1 is a symmetric and positive-definite
matrix, i.e., M1 = MT

1 > 0 which is upper and
lower bounded such that λm1

‖x‖2 ≤ xTM1x ≤
λM1 ‖x‖2 ∀x ∈ <2, and 0 < λm1 ≤ λM1 < ∞ where
λm1 := λmin(M1) and λM1 := λmax(M1).

Property 2 The following upper-bounding functions
are valid for the presented kinematic and dynamic model
of the system:

‖S(ψ)‖ ≤ s1, ‖C1(v)‖ ≤ λC1 ‖ v‖ , (7)
‖D1‖ ≤ λD1 , ‖τw1(t)‖ ≤ λW1 ,

where s1, λC1
, λD1

and λW1
are positive scalar constants.

It should be noted that the sway velocity is bounded which
is stated in the sequel.

2.2 Actuator Dynamics
To take the actuator dynamics into account, it is assumed
that the vessel is actuated by two brushed DC motors with
mechanical gears. The drive system is shown by Fig. 1.
The electrical equation of i-th motor armature is written as
follows:

uai = laiİai + raiIai + kbiθ̇mi + udi,
τmi = kτiIai,

(8)

Fig. 1. Drive system for the actuation of an underactuated
fast surface vessel.

where kbi is the back EMF constant, rai, lai and Iai de-
note the resistance, inductance and current of the motor
armature, respectively, uai is the voltage input, udi de-
notes the unstructured uncertainties and τmi denotes the
torque which is generated by the actuators in the actuator
model. By considering the relation between the torque and
velocities before and after gears, i.e. θ̇mi = ni θ̇ai and
τai = ni τmi, where ni is the gear ratio, the actuators dy-
namics are given by

Laİa +RaIa +NKbXυ + ud = ua. (9)

τa = NKT Ia, (10)

where La = diag[la1, la2], Ra = diag[ra1, ra2], N =
diag[n1, n2], Kb = diag[kb1, kb2], KT = diag[kτ1, kτ2],
and τa, ua, Ia ∈ <2 denote the torque, voltage and arma-
ture current input vectors, respectively, and X is a trans-
formation matrix which transforms propellers angular ve-
locities to surge and yaw velocities. The interested reader
refers to [34] for more details.

2.3 Reduced Model of Surface Vessel

For the controller design purposes, it is assumed that there
exists the following smooth output equation

z = h(η) = [x+ L cosψ, y + L sinψ], (11)

where z ∈ <2 is a new position variable, L is a look-
ahead distance which is shown in Fig. 2. This figure shows
the planar configuration of a surface vessel with two pro-
pellers. The point Ob is the origin of the body-fixed frame
that is attached to the ship body. The point PL is a virtual
reference point on x-axis of the body-fixed frame at a dis-
tance L of Ob. By differentiating the output equation (11)
and substituting (3), one gets:

ż = J(ψ)υ + Jδ(v, ψ), (12)

where J(ψ) = Jh(ψ)S(ψ) ∈ <2×2, Jh(ψ) := ∂h(η)/∂η
is the Jacobain matrix and Jδ(v, ψ) = Jh(ψ)δ(v, ψ) are
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Fig. 2. Planar model of a surface vessel.

given by

J(ψ) =

[
cos(ψ) −L sin(ψ)
sin(ψ) L cos(ψ)

]
, (13)

Jδ(v, ψ) =

[
−v sin(ψ)
v cos(ψ)

]
.

By considering (13), the matrix J(ψ) is invertible, i.e.,

J−1(ψ) =

[
cos(ψ) sin(ψ)
− sin(ψ)/L

cos(ψ)/L

]
. (14)

Then, one may write

υ = J−1(ψ)(ż − Jδ(v, ψ)), (15)

υ̇ = J−1(ψ)[(z̈−J̇δ(v, ψ))− J̇(ψ)J−1(ψ) (ż−Jδ(v, ψ))]

= J−1(ψ)[z̈ − J̇(ψ)J−1(ψ)ż] + ρ(v, ψ), (16)

where

ρ(v, ψ) = −J−1(ψ)[J̇δ(v, ψ)− J̇(ψ)J−1(ψ)Jδ(v, ψ)].
(17)

Substituting (15) and (16) into (5) yields

M1J
−1(ψ)z̈+C1(v)J−1(ψ)ż+D1J

−1(ψ)ż−M1J
−1(ψ)×

J̇(ψ)J−1(ψ)ż +M1ρ(v, ψ)− C1(v)J−1(ψ)Jδ(v, ψ)

−D1J
−1(ψ)Jδ(v, ψ)− τw1(t) = τa. (18)

Then, considering the actuator equations (9) and (10) and
multiplying both sides of (18) by J−T (ψ) yields the fol-
lowing Earth-fixed representation:

M2(ψ)z̈+C2(v, ψ, ż)ż+D2(ψ)ż+τw2(v, ψ, t)=J−T(ψ)Ia,
(19)

where

M2(ψ) =(NKT )−1J−T (ψ)M1 J
−1(ψ),

C2(v, ψ, ż) =(NKT )−1J−T (ψ) [C1(v)

−M1J
−1(ψ)J̇(ψ)

]
J−1(ψ),

D2(ψ) =(NKT )−1J−T (ψ)D1 J
−1(ψ),

τw2(v, ψ, t) =(NKT )−1J−T (ψ)[M1ρ(v, ψ)
−C1(v)J−1(ψ)Jδ(v, ψ)
−D1J

−1(ψ)Jδ(v, ψ)− τw1(t)].

. (20)

The model (19) represents a reduced formulation of un-
deractuated surface vessel that are denoted by (2) and (3).

Property 3M2(ψ) is a symmetric and positive-definite
matrix which is upper and lower bounded such that
λm2
‖x‖2 ≤ xTM2x ≤ λM2

‖x‖2 ∀x ∈ <2 and 0 <
λm2

≤ λM2
<∞, where λm2

:= min
∀ψ∈<

λmin(M2(ψ)) and

λM2
:= max
∀ψ∈<

λmax(M2(ψ)).

Property 4 The matrix Ṁ2(ψ)− 2C2(v, ψ, ż) is skew
symmetric, i.e.,

xT (Ṁ2(ψ)− 2C2(v, ψ, ż))x = 0, ∀x ∈ <2. (21)

Property 5 There exist positive scalar constants
λM2 , λC2 , λD2 , λJ , λJδ and λ

W2
such that

‖M2(ψ)‖ ≤ λM2 , ‖C2(v, ψ, ż)‖ ≤ λC2
‖ż‖ , (22)

‖D2(ψ)‖ ≤ λD2
, ‖τw2(v, ψ, t)‖ ≤ λ

W2
,

‖J(ψ)‖ ≤ λJ , ‖Jδ(v, ψ)‖ ≤ λJδ.

2.4 Definitions and assumptions

The following tracking problem is addressed in this paper:

Definition 1 [28]. Consider the non-linear system ẋ =
f(x, u) and z = h(x), where x is a state vector, u is the
input vector and z is the output vector. The solution is
UUB if there exists β > 0 and γ > 0, and for every α ∈
(0, γ) there exists a positive constant such that ‖x(t0)‖ <
α⇒ ‖x(t)‖ ≤ β, ∀t ≥ t0 + T .

Considering this definition, the following tracking
problem is addressed in this paper.

Definition 2 Given a smooth bounded desired trajec-
tory zd(t) = h(ηd(t)) : [0,∞) → <2 which is gener-
ated by an associated timing law, the control objective dis-
cussed in this paper is to design a feedback control law for
the systems (19) such that (i) it makes the tracking errors,
ze(t) := z(t)− zd(t), be uniformly ultimately bounded in
the presence of structured and unstructured uncertainties;
(ii) it does not require measurements of the velocity sig-
nals; and (iii) it takes the actuator dynamics into account.

The following assumptions are essential to meet the
control objectives of this paper:
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Assumption 1 Measurements of output vector z ∈ <2

and current Ia are available in real-time.
Assumption 2 The desired trajectory zd(t) is cho-

sen such that zd(t), żd(t), z̈d(t) and
...
z d are all bounded

signals in the sense that sup
t≥0
‖zd‖ < Bdp, sup

t≥0
‖żd‖ <

Bdv, sup
t≥0
‖z̈d‖ < Bda and sup

t≥0
‖...z d‖ < Bdj where

Bdp, Bdv, Bda and Bdj are bounded constants.
Assumption 3 In (1), the sway velocity v is passive-

bounded in sense that sup
t≥0
‖v(t)‖ < Bv . However, in most

practical applications of the surface vessels [29], it is not
difficult to verify that this assumption is always satisfied.
For more details, see [30].

3 OUTPUT FEEDBACK CONTROL DESIGN
In this section, to achieve the control objective, an output
feedback trajectory tracking controller is designed using
the DSC method. Then, a Lyapunov-based stability anal-
ysis is applied to prove that the tracking errors and state
estimation errors are UUB.

3.1 Recursive controller-observer design
Step1: Consider the following definitions

żr := żd − Λ(ẑ − zd) = żd − Λze + Λzz, (23)

żo := ˙̂z − Λzz, (24)

r := ż − żo = żz + Λzz, (25)

where zz := z − ẑ is the observation error vector, Λ ∈
<2×2 denotes a diagonal positive- definite gain matrix.
Considering the above definitions, the first dynamic sur-
face is defined as

S1 := ż − żr = że + Λze − Λzz. (26)

Considering (19) and applying (26) yield

M2(ψ)Ṡ1 = −C2(v, ψ, ż)S1−D2(ψ)S1 +ξ+J−T (ψ)Ia,
(27)

where ξ = −M2(ψ)z̈r − C2(v, ψ, ż)żr − D2(ψ)żr −
τw2(v, ψ, t) denotes the uncertain non-linearities which are
bounded as ‖ξ‖ ≤ f(żr, z̈r) by using property (5). We now
choose Īa to make S1 → 0, the following adaptive robust
virtual tracking controller is proposed

Īa = JT (ψ)(−K1(żo − żr)−K2(ze + zz)

−fc(f̂(żr, z̈r) sign(S1 + r))) ,
(28)

where K1 and K2 ∈ <2×2 are positive-definite diagonal
gain matrices. The control term fc is a continuous approx-
imation of Signum function, which satisfies the following
conditions [31]:

(S1 + r)T fc(f̂ sign(S1 + r)) ≥ 0, (29)

f̂ ‖S1 + r‖−(S1 + r)T fc(f̂ sign(S1 + r))≤δ1(t) + δ2(t),

where δi(t), i = 1, 2 are bounded time-varying positive
scalars. In the control law (28), f̂(żr, z̈r) = F (żr, z̈r)α̂
is the estimate of the upper-bounding function f(żr, z̈r),
where F (żr, z̈r) =

[
1 ‖żr‖ ‖żr‖2 ‖z̈r‖

]
and α̂ is

updated by

˙̂α = Γ1F
T (żr, z̈r) ‖S1 + r‖ − Γ1σ1(α̂− α0), (30)

where Γ1 = γ1I4 denotes the adaptation gain, σ1 is a small
positive number and α0 ∈ <4 is a priori estimate of the
parameters. To estimate the velocity vector, the following
linear observer [32] is utilized

˙̂z = ˙̂zo + Λzz + kozz, (31)

¨̂zo = z̈r + koΛzz, (32)

where ko is a positive constant. Equation (12) can be ap-
plied to compute the velocities estimates. Then, the virtual
control signal Īa is passed through the following first order
filter

τ İaf + Iaf = Īa, Iaf (0) = Īa(0), (33)

where Iaf denotes the filtered virtual tracking control and
τ is a positive design parameter.

Step 2: Consider the actuator dynamic (9). The second
dynamic surface is defined as

S2 = Ia − Iaf . (34)

Differentiating S2 and substituting (9), yield

LaṠ2 =Laİa−Laİaf =ua−RaIa−NKbXυ−ud−Laİaf .
(35)

By applying (15) and (34) into (35), one may write

LaṠ2 = ua −RaS2 −NKbXJ
−1że + ζ, (36)

where

ζ=−RaIaf−NKbXJ
−1żd+NKbXJ

−1Jδ−Laİaf−ud

denotes the uncertain non-linearities which may be
bounded as ‖ζ‖ ≤ h(żd, Iaf , İaf ) := H(żd, Iaf , İaf )β,
where β is a vector of uncertain parameters and
H(żd, Iaf , İaf ) =

[
1 ‖Iaf‖

∥∥∥İaf
∥∥∥ ‖żd‖

]
. Then,

the actual control input is proposed as follows:

ua = −K3S2 − hc(ĥ sign(S2)), (37)

where hc ∈ R2 denotes the continuous approximation of
signum function, which also satisfies the following condi-
tions [31]

ST2 hc(ĥ sign(S2)) ≥ 0,

ĥ ‖S2‖ − ST2 hc(ĥ sign(S2)) ≤ ι1(t) + ι2(t),
(38)
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where ĥ = Hβ̂ denotes the estimated upper bounding
function h and β̂ is updated by

˙̂
β = Γ2H

T ‖S2(t)‖ − Γ2σ2(β̂ − β0). (39)

where Γ2 = γ2I4 denotes the adaptation gain, σ2 is a small
positive number, β0 ∈ <4 is a priori estimate of parame-
ters. In (38), ιi(t), i = 1, 2 are bounded time-varying pos-
itive scalars. The controller (37) does not need differentia-
tion of the virtual controller (28), since it can be computed
by the first order filter (33).

3.2 Stability analysis

Following preliminaries are needed for Lyapunov stability.
Define the boundary layer error as

ef = Iaf − Īa. (40)

By considering (28), (33) and (40), the derivative of ef is
given by

ėf = İaf− ˙̄Ia = −ef
τ

+
∂JT

∂ψ
S(ψ)J−1(ψ)ż(J−T (ψ)Īa)

− ∂J
T

∂ψ
S(ψ)J−1(ψ)Jδ(v, ψ)(J−T (ψ)Īa)+

∂JT

∂ψ
δ(v, ψ)×

(J−T(ψ)Īa) + JT(ψ)(K1(z̈o − z̈r) +K2(że + żz) + ḟc).
(41)

The interested reader is referred to [33] for a continu-
ous differentiable robust control fc. On mat verify that all
terms in (41) can be dominated by some continuous func-
tions. This helps us to write
∥∥∥ ėf +

ef
τ

∥∥∥ ≤ ρ(S1, S2, r, ef , ze, zz, α̂, zd, żd, z̈d,
...
z d),

(42)
where ρ is a continuous function. Multiplying both sides
of (42) by eTf , yields

eTf ėf +
1

τ
eTf ef ≤

∥∥∥∥ eTf ėf +
1

τ
eTf ef

∥∥∥∥ ≤ ρ ‖ef‖ . (43)

As a result, we have

eTf ėf ≤ −
1

τ
eTf ef + ρ ‖ ef‖ ≤ −

1

τ
eTf ef + eTf ef +

1

4
ρ2.

(44)

Then, considering that S1 − r = żo − żr and substi-
tuting (34), (40) and (28) into (27), the closed-loop system
dynamics may be achieved as

M2(ψ)Ṡ1=−C2(v, ψ, ż)S1 +ξ+χ1 +J−T (ψ)(ef + S2)

−K1S1 +K1r −K2ze −K2zz − fc. (45)

where χ1 = −D2(ψ)S1 which is bounded as ‖χ1‖ ≤
ζ1 ‖x‖+ ζ2 ‖x‖2 where

x = [zTe , z
T
z , S

T
1 , r

T ]T . (46)

By considering (31) and (32), one may show that Ṡ1 =
ṙ + kor which together with (45) and S1 − r = żo − żr
yield the following error equation

M2(ψ)ṙ=−C2(v, ψ, ż)r−(koM2(ψ)−K1)r−K1S1−K2ze

−K2zz − fc + χ2 + ξ + J−T (ψ)(ef + S2). (47)

where χ2 = C2(v, ψ, S1 + żr)r−C2(v, ψ, ż)S1−D(ψ)S1

which is bounded as follows:

‖χ2‖ ≤ ζ3 ‖x‖+ ζ4 ‖x‖2 . (48)

Substituting (37) into (36) yields

LaṠ2 =−K3S2−RaS2−NKbXJ
−1że+ζ−hc(ĥ sign(S2)).

(49)

The stability of the resulting closed-loop dynamics is
summarized by the following theorem.

Theorem 1 Consider the fast underactuated ship sys-
tem (19). Given a bounded continuous desired trajec-
tory, under Assumption 1-3, the output feedback controller
(28), (37), (31) and (32) with the conditions (29) and (38)
and the adaptive laws (30) and (39) ensures that all sig-
nals in the closed-loop system are bounded, the track-
ing errors ze(t) = z(t) − zd(t) and observation errors
zz(t) = z(t)−ẑ(t) are UUB and exponentially converge to
small ball containing the origin. Moreover, the following
region of attraction can be made arbitrarily large to include
any initial conditions by selecting the control gains large
enough.

RA=

{
ϑ ∈ <20

∣∣∣∣∣‖ϑ‖<
√

2λmin(A∗)− (ζ1 + ζ3)

(ζ2 + ζ4)λmax(P )/λmin(M∗)

}

(50)
where ϑ = [xT , ST2 , e

T
f , α̃

T , β̃T ]T , λmin(A∗) is a positive
gain-dependent parameter, x ∈ <8 was defined in (46) and
matrices P and M∗ will be defined later.

Proof: Consider the following Lyapunov function can-
didate

V (t)=
1

2
zTeK2ze+

1

2
zTzK2zz+

1

2
ST1M2(ψ)S1+

1

2
rTM2(ψ)r

+
1

2
ST2 LaS2 +

1

2
eTf ef +

1

2
α̃TΓ−1

1 α̃+
1

2
β̃TΓ−1

2 β̃. (51)

As shown in Appendix, differentiating (51) along (25),
(26), (45), (47), (49), (30) and (39), after some manipu-
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lations, one can get

V̇ (t)≤−λmin(A)‖ze‖2−λmin(B)‖zz‖2−λmin(C)‖S1‖2

− λmin(D) ‖r‖2−λmin(E)‖S2‖2+
1

2
(ζ1+ζ3) ‖x‖2

+
1

2
(ζ2 + ζ4) ‖x‖4 − 1

τ
eTf ef + eTf ef +

1

4
ρ2
m+

‖ξ‖ ‖S1 + r‖ − (S1 + r)T fc + ‖S2‖ ‖ζ‖−
ST2 hc +

∥∥J−T
∥∥ ‖ef‖2 − α̃TFT ||S1 + r||+

α̃Tσ1(α̂− α0)− β̃HT ||S2||+ β̃Tσ2(β̂ − β0) , (52)

where

A=K2Λ−1

2
‖K2‖I2−

1

2

∥∥NKbXJ
−1Λ
∥∥I2−

1

2
‖K2Λ‖ I2,

B=K2Λ−1

2
‖K2‖I2−

1

2

∥∥NKbXJ
−1Λ
∥∥I2−

1

2
‖K2Λ‖ I2,

C=K1−
1

2
(ζ1 + ζ2)I2−

∥∥J−T
∥∥ I2−

1

2

∥∥NKbXJ
−1
∥∥I2,

D=k0M2(Ψ)−K1−
1

2
(ζ3+ζ4)I2−

1

2
||K2||I2−||J−T ||I2

E=K3+Ra−||J−T||I2−
1

2
||NKbXJ

−1||I2−||NKbXJ
−1Λ||I2.

(53)

Considering that ‖ξ‖ ≤ Fα and ‖ζ‖ ≤ Hβ, α̂ = α −
α̃, β̂ = β − β̃ and completing the square terms, one may
write (53) as

V̇ (t)≤−λmin(A∗)‖x‖2−λmin(E)‖S2‖2−λmin(F )‖ef‖2

+
1

2
(ζ1 + ζ3) ‖x‖2 +

1

2
(ζ2 + ζ4) ‖x‖4 +

1

4
ρ2
m

+ ‖S1 + r‖Fα̂− (S1 + r)T fc − µσ1(1− 1

2κ2
) ‖α̃‖2

+
1

2
µσ1κ

2 ‖α− α0‖2 + ‖S2‖Hβ̂ − ST2 h

− µσ2(1− 1

2κ2
)
∥∥∥β̃
∥∥∥

2

+
1

2
µσ2κ

2 ‖β − β0‖2 , (54)

where A∗ = Blkdiag{A,B,C,D}, µσj =√
λmin(σTj σj), j = 1, 2, F = ( 1

τ − 1 −
∥∥J−T

∥∥)I2

and κ ∈ <+. In (54), one can choose Λ,K1,K2,K3, ko
and τ such that matrices A,B,C,D,E, F and as a result
A∗ are all positive definite. By applying the conditions
(29) and (38) to (54), one gets

V̇ (t)≤−(λmin(A∗)−1

2
(ζ1+ζ3)−1

2
(ζ2 + ζ4) ‖x‖2) ‖x‖2

− λmin(E) ‖S2‖2−λmin(F ) ‖ef‖2

− κ1||α̃||2 − κ2||β̃||2 + ε(t) , (55)

where

‖x‖2 ≤λmax(P )/λmin(M∗) ‖ϑ(0)‖2 ,

κ1 =µσ1(1− 1

2κ2
) , κ2 = µσ2(1− 1

2κ2
),

ε(t) =
1

2
µσ1κ

2 ‖α− α0‖2 +
1

2
µσ2κ

2 ‖β − β0‖2

+ δ1(t) + δ2(t) + ι1(t) + ι2(t) +
1

4
ρ2
m, (56)

where ϑ = [xT , ST2 , e
T
f , α̃

T , β̃T ]T ,
M∗ = Blkdiag{K2, M2} and P =
Blkdiag{M∗, La, I2,Γ−1

1 ,Γ−1
2 }. If λmin(A∗) is chosen

such that

λmin(A∗) >
1

2
(ζ1 + ζ3) +

1

2
(ζ2 + ζ4) ‖x‖2 , (57)

then, (55) can be expressed as

V̇ (t) ≤− cm ‖x‖2 − λmin(E) ‖S2‖2 − λmin(F ) ‖ef‖2

− κ1||α̃||2 − κ2||β̃||2 + ε(t) , (58)

where cm ∈ < is some positive constant. On the other
hand, the Lyapunov function (51) can be stated as

1
2λmin(M∗) ‖x‖2 + 1

2λmin(La) ‖S2‖2 + 1
2 ‖ef‖

2

+ 1
2λmin(Γ−1

1 ) ‖α̃‖2 + 1
2λmin(Γ−1

2 )
∥∥∥β̃
∥∥∥

2

≤ V (t) ≤
1
2λmax(M∗) ‖x‖2 + 1

2λmax(La) ‖S2‖2

+ 1
2 ‖ef‖

2
+ 1

2λmax(Γ−1
1 ) ‖α̃‖2 + 1

2λmax(Γ−1
2 )

∥∥∥β̃
∥∥∥

2

≤ 1
2λmax(P ) ‖ϑ‖2

.

(59)
Then, inequality (58) is written as

V̇ (x, S2, ef , α̃, β̃) ≤ −λV (x, S2, ef , α̃, β̃) + ε(t), (60)

where

λ =
{

2cm
λmax(M∗) ,

2λmin(E)
λmax(La) , 2λmin(F )

, 2κ1

λmax(Γ−1
1 )

, 2κ2

λmax(Γ−1
2 )

}
.

(61)

By solving the differential inequality (60), we have

V (t) ≤ V (0) e−λt + ε
/
λ(1− e−λt),∀t ∈ [0,∞). (62)

Thus, provided that matrices A,B,C,D,E and F are all
positive definite and the condition (57) is satisfied, V de-
creases monotonically until (x, S2, ef , α̃, β̃) reaches the
compact set

Ω =
{

(x, S2, ef , α̃, β̃) ∈ <20 ×< : V (x, S2, ef , α̃, β̃)

≤ max {V (t0), ε/λ}} .
which results in the following inequality

V (t) ≤ V (0) ≤ 1

2
λmax(P ) ‖ϑ(0)‖2 ∀t ≥ 0. (63)
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where the upper bound on V (t) in (59) is used. From (63)
and (59), one has

‖x‖2 ≤ λmax(P )/λmin(M∗) ‖ϑ(0)‖2 . (64)

Therefore, a sufficient condition for (57) is given by

λmin(A∗) > 1
2 (ζ1 + ζ3) + 1

2 (ζ2 + ζ4)×
(λmax(P )/λmin(M∗) ‖ϑ(0)‖2 . (65)

This results in the region of attraction in (50). Hence,
x, S2, ef , α̃, β̃ are semi-globally uniformly ultimately
bounded. This completes the proof.

Remark 1: In order to make (28) and (30) independent
from velocity measurements, the term S1 +r is substituted
by Ŝ1 + r̂ =: ˙̂z− żd+Λze. In fact, if the gains are set large
enough, the approximation S1 + r = Ŝ1 + r̂ is satisfied.
See [32] for more details.

Remark 2: The controller parameters
Λ,K1,K2,K3, ko, τ,Γ1,Γ2, σ1 and σ2 may be tuned
to adjust the convergence rate λ and the size of ultimate
bound ε/λ. The following tuning rules help the user to
properly adjust control parameters: (i) considering (53),
the larger values of Λ,K1,K2,K3, ko and smaller value
of τ increase λ and decrease the size of the ultimate bound
ε/λ; (ii) from (61) and (62), larger values of adaptive
gains, that is, Γ1 and Γ2 increase the convergence rate
λ which leads to smaller ultimate bound ε/λ. However,
large adaptive gains may result in more robust control
actions, which lead to actuators saturation and poor
tracking performance; (iii) smaller values of σ1 and
σ2 decrease the value of ε and consequently leads to
smaller ultimate bound ε/λ; (iv) the time functions δ(t)
and ι(t) in saturation-type controllers fc and hc in (28)
and (37) may be tuned to compromise between the final
tracking accuracy and smoothness of the control signal.
The controllers (28) and (37) can be made smoother by
choosing a larger value for δ(t) and ι(t). However, the
larger value of δ(t) and ι(t) increases the value of ε in
(56) which may result in a larger ultimate bound ε/λ.

Remark 3: In comparison with the previous works [6,
9,12], the proposed control system can overcome the ‘ex-
plosion of complexity’ problem by using the first order
filters in the DSC design procedure. This means that the
proposed controller does not require the derivative of the
virtual controller for the next step in the design proce-
dure. This advantage of DSC technique provides a sim-
pler design than the backstepping approach. This paper
has been focused on the design of a simple output feed-
back control system by using the DSC technique, adaptive
robust saturation-type control techniques and a linear ob-
server. Compared to the works of [6,9,12], our proposed
control approach has the following advantages: (i) time-
consuming and tedious analyses in determining the regres-
sion matrices are not required for our proposed controller;

(ii) the nonparametric uncertainties such as external distur-
bances and unmodelled dynamics are completely consid-
ered in the design of the proposed controller; (iii) it only
designs one virtual controller to compensate for kinematic
and dynamic subsystems.

4 SIMULATION RESULTS

In this section, two numerical simulations were performed
using MATLAB software to evaluate the tracking perfor-
mance and robustness of the proposed controller for a fast
underactuated surface vessel, which is subjected to both
parametric and non-parametric uncertainties. The follow-
ing ship parameters are chosen to track a desired trajectory
based on Look-ahead control method [20]

m11 = 25.805 kg,m22 = 33.856 kg,m33 = 2.743 kg,
d11 = 12.436, d22 = 17.992 , d33 = 0.564 .

(66)

For simulation purposes, the actuator parameters are
chosen as La = diag[0.1, 0.1]Ωs,Ra = diag[5, 5]Ω,

N = diag[48, 48],Kb = diag[0.02, 0.02]V/rad/s, KT =

[0.2, 0.2] Nm/A. It is assumed that dynamic parameters and
actuators parameters of the vessel are unknown. The non-
parametric uncertainties in the vessel and actuators dynam-
ics are simulated by the following signals:

τw2 = [5 sin(t/20), 5 sin(t/20)],
ud = [sin(t/20), sin(t/20)].

(67)

Moreover, sensor inaccuracies are simulated by zero-
mean Gaussian white noise. In the first simulation, the fol-
lowing circular desired trajectory is selected to evaluate the
controller performance

zr = [xf +R cos(ωrt), yf +R sin(ωrt)], (68)

where (xf , yf ) = [2.5m, 5.5m], R = 2m and ωr = 0.05
are parameters of the desired trajectory. Remark 2 pro-
vide a guideline for the designer to suitably choose control
parameters. In our simulations, the following controller
parameters achieve a satisfactory tracking performance:
Λ = 0.3I2×2,K1 = 10.5I2×2,K2 = 9I2×2,K3 =
4I2×2, ko = 20, τ = 0.025. However, we avoid large
control gains to keep the control signals within |ui| ≤
24V, i = 1, 2 in order to prevent actuators saturation.
Referring to Remark 2, the adaptive gains are also in-
creased from zero until acceptable adaptation and con-
vergence rates are achieved. The gain values are chosen
as Γ1 = 2diag[1, 1, 0.25, 1], Γ2 = 10−3diag[1, 1, 1, 1]
and the look ahead distance is chosen as L = 0.15m
for the simulation. Other control parameters are set to
σ1 = 0.009, σ2 = 0.00005, α0 = 0 and β0 = 0. Con-
sidering Remark 1, the robust control laws in (28) and (37)
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Fig. 3. X–Y plot of desired and the vessel trajectories.

Fig. 4. Output tracking errors.

are selected as

fc(f̂ sign(Ŝ1 + r̂)) =
(Ŝ1 + r̂)f̂2

f̂
∥∥∥Ŝ1 + r̂

∥∥∥+ δ(t)
, (69)

hc(ĥ sign(S2)) =
S2ĥ

2

ĥ ‖S2‖+ ι(t)
, (70)

which satisfy the conditions (29) and (38). The boundary
layer thickness in the control law (69) and (70) is chosen
as

δ(t) =

{
5000 if 0 ≤ t ≤ 5

1 + e−0.2(t−5) if t > 5
. (71)

and ι(t) = 100. As stated in remark 2, this choice of ι(t)
reduces high control activities and actuators saturation in
the initial time of the trajectory tracking. The initial pos-
tures (the position and orientation) of the vessel are set to
[x(0), y(0), ψ(0)] = [6, 5, π/7] for this simulation.

Fig. 3 shows the x–y plot of desired and actual tra-
jectories of the vessel. The output tracking errors are also
shown by Fig. 4. From the figures, the robustness and
tracking response of the proposed controller is desirable
despite structured and unstructured uncertainties. Linear
and angular velocities estimation are shown in Fig. 5, Fig.

Fig. 5. Linear and angular velocities and their estimations.

Fig. 6. Linear and angular velocities estimation errors.

Fig. 7. Generated control signals.

6 demonstrates the linear and angular velocities estimation
errors. Figs. 4 and 5 show that the output tracking errors
ze = z − zd and velocity estimation errors converge to a
small compact set. Figs. 7 shows the generated control
signals which are fed to the vessel actuators. The estimates
of unknown parameters of the upper-bounding functions in
the vessel model and actuators dynamics are illustrated by
Figs. 8 and 9. As it can be seen from the figures, the pa-
rameter estimates are also bounded. The user may adjust
the size of the ultimate bound ε(t), convergence rate λ and
smoothness of the control signals by adjusting control pa-
rameters K1,K2,K3,Γ1,Γ2, α0, β0, σ1, σ2, δ1(t), ρ(t).

Then, a flower-shaped desired trajectory is chosen to
assess the controller performance in the following simula-
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Fig. 8. Estimated parameters of the upper-bounding func-
tions for uncertain non-linearities.

Fig. 9. Estimated parameters of the upper-bounding func-
tions for uncertain non-linearities.

tion. For this purpose, the desired trajectory is given by

zr = [xf +R sin(2ωrt) +R cos(ωrt),
yf +R sin(ωrt) +R cos(2ωrt)] .

(72)

The following controller parameters achieve a satisfac-
tory tracking performance: Λ = 1.2I2×2,K3 = 3I2×2

and other parameters are selected as same as the first
simulation. The initial postures of the vessel are set to
[x(0), y(0), ψ(0)] = [2.5, 9.5, pi/6] for this simulation.
Fig. 10 to Fig. 16 show the tracking results of the pro-
posed controller for the desired trajectory (72). To show
the noisy position measurements, a close-up of Fig. 10 is
shown in Fig. 17. As stated before, large control gains
may be cause actuators saturation and as a result degrade
the performance of the controller. Fig. 18 illustrates the
x–y plot of desired and actual trajectories of the vessel
when large control gains are chosen. From the figures, it
can be seen that the tracking performance and robustness
of the output feedback controller are desirable. Therefore
the presented simulation results verify that our proposed
controller is effective to solve the trajectory tracking prob-
lem of an underactuated fast surface vessel without veloc-
ity measurements.

Fig. 10. X–Y plot of desired and the vessel trajectories.

Fig. 11. Output tracking errors.

Fig. 12. Linear and angular velocities and their estima-
tionsvessel.

4.1 Comparative study

Here, our aim is to show the efficacy of the proposed con-
trol approach compared with the previous output feedback
control system in [24]. It is shown that, their proposed out-
put feedback controller shows a satisfactory tracking per-
formance in the presence of parametric uncertainties. In
practice, the surface vessel and actuators dynamics are also
subjected to non-parametric uncertainties. Such uncertain-
ties may be caused by unmodelled dynamics of the system.
As mentioned before, the proposed controller in [24] does
not take non-parametric uncertainties into account, which
may lead to a poor tracking performance. By adopting the
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Fig. 13. Linear and angular velocities estimation errors.

Fig. 14. Generated control signals by the proposed con-
troller.

Fig. 15. Estimated parameters of the upper-bounding func-
tions for uncertain non-linearities.

presented models, simulation parameters in [24], another
computer simulation has been performed for a compara-
tive study. The simulation results are illustrated by Figs.
19 and 20 to compare the tracking performance and ro-
bustness of our proposed controller with the proposed con-
troller in [24]. The uncertainties are assumed as (67). From
Figs. 19 and 20, the robustness and the tracking response
of the controller, which is proposed in [24], is not accept-
able due to a large amount of unstructured uncertainties.

Fig. 16. Estimated parameters of the upper-bounding func-
tions for uncertain non-linearities.

Fig. 17. Noisy position measurements.

Fig. 18. X–Y plot of desired and the vessel trajectories
when actuators saturation occurs.

However, as shown in Figs. 3 and 4 our proposed control
system successfully tracks the desired trajectory by taking
the advantage of an adaptive robust saturation-type con-
troller.

5 CONCLUSION

In this paper, the problem of the adaptive robust observer-
based controller has been addressed for an underactuated
fast surface vessel including actuator dynamics by consid-
ering both parametric and nonparametric uncertainties. At
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Fig. 19. X–Y plot of desired and the vessel trajectories in
[24].

Fig. 20. Output tracking errors in [24].

first, one virtual controller was only designed at the kine-
matic and dynamic levels and a linear observer is used to
estimate the velocity vector. Next, the DSC method has
been used to design the tracking control law for the ac-
tuator dynamics without the time derivative of the virtual
control law. A Lyapuonv-based stability analysis was pro-
vided to prove that the tracking and state estimation er-
rors are UUB and the corresponding ultimate bound can
be adjusted by control parameters. To compare with the
proposed controller, an adaptive output tracking controller
was simulated. Simulation results were demonstrated pro-
posed controller successfully tracks the desired trajectory
by taking the advantage of an adaptive robust saturation-
type controller

APPENDIX A

Differentiating (51) along (25), (26), (45), (47), (49), (30)

and (39) and considering that ˙̃α = − ˙̂α and ˙̃
β = − ˙̂

β yield

V̇ (t)=zTe K2że + zTz K2żz + ST1 M2(ψ)Ṡ1 +
1

2
ST1 Ṁ2(ψ)S1

+ rTM2(ψ)ṙ +
1

2
rT Ṁ2r + ST2 LaṠ2 + eTf ėf

− α̃Γ−1
1

˙̂α− β̃TΓ−1
2

˙̂
β

V̇ (t)=zTe K2S1 − zTe K2Λze + zTe K2Λzz + zTz K2r

− zTz K2Λzz − ST1 C2(v, ψ, ż)S1 + ST1 χ1 + ST1 ξ

+ ST1 J
−T (ψ)(ef + S2)− ST1 K1S1 + ST1 K1r

− ST1 K2ze − ST1 K2zz − ST1 fc +
1

2
ST1 Ṁ2(ψ)S1

− rTC2(v, ψ, ż)r + rTχ2 − rT (koM2(ψ)−K1)r

− rTK1S1 − rTK2ze + rT ξ − rTK2zz

+ rTJ−T (ψ)(ef + S2)− rT fc +
1

2
rT Ṁ2(ψ)r

− ST2 K3S2 − ST2 RaS2 − ST2 hc − ST2 NKbXJ
−1S1

+ ST2 NKbXJ
−1Λze − ST2 NKbXJ

−1Λzz

+ ST2 ζ + eTf ėf − α̃TFT ‖S1 + r‖
+ α̃Tσ1(α̃− α0)− β̃THT ‖S2‖+ β̃Tσ2(β̃ − β0)

(73)

Considering property 4, the inequality (73) can be re-
written as

V̇ (t) ≤− zTe K2Λze − zTz K2Λzz − ST1 K1S1

− rT (koM2(ψ)−K1)r − ST2 K3S2 − ST2 RaS2

+ (S1 + r)T (ξ − fc) + ST2 (ζ − hc) +
∥∥ST1

∥∥ ‖χ1‖
+
∥∥rT

∥∥ ‖χ2‖+ ‖S1‖
∥∥J−T

∥∥ ‖ef‖+ ‖S1‖
∥∥J−T

∥∥ ‖S2‖
+ ‖S1‖ ‖K2‖ ‖zz‖ + ‖K2Λ‖ ‖ze‖ ‖zz‖+ ‖r‖ ‖K2‖ ‖ze‖
+ ‖r‖

∥∥J−T
∥∥ ‖ef‖+ ‖r‖

∥∥J−T
∥∥ ‖S2‖+ ‖S2‖×∥∥NKbXJ

−1
∥∥ ‖S1‖+ ‖S2‖

∥∥NKbXJ
−1Λ

∥∥ ‖ze‖
+ ‖S2‖

∥∥NKbXJ
−1Λ

∥∥ ‖zz‖ − α̃TFT ‖S1 + r‖+ eTf ėf

+ α̃Tσ1(α̂− α0)− β̃THT ‖S2‖+ β̃Tσ2(β̂ − β0).
(74)

Since for any P1 > 0 and P2 > 0, the following sets
∏

1 = { (zd, żd, z̈d,
...
z d) : (75)

zTd zd + żTd żd + z̈Td z̈d +
...
z Td

...
z d ≤ P1 } .

∏
2 =

{
(S1, S2, ze, zz, r, ef , α̃, β̃) : V (t) ≤ P2

}
.

(76)
are compact in <8 and <20, respectively,

∏
1×
∏

2 is also
a compact set in <28. Thus, ρ in (42) has a maximum
value ρm in

∏
1×
∏

2, that is ρ ≤ ρm. By considering
this fact and recalling inequality (44), and considering the
following facts

‖K‖ ‖x1‖ ‖x2‖≤
1

2
‖K‖xT1 x1+

1

2
‖K‖xT2 x2,∀x1, x2∈<n.

(77)
The inequality (76) is rewritten as (52).
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