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Wheeled mobile robots (WMRs) are of great importance. Therefore, it is necessary to make sure that they are
not defected. But, in case of failures, the diagnosis task is very important to predict then solve the problem. The
most useful techniques in diagnosis are observers which are based on the observability of the monitored system that
is not usually ensured by WMR. Thus, to overcome this drawback, an intelligent cooperative diagnosis algorithm
is proposed and tested for a group of mobile robots. The diagnosis algorithm is based on robust adaptive unknown
input observer applied on unobservable robot. The local non-observability of each robot is solved by cooperative
communication. The idea consists on considering all WMRs as a Large Scale System (LSS) even these robots
may have not common task. Then, the LSS is decomposed into subsystems that everyone refers to each robot
communicating with its neighbors. Next, a design of cooperative interconnected systems is studied to reassure the
new condition of observability. Besides, Fast Adaptive Fault Estimation (FAFE) algorithm is proposed to improve
the performances of the fault estimation. Finally, to illustrate the efficiency of the proposed algorithm, a model of
three-wheel omnidirectional mobile robot is presented.

Key words: Large Scale System (LSS), Cooperative diagnosis, local and global observability, Robust Unknown
Input Observer (UIO), multi-robot system, Wheeled Mobile Robot (WMR), Fast Adaptive Fault Es-
timation (FAFE)

Robusni adaptivni observer temeljen na algoritmu za kooperaciju mobilnih robota s više kotača. Mobilni
roboti na kotačima od velike su važnosti. Stoga, nužno je osigurati da ne odlutaju. U slučaju kvara važna je dijag-
noza kako bi se predvidio i onda riješio problem. Najkorisnije dijagnostičke tehnike su observeri koji se zasnivaju
na osmotrivosti nadgledanih sustava koja kod mobilnih robota na kotačima najčešće nije osigurana. Stoga, kako bi
se nadišao ovaj problem, koristi se inteligentan algoritam za kooperativnu dijagnozu i testira se na grupi mobilnih
robota. Dijagnostički algoritam zasniva se na robusnom adaptivnom observeru s nepoznatim ulazom koji je primi-
jenjen na neosmotrivom robotu. Lokalna neosmotrivost svakog robota riješena je koopreativnom komunikacijom.
Ideja je da se svi mobilni roboti promatraju kao sustav velikih razmjera iako roboti nemaju isti zadatak. Sustav
velikih razmjera se tada rastavlja na podsutave tako da se svaki odnosi na jednog robota koji komunicira sa svojim
susjedima. Zatim se proučava dizajn kooperativnih povezanih sustava kako bi se osigurali uvjeti za osmotrivost.
Dodatno, predlaže se korištenje brze adaptivne estimacije pogreške kako bi se poboljšala estimacije pogreške. Kon-
ačno, prikazan je model višesmjernog mobilnog robota na tri kotača kako bi se ilustrirala učinkovitost predloženog
algoritma.

Ključne riječi: sustavi velikih razmjera, kooperativna dijagnoza, lokalna i globalna osmotrivost, robusni observer
s nepoznatim ulazom, višerobotski sustav, mobilni robot na kotačima, brza adaptivna estimacija
pogreške

1 INTRODUCTION

Generally, large scale systems are naturally divided
into many smaller interacting subsystems. A class of them
is usually controlled by a distributed or decentralized con-
trol framework. The interaction between each subsystem
and some neighboring subsystems is getting by their states
and inputs. The technical goal is to achieve a specific

global performance of the entire system. When the num-
ber of input and output variables for a class of large scale
system is up to a hundred (or thousand), since centralized
control is forbidden for the less flexibility and the large
cost of computation, the distributed framework is usually
adopted regardless of losing global performance into inter-
connected subsystems [1,2]. Each subsystem is controlled
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by a subsystem-based controller and these controllers are
interconnected via network. Without loss of generality,
there are many tools of large scale system decomposition.
The choice of the manner used depends to domain of work
and the goal to obtain such as mobile robotics. At this
level, it must be noted that in the last several years, con-
siderable attention has been focused on the emerging field
of robotics. Therefore, many successful robotic manipula-
tor designs have been introduced thanks to their good ter-
rain adaptability and high mobility. Many researchers have
proposed different ways of control robot design, classified
types and ensure performance of robots [3, 4]. A large ef-
fort has been devoted by the scientific community espe-
cially to the field of mobile robot systems [5]. In particular,
wheeled robots will be expected to provide many conve-
nient and user friendly transport solutions for both people
and objects [6]. The importance of the wheeled mobile
robots has long been recognized by the robotic research
community. In addition to that, coordination in robotic net-
works becomes an important and promising research area
[7, 8]. There are many coordination tasks of multiple mo-
bile robots including formation, coverage, and target ag-
gregation, but the basic idea for the collaborate control de-
sign is to make the relative position and orientation of the
robots in a desired formation (may be within a given target
set) or all the robots move effectively as a whole. However,
as more detail is included, the dimensionality of such simu-
lations may increase to unmanageable levels of storage and
computational requirements. One approach to overcoming
this is through model reduction. The goal is to produce a
low dimensional system that has the same response char-
acteristics as the original system with far less storage re-
quirements and much lower evaluation time. The resulting
reduced model might be used to replace the original system
as a component in a larger simulation or it might be used to
develop a low dimensional controller suitable for real time
applications. On the other hand, there are diverse objec-
tives to decompose the multi-agent system. In this work,
the main contribution is to diagnose a system of multi-
robots based on fast adaptive observer. In other words,
thanks to robot cooperation, the condition of system ob-
servability can be more overcame to ensure the diagnosis
system. This is the principle of cooperative diagnosis. The
last theme “diagnosis” is considered the focus of several re-
searches [9]. This procedure, Fault Detection and Isolation
(FDI), consists in detecting and isolating faults in a phys-
ical system by monitoring its inputs and outputs [10]. A
typical system for fault detection and isolation is made of
three parts: fault detection indicates that there is a mistake
in the operating system, i.e., the occurrence of a fault and
the time of the fault occurrence; secondly, fault isolation
determines the location and the type of the fault and finally,
fault identification determines the size of the fault. Diverse

FDI methods have been reported in the literature such as:
generating redundancy in the case of physical redundancy
between sensors or parity space formulation. After FDI
block [11], Fault tolerant control systems are needed in or-
der to maintain the performance objectives [12], or if that
turns out to be impossible, to assign achievable objectives
so as to avoid catastrophic failures [13]. Since the pro-
cess used in this work is from the family of mobile robot,
it is better to refer to some researches that are interested
by both diagnosis term [14, 15] and robotic theme [16].
The rest of this paper is organized as follow: firstly, a de-
composition of large scale system is presented. A robot
neighborhood is then discussed to ensure the cooperation
between robots, its neighbors and some beacons. This is
followed by a summary of observability design and robust
estimation algorithm. After that, simulations results are
given to illustrate the effectiveness of the proposed contri-
bution using the model of three-wheel omnidirectional mo-
bile robot. Finally, this manuscript is ended by concluding
remarks and a discussion of future work.

2 LARGE SCALE SYSTEM

2.1 Presentation

In the study of LSS, the development of decomposi-
tion techniques is considered one of the major concerns.
Decomposition of a LSS into interconnection of lower-
dimensional subsystems is instrumental to the analysis, es-
timation and control of LSS [17]. While various decompo-
sition methods have been developed in the past research,
the computational aspects of the associated numerical al-
gorithms are not yet fully explored. It is not necessarily
desirable to deal with each component of a system in a
uniformed way, since there exist a limitation in compu-
tational amount and available information about the sys-
tems. Hence, if the system of our interest is highly large-
scale and complex, we should create an innovation which
reduces the amount within the range which does not lose
accuracy. One of the ways to solve difficulties is to divide a
large-scale system into some hierarchical layers by corre-
sponding to its physical scale, and to give a comprehensive
notion of a dynamical system modeling.

2.2 Decomposition

The main goal of LSS decomposition in this context is
to create an interface of systems with reduced size commu-
nicating with each other. At this step, we introduce prelim-
inaries for the model used. Consider a global LSS given as
continuous-time linear dynamical model described by the
state-space equation:

(S)

{
Ẋ = AX +BU

Y = CX
(1)
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where X ∈ Rnx is the state of system (S), U ∈ Rnu is the
input of system and Y ∈ Rny is the output vector.
Suppose that (S) consists of k subsystems Si,i = 1...k

where nx =
k∑
i=1

ni, nu =
k∑
i=1

mi, ny =
k∑
i=1

pi and

ni,mi, pi are the dimensions of the state, input and output
vectors of the subsystem. This leads to the next scripture
of system.

(S)





Ẋ =




ẋ1
...
ẋi
...
ẋk




= A




x1
...
xi
...
xk




+B




u1
...
ui
...
uk




Y =




y1
...
yi
...
yk




= C




x1
...
xi
...
xk




(2)

where A =




A11 · · · A1i · · · A1k

...
. . .

...
Ai1 · · · Aii · · · Aik

...
. . .

...
Ak1 · · · Aki · · · Akk




,

B =




B11 · · · B1i · · · B1k

...
. . .

...
Bi1 · · · Bii · · · Bik

...
. . .

...
Bk1 · · · Bki · · · Bkk




and C =




C11 · · · C1i · · · C1k

...
. . .

...
Ci1 · · · Cii · · · Cik

...
. . .

...
Ck1 · · · Cki · · · Ckk




Therefore, from (2) the global system can be decomposed
into subsystems described by the following state-space
(Si):




ẋi(t) = Aiixi(t) +Biiui(t) +

k∑

j=1
j 6=i

Aijxj +

k∑

j=1
j 6=i

Bijuj

yi(t) = Ciixi(t)
(3)

where xi(t) ∈ <ni is the state vector of (Si), ui(t) ∈ <mi

is the input vector and yi(t) ∈ <pi is the output vector.

Ai, Bi are variable parameter matrices of dimensions (ni×
ni), (ni×mi) and Ci is known matrix of dimension (pi×
ni). Aij and Bij are the interaction matrices between two
neighbor subsystems (Si) and (Sj).

3 PROBLEM FORMULATION

As it is known from the literature that there is some
problem to ensure the observability of LSS. So, the main
purpose of this work is to expand the linear system’s ob-
servability condition thanks to the new algorithm of coop-
eration between mobile robots.
That’s why, in the following, we will propose an hierar-
chical procedure with diverse steps to solve at the end the
problem in this kind of system (LSS).
The context for this strategy is introduced by briefly dis-
cussing the observability of WMR and then considering the
new decomposition of LSS that might happen to ensure the
observability theory and therefore the observer existence.
Note that in the following Aii, Bii and Cii will be noted as
Ai, Bi and Ci respectively.

3.1 Observability Analysis

Considering that there is neither mechanical connec-
tion between robots nor common task between neighbor
subsystems. So, the matrices Aij and Bij will be ne-
glected.
Therefore, the subsystem model given in (3) will be written
as follow:

(Si)

{
ẋi(t) = Aixi(t) +Biui(t) +Kiwi(t)

yi(t) = Cixi(t)
(4)

where wi(t) ∈ <li is the unknown input vector which
contains faults vector and/or disturbances vector. Ki is a
known input matrix of dimension (ni × li).
Note that in practice the WMR used is unobservable. So,
rank(Oi) = ri ≺ ni, where

Oi =
(
Ci CiAi CiA

2
i . . . CiA

ni−1
i

)T

is the observability matrix. Thus, the design of Unknown
Input Observer (UIO) is not possible. The next section will
propose a solution for this problem.

3.2 Subsystem Decomposition

If we suppose that rank(Oi) = ri < ni, the WMR
number i is not observable. But the main goal is to syn-
thesize an adaptive observer for this system. That’s why; it
shall rewrite the model given (4) into a hierarchical form,
by dissociating the observable part and unobservable one.
Otherwise, to ensure observability of (Si), it must have
rank(Ai) = ri. Hence, this system will be decomposed
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into an observable part with dimension ri to extract the
measurable states and a unobservable one, it will be writ-
ten in its decentralized form (Si) as follow:




ẋi(t) = Ai

[
xi1(t)

xi2(t)

]
+

[
Bi1

Bi2

]
ui(t) +

[
Ki1

Ki2

]
wi(t)

yi(t) =
[
C1 0

]
[
xi1(t)

xi2(t)

]

(5)

where Ai =

(
Ai11 Ai12
Ai21 Ai22

)

Observable part
The expression of observable part of (Si) is written as fol-
low (Si1):



ẋi1(t) =

(
Ai11 Ai12

)
[
xi1(t)

xi2(t)

]
+Bi1ui(t) +Ki1wi(t)

yi(t) = C1xi1(t)
(6)

where xi2(t), ui(t) and wi(t) are considered unknown in-
puts.
Hence, the new expression (Si1) is given by (7):





ẋi1(t) = Ai11(x)xi1(t) +Bc1



xi2(t)

ui(t)

wi(t)




yi(t) = Ci1xi1(t)

(7)

where xi1(t) ∈ <ri and Bc1 =[
Ai12(x) Bi1(x) Ki1

]
.

Suppose that Oi1 is the observability matrix of (Si1):
Oi1 =

(
C1 C1Ai11 C1A

2
i11 . . . C1A

ni−1
i11

)T
Now, it’s clear that rank(Oi1) = ri.
Thus, (Si1) is observable and the Observer design is
possible. As result, a robust Unknown input observer
analysis which is developed in my previous work [18] can
be applicable.

Remark 1 It must permute the rows of Ai, Bi, Ci to have
the first vector as observable state if they are not in order.

Unobservable part
The unobservable part (Si2) can be described by (8)





ẋi2(t) = Ai22(x)xi2(t) +Bc2



xi1(t)

ui(t)

wi(t)




yi(t) = C2xi2(t)

(8)

where Bc2 =
[
Ai21(x) Bi2(x) Ki2

]
, xi2(t) ∈

<ni−ri Given that (Si2) is not observable, the observer de-
sign can be realizable if all states of (Si2) are measurable.

So, to solve this problem, we try to estimate xi2 from coop-
eration with other neighbor subsystems. This is the subject
of Fig. 1.

Fig. 1. Observability Synthesis based on Cooperation Al-
gorithm.

4 MULTI WMR COOPERATION

From this section, we will propose a solution of
non-observability problem based on system’s cooperation.
Multi-Robot Systems (MRSs) are employed for diverse
reasons; however, one of the main motivations is that
multi-robot systems can be used to increase the system ef-
fectiveness [19]. To ensure the MRSs cooperation, it must
validate the robot neighborhood test developed in the fol-
lowing section.

4.1 Robot Neighborhood Test

If there is no obstacle, two robots i and j, equipped
on the same communication range rangec, are considered
neighbors means could communicate reciprocally if and
only if dij 6 range_c, where dij is the Euclidian distance
between two robots.
Otherwise, in presence of obstacles, this test is insufficient.
It must send signals between all robots to check if there are
answers. Hence, the neighborhood test is verified.

4.2 Cooperation principle

In this work, the MRSs cooperation is treated for the
diagnosis systems. The word cooperating underlines the
interaction or the integration among multiple robots, that
means, the robots have to communicate, exchange infor-
mation or interact in some way to achieve an overall mis-
sion as illustrated in Fig.2.
The abbreviations MR, NR and B mean respectively Mas-

ter Robot, Neighbor Robot and Beacon. Ni and Nj are the
Neighborhood of Robot i and j, respectively.
To implement the WMR cooperation algorithm with suc-
cessful result, it must follow the next theorem.
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Fig. 2. Illustration of cooperation between team of robots.

Hypothesis 1 : Suppose a LSS (S) is globally observable.
S = Si ∪ Sj .
There exists a subsystem (Si) given as previous model de-
scribed by (4) such as: (Si) is locally unobservable.

Hypothesis 2 : Suppose that

Si = Si1 ∪ Si2 and xi(t) =

[
xi1(t)

xi2(t)

]

where xi1(t) ∈ Rri , xi2(t) ∈ Rni−ri .
Note that (Si1) is the observable part of (Si).

Theorem 1 Let Hypothesis 1 and 2 be satisfied, if there
exist a function fi(xi2, xj) that described interconnection
parameter of neighboring systems such as xj ∈ Sj with
Si, Sj are neighbors, xi2 becomes measurable.
Then, (Si) turns into an observable system locally.

Then, a detailed algorithm is proposed to explain the the-
ory of robot cooperation. It must firstly satisfy the follow-
ing remarks.

Remark 2 : Suppose that the unknown variables in state
vector are robot position (xi, yi). Therefore, the number of
unknown variables for each subsystem i (robot i ) is two.

Remark 3 : In this work, interconnection parameters
can be summarized in the calculation of distance between
robots. While this computation is written based on
square of position robot, we have therefore more than
one solution. This means that each equation admits two
solutions. To reduce the system to unique solution, it must
consider 2 more constraints for each one subsystem.

In the following, with more details the proof of the last the-
orem is given.
Proof: :

The problem is formulated by these statistics:
Set of nMaster Robots, p Beacons and q Neighbor Robots.
Firstly, referring to remark 2 and 3, there are (4 × n) un-
known variables according to number of MR. In the neigh-
borhood Ni, distances between the relative master robot
MRi and p beacons provide p equations. Then, there are
(n − 1) equations derived from distances between MRi
and MRj , where MRj is the master robot of other neigh-
borhood Nj . As conclusion, to solve the problem, it must
respect the following condition because the number of
equations must be equal or more than the number of un-
known variables:

p+ n− 1 > 4n

meaning,
p > 3n+ 1 (9)

That is to say for one MR (n = 1), it must provide at
least 4 beacons. To affirm this condition, if there are p
beacons which are linked by other Master Robot MRj
in addition to MRi, the number of equations increases to
(p+ (n− 1)p).
If we give also the relations derived from distances be-
tween MRi and each MRj , there are ((n − 1) × n) re-
lations. So to conclude, by testing the number of unknown
variables against the equations that can be deduced, it must
respect the following inequality:

p+ (n− 1)p+ (n− 1)n > 4n

which implies

n > 1

p− 3
(10)

Hence, (p > 3). So, it’s clear that for one MR, we need at
least 4 beacons. Therefore, generally speaking, for n MR,
there are:
C2
n = n!

2!(n−2)! equations explained by distances between
MRi and MRj . Furthermore, following the two previous
remarks, we have (4n) unknown variables.
However, this is cannot solve the problem because

n!

2! (n− 2)!
=
n(n− 1)

2
≺ 4n

That’s why; a number of beacons is discussed to satisfy the
suitable condition. Consider the distances between p bea-
cons and all MR. So, the number of equations increases to
have:
n(n−1)

2 + np > 4n means n > 9− 2p
which is affirmed by the initial proposition means for 4
beacons, we have 1 MR.
Otherwise, in each neighborhood, there are more connec-
tions, if we consider firstly the distances between MR and
their neighbors (q equations), then secondly, the distances
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between q neighbor robots each other. So, the number of
equations increases to: q + C2

q .
It should be noted also that there are (q+1) unknown vari-
ables: the MR and q NR. Therefore, it’s necessary to re-
spect the following condition:
q + q!

2!(q−2)! > 4(q + 1), this implies that q > 8

Remark 4 : In practice, in the case of several neighbor-
hoods, the number of relations between master robot and
its neighbors increases. Therefore, the system of equations
to be solved will be larger. Hence, the delay resulting from
multi-robots cooperation algorithm is more significant. To
avoid this problem, the number of neighbor robots should
be reduced to qmin, where qmin satisfies the relation which
leads to resolve the equation’s system for n and p fixed.

To recap, we will propose a detailed algorithm to explain
the theory of robot cooperation.
Note that n, p and q are respectively the number of MR, B
and NR. u means the number of unknown variables and e
is the number of equations derived from distances between
MRi, MRj and B.

After satisfying the mobile robots cooperation algo-
rithm, the observability of the overall system is guaranteed.
Then, it is possible now to synthesize an adaptive observer
to ensure the detection of fault occurred.

5 COOPERATIVE DIAGNOSIS: APPLICATION
ON THREE-WHEEL OMNI-DIRECTIONAL
MOBILE ROBOT: THEORETICAL RESULTS

5.1 Omni-directional Robot Model

The current section describes the model of three-wheel
Omni-directional robot: Consider the WMR in the pose
shown in Fig.3.

Fig. 3. Geometry of the three-wheel omnidirectional WMR.

By following the calculation given in [20], we obtain
the state space dynamic model of the WMR’s motion:

(S)

{
ẋ = A(x)x+B(x)u

y = Cx
(11)

Algorithm 1 Multi WMR Cooperation Algorithm
Input: n, q, p
Output: u, e = f(x, y) = d(MR,NR,B)

1. if (there are n MR) then
2. (u = 4× n) */test loop
3. end if

(Goal: Seek to find the enough num-
ber of equations for this problem)

Case (n = 1) */ In the same Neighborhood Ni

4. if (p � 4) then
5. (u = 4);
6. e = d(MR,B) */fix the number of equations and

unknown variables from n and p
7. end if
8. if (u � e) then
9. return (’Problem Resolved’)

10. else
11. (Fix q NR)
12. if (q � 8) then
13. (u = q + 1);
14. e = d(MR,NR) = (q + C2

q )
15. end if
16. end if
17. if u � e then
18. return (’Problem Resolved’)

Case (n � 1) */ There is cooper-
ation with another neighborhood Nj

19. e = d(MRi,MRj) + d(MR1..n, B1..p) = C2
n +

n× p;
20. if (n � 9− 2× p) then
21. return (’Problem Resolved’)
22. end if
23. end if
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where, x =
[
xQ yQ φ ẋQ ẏQ φ̇

]T
, y =[

ẋQ ẏQ φ
]T

and u =
[
τ1 τ2 τ3

]T

are respectively the state vector, the output vector and
the input one.
Then, the variable parameter matrices are given
by A and B. C is the constant known ma-

trix: A(x) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 s1 −s2φ̇ 0

0 0 0 s2φ̇ s1 0
0 0 0 0 0 s3




,

B(x) =




0 0 0
0 0 0
0 0 0

v1β1 v1β2 2v1 cosφ
v1β3 v1β4 2v1 sinφ
v2 v2 v2




,

C =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0


.

where the constant parameters of matrices are:
s1 = −3β(3I0 + 2mr2), s2 = 3I0

/
(3I0 + 2mr2), s3 =

−3βD2
/

(3I0D
2 + IQr

2), v1 = Kr
/

(3I0 + 2mr2),
v2 = Kr

/
(3I0D

2+IQr
2)

and the variable elements are:
β1 = −

√
3 sinφ− cosφ, β2 =

√
3 sinφ− cosφ

β3 =
√

3 cosφ− sinφ, β4 = −
√

3 cosφ− sinφ

Let define following notations relating to robot pa-
rameters: m is the robot’s mass, r is the common radius
of the wheels, D is the distance of the wheels from the
rotation point Q, β is the linear friction coefficient, K
is the driving torque gain, I0is the common moment of
inertia of the wheels and IQ is the driving input torque of
wheel Q.
The observability matrix of this system is given as fol-
low: O =

(
C CA CA2 CA3 CA4 CA5

)T
,

rank(O) = 4 ≺ nx = 6

Therefore, the system is unobservable. At this level,
we need to decompose it into two parts: a subsystem ob-
servable locally and another unobservable locally also.

5.2 Decomposition of Omni-directional WMR

The system is divided into two parts as explained in the
theory described above. Firstly, suppose that the state vec-
tor is: x1 =

[
φ ẋQ ẏQ φ̇

]T
So, referring to remark1 given previously , the first subsys-

tem (S1) is written as follow:



ẋ1(t) = A11(x)x1(t) +

[
A12(x) B1 (x)

]
[
x2(t)

u(t)

]

y(t) = C1x1(t)
(12)

where the system’s matrices are:

A11(x) =




0 0 0 1

0 s1 −s2φ̇ 0

0 s2φ̇ s1 0
0 0 0 s3


,

B1(x) =




0 0 0
v1β1 v1β2 2v1 cosφ
v1β3 v1β4 2v1 sinφ
v2 v2 v2




Knowing that the second state vector is x2 =[
xQ yQ

]T
, and the matrix A12 given as a null

matrix. Verifying now the local observability of this
subsystem: O1 = ( C1 C1A11 C1A

2
11 C1A

3
11 )T ,

rank(O1) = 4 = nx1.
Thus (S1) is observable. Automatically, the synthesis of
observer is possible now.
However, in the second part, the state vector x2 is unmea-
surable and (S2) is locally unobservable subsystem. At
this level, we must estimate the robot position (xQ, yQ)
using the interconnection links with other neighbor robots.
Hence, the principle of cooperative diagnosis is clear.

5.3 Cooperation between WMR
So, after reassuring the neighborhood of robots, the ob-

jective of this work is to present in a cohesive way the prin-
ciple of cooperation between mobile robots and its impor-
tance to ensure the system’s observability. Consider the
unobservable part; we try to make its state vector mea-
surable. The problem can be reformulated to solve a sys-
tem of equations with a number of unknown variables. In
other words, it is intended to localize the cooperated mo-
bile robot for attaching the robot parameters means the sys-
tem’s states. Referring to remark 2 and 3 in the theorem 1,
it’s clear that the number of unknown variables is (4× 1).
Therefore, it must provide at least 4 equations to solve the
problem.

Proposition 1 For one Master Robot, we can ensure 4
beacons. But, this solution is undesirable because it re-
quires a large number of beacons that is not always avail-
able. Also, it must be noted, in other configurations, that
the large number of beacons used can increase the delay
resulted by cooperation algorithm computational complex-
ity. So, this can destabilize the system. In this case, it
should fix a qmin neighbor robots. That’s why, we will
move on to a second proposal.
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Proposition 2 If we consider 2 other robots means 2
neighborhoods: n = 3. Referring to the organizational
structure of cooperation algorithm, it remains to discuss
the number of beacons used according to the following
condition: n > 9− 2p. Therefore, it must fix p = 3.

The last proposition is resumed by Fig.4.
Consider now B1, B2 and B3 three beacons whose

Fig. 4. Diverse possible connections between WMR.

known positions are respectively (xb1,yb1) , (xb2,yb2) and
(xb3,yb3). Then, there are two robots R2 and R3 which
are neighbors to R1. In this proposition, by applying the
previous theory, there are (np + C2

n) equations with (4n)
unknown variables. On the other hand, to determine the
number of equations which is derived from distances be-
tween robots and beacons, it must apply the formula given
in the previous algorithm: 3 × 3 + C2

3 = 9 + 3!
1!×2! = 12

equations.




d2r1r2 = (x2 − xQ)
2

+ (y2 − yQ)
2

d2r1r3 = (x3 − xQ)
2

+ (y3 − yQ)
2

d2r2r3 = (x3 − x2)
2

+ (y3 − y2)
2

d2b1r1 = (xQ − xb1)
2

+ (yQ − yb1)
2

d2b1r2 = (x2 − xb1)
2

+ (y2 − yb1)
2

d2b1r3 = (x3 − xb1)
2

+ (y3 − yb1)
2

d2b2r1 = (xQ − xb2)
2

+ (yQ − yb2)
2

d2b2r2 = (x2 − xb2)
2

+ (y2 − yb2)
2

d2b2r3 = (x3 − xb2)
2

+ (y3 − yb2)
2

d2b3r1 = (xQ − xb3)
2

+ (yQ − yb3)
2

d2b3r2 = (x2 − xb3)
2

+ (y2 − yb3)
2

d2b3r3 = (x3 − xb3)
2

+ (y3 − yb3)
2

(13)

The unknowns’ vector is[
xQ yQ x2 y2 x3 y3

]T
which will be ob-

tained by resolving this system. We try to find the suitable
solution (xQ, yQ) verifying the distances given.
dij is supposed as an Euclidian distance between two
systems i and j. To guarantee the robustness of system
resolution, note that it will be considered for two equations
derived from dij and dji the average value dij =

dij+dji
2 .

First, we write the 12 functions to resolve as this form:
fs=1:12(xi, xj,yi, yj) = d2ij − (xj − xi)2 − (yj − yi)2

Then, computing the desired solution is based on New-
ton Raphson Algorithm (see Appendix)
On this level, the observability condition becomes ensured.
Therefore, the observer synthesis is available now to esti-
mate the state vector.

5.4 UIO Design

To develop our work, a fault will occur in the input
channel and an unknown disturbance will be taken. Let
define the global model system given as follow:

{
ẋ(t) = A(x)x(t) +B(x)uf (t) +Dxd(t)

y(t) = Cx(t)
(14)

Assuming that the fault already occurred may be modeled
by an additive term in (14), if we suppose:

uf (t) = u(t) + u0(t), u0(t) = f(t)

Fx = B(x) where Fx is a variable matrix with dimension
(n × r) and f(t) ∈ <r is considered as an actuator fault.
Therefore, the previous model can be written as follow

{
ẋ(t) = A(x)x(t) +B(x)u(t) + Fx(x)f(t) +Dxd(t)

y(t) = Cx(t)

(15)
where Dx is the known disturbance matrix with dimension
n×q. Therefore, the Unknown input observer’s expression
adopted in this work is given with a linear transformation
as follow:
{
ż(t) = Mz(t) +Nu(t) + Pyy(t) + EFxf̂(t)

x̂(t) = z(t)− Lyy(t)
(16)

Where M,N,Py, Ly are matrices that will be designed
such that the unknown input will be decoupled from other
inputs. z ∈ <n×1 is the state of UIO, obtained by the linear
transformation z = Ex and x̂ is the estimated state vector.
The state estimation error is defined by:

ex(t) = x̂(t)− x(t) = z(t)− Lyy(t)− x(t)

ex(t) = z(t)− (I + LyC)x(t) = z(t)− Ex(t)
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Let’s calculate the UIO matrices: If M is Hurwitz matrix
and the following relationships are true:

ME + PyC = EA

N = EB

EDx = 0

(17)

Then, it’s clear that we can obtain the UIO parameters, and
thereafter, the state error. The next stage is the fault esti-
mation part.

5.5 Fast Adaptive Fault Estimation Algorithm

To implement this algorithm with successful result, it
must follow some assumption and lemma which is given
also to verify the linear matrix inequality LMI.

Assumption 1 rank(CDx) = q

Lemma 1 [21] Given a scalar µ � 0 and a symmetric
positive definite matrix P which justify the following in-
equality:

2xT y 6 1

µ
xTPx+ µyTP−1y (18)

The FAFE algorithm is proposed to ameliorate perfor-
mances of time varying actuator fault estimation: rapidity,
stability and accuracy.

Theorem 2 Under Assumption and conditions (17) veri-
fied, given scalars σ, µ � 0, if there exist symmetric posi-
tive definite matrices P ∈ <n×n, G ∈ <r×r and matrices
M ∈ <n×n, F ∈ <r×p such that

FTx P = FC (19)

and the following condition hold,

(
MTP + PM 2PEFx

−2 1
σF

T
x PM − 2FTx P −2 1

σF
T
x PEFx + 1

σµG

)
≺ 0

(20)
then the FAFE algorithm

˙̂
f(t) = −ΨF (ėy(t) + σey(t)) (21)

can realize ex(t) and ef (t) uniformly ultimately bounded.
Note ψ ∈ <r×r is the learning rate matrix. So, as a con-
clusion, the fault estimates expression is:

f̂(t) = −ψF (ey(t) + σ

t∫

tf

ey(τ)dτ) (22)

Remark 5 : Solving conditions in Theorem 2 needs the
LMI toolbox in MATLAB. So, it is easy to solve (20). But,
there are some difficulties in solving (19) and (20) simulta-
neously to extract P, F and G. So, it must transform (19)
into the following optimization problem [22]: Minimize η
subject to (20) and

(
ηI FTx P − FC

(FTx P − FC)
T

ηI

)
� 0 (23)

The proof and more explanation of this theorem are given
in my previous work [18].

Remark 6 : As the model of robot used is of variable
settings for each sampling period, it makes the LMI
resolution slowly. That’s why, to accelerate the simulation
and restrict the margin solution, it’s better to propose
constraints relaxation depending on inequality. As the
parameters system contain the non linear element sin(φ)
and cos(φ), it can be limited by a minimum and maximum
region.

−1 6 sin(φ) 6 1,−1 6 cos(φ) 6 1

To solve (20) and (23), it should consider this constraint:

Bmin 6 Fx = B(x) 6 Bmax (24)

where

Bmin =




0 0 0

−b1(
√

3 + 1) −b1(
√

3 + 1) −2b1
−b1(

√
3 + 1) −b1(

√
3 + 1) −2b1

b2 b2 b2




Bmax =




0 0 0

b1(
√

3 + 1) b1(
√

3 + 1) 2b1
b1(
√

3 + 1) b1(
√

3 + 1) 2b1
b2 b2 b2




In (20), it should use Bmax to ensure the limit part of so-
lution. In other hand, in (23) it should use Bmin to respect
constraints.

6 SIMULATION RESULT

If we consider the model given in (14), numerically,
fixed the following values of system’s parameters which
are listed in Table 1.
So, we obtain the array’s elements (given for A and B)

s1 = −0.0034, s2 = 0.4286, s3 = −1.8750

v1 = 18.5, v2 = 809.375
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Table 1. Wheeled mobile robot’s parameters.

Symbol Designation Value

m Robot’s mass (Kg) 10

r Common radius of 0.04
the wheels (m)

D Distance of the wheels 0.2
from rotation point Q (m)

K Driving torque gain 25.9

β Linear friction coefficient 0.02

I0 Common moment of inertia 0.008
of the wheels (Kgm2)

IQ Moment of inertia of the 0.2
robot about Q (Kgm2)

β1,2,3,4 are variable elements because of dependence on
state vector.
In this work, we will introduce an additive actuator fault
u0 =

[
5 0 0

]T
. Then, assuming d is the unknown in-

put (or disturbance) vector where is the known disturbance

matrix Dx =




0.05 0.2 2 0 0.6 0
0 0.3 0 1 0 0.02
0 0 0 0 0 0



T

.

6.1 Cooperation Task
From a database that contains at each sampling time 12

distances, we can define the parameter of cooperation used
in this work. Figure 5 shows the evolution of distances at
each iteration since only beacons are fixed and each robot
from the three robots used follows its paths. Suppose as
given in Fig.4, there are three beacons:
B1(xb1,yb1) = (0,0), B2(xb2,yb2) = (5,8),
B3(xb3,yb3) = (10,0)

Then, by application to Newton Raphson algorithm
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Fig. 5. Distances between MR, Beacons and NR.

we can extract the position of MR and the two NR at each

sampling time. Their trajectories are given in Fig.6. This
figure concerns only the three robots and its trajectories.
As for beacons, their positions are already fixed from the
beginning. It should be noted that the unit used for all
positions of robots in following figures is the meter (m).
To ensure the effectiveness of cooperation algorithm, it
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Fig. 6. Comparison between desired path and the trajec-
tory obtained by cooperation algorithm.

shall identify the position robot error. It’s clear from Fig.7
that this error is almost neglected. It does not exceed
0.1m. Oscillations alternating between ±0.1m are due to
disturbance and time calculation that takes the cooperation
algorithm. As conclusion, at this level, the position of the
three-WMR is well-known. So, it’s possible to estimate
the state vector by an observer block.

6.2 Nominal case
It was assumed that the total experimental time is 100s

with a sampling time Ts = 1s. It can be noted clearly
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Fig. 7. difference between desired path and the trajectory
obtained by cooperation algorithm

from Fig.8 that the systems response converges to the de-
sired path in nominal conditions in absence of fault. It was
assumed that a circular trajectory has a radius of curvature
4m. There are some oscillations in the trajectory followed
because of input disturbance. These oscillations can dam-
age a mobile robot because of their electronic composition
which can be affected by the vibration throughout the tra-
jectory. That’s why, disturbances must be decoupled.
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Fig. 8. Trajectory tracking of three-wheel omnidirectional
MR.

6.3 Faulty case

Considering a partial actuator failure occurring at time
tf = 40s, the faulty-model response is shown in Fig .9. In
the faulty case detailed in this figure, the deviation takes
a few instants. So, the systems behavior and the controls
evolution were changed at instant of fault included. There-
fore, fault and disturbance vector can harm the systems
responses even in the presence of a Lunberger observer.
Therefore, this work exceeds this problem by the robust
unknown input observer which not only estimates the state
vector despite of disturbances but also estimates the fault
included with better features. This may engender nice per-
formances when correcting system. Thus, the advantage of
the fault diagnosis method given is that it provides a good

estimate of faults, not only for the estimation step but also
for the reconfiguration of control law. To detect the actua-
tor fault, the observer block must be included. Hence, the
residue is illustrated in Fig.10.
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Fig. 9. Trajectory tracking of three-wheel omnidirectional
MR in the faulty case.
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6.4 Fault estimation

Hereafter, we will highlight the fault estimation ob-
tained thanks to a robust unknown input observer. Firstly,
if there is no fault occurred and under the influence of dis-
turbance, the fault estimation is shown in Fig.11. So, it’s
the order of 10−3 near to zero. Secondly, when introducing

a fault vector f(t) =



f1(t)

f2(t)

f3(t)


 where

f1(t) =

{
5 if t > tf

0 if t ≺ tf
, f2(t) = 0 and f3(t) = 0

It is easy from Fig.12 to select the peak achieved by an
additive actuator fault thanks to the robust estimator used
despite of the disturbance vector. Therefore, this estima-
tion is characterized by the robustness of fault estimation
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Fig. 12. Robust Fast Adaptive Fault Estimation.

response and the clear evolution of fault included. The de-
lay to detect the fault is due to time calculation that takes
the cooperation algorithm.

If we compare the results of fault estimation obtained
in my previous work [23] with those mentioned in Fig.12,
the difference is then clear in term of robustness.

Once the fault estimation phase is determined, the cor-
rection step is possible now. In the case of WMR, diagno-
sis module must be provided by the technique based on a
fast and robust adaptive observer to drive the robot to de-
sired path despite of the inclusion of an actuator fault.

7 CONCLUSION
In this brief, decomposition for a class of large-scale

system was discussed, in which the whole system is nat-
urally divided into observable subsystem and a unobserv-
able one to study the global and local observability. These
subsystems interacts each other by their neighbouring sys-
tems. The cooperation between mobile robots was devel-
oped to ensure the robust observer design and then guaran-
tee the fast adaptive fault estimator. Further investigation
might focus on the principle of robot network to benefit
from several tasks in real time.

8 APPENDIX
Newton Raphson Algorithm

Goal: find the solution vector that fits with functions sys-

tem.
i = 0

x0 =
[

1 1 1 1 1 1
]T

while
∣∣∣ḟ(xi)

∣∣∣ � tolerance

do





i = i+ 1

xi = xi−1 −
1

f̈(xi−1)
ḟ(xi−1)

x = xi

return(x)

The desired solution is (x, y) = (x(1), x(4)).
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