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FastSLAM2.0 is a framework for simultaneous localization of robot using a Rao-Blackwellized particle filter
(RBPF). One of the problems of FastSLAM2.0 relates to the design of RBPF. The performance and quality of
the estimation of RBPF depends heavily on the correct a priori knowledge of the process and measurement noise
covariance matrices that are in most real-life applications unknown. On the other hand, an incorrect a priori knowl-
edge may seriously degrade their performance. This paper presents an intelligent RBPF to solve this problem. In
this method, two adaptive Neuro-Fuzzy inference systems (ANFIS) are used for tuning the process and measure-
ment noise covariance matrices and for increasing acuuracy and consistency. In addition, we use particle swarm
optimization (PSO) to optimize the performance of sampling. Experimental results demonstrate that the proposed
algorithm is effective.
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Poboljšani FastSLAM2.0 algoritam korištenjem ANFIS-a i PSO-a. FastSLAM2.0 je algoritam za istodobnu
lokalizaciju robota i kartiranje prostora koji koristi Rao-Blackwell verziju čestičnog filtra (RBPF). Jedan od prob-
lema FastSLAM2.0 algoritma je u dizajnu samog RBPF-a. Performanse i kvaliteta estimacije RBPF-a značajno
ovisi o apriori poznavanju procesa i matrica kovarijanci mjernog šuma koje su za većinu procesa iz stvarnog svi-
jeta nepoznate. S druge strane pogrešno pretpostavka može značajno narušiti performanse. Ovaj rad predstavlja
inteligentnu verziju RBPF-a koja rješava ovaj problem. Predstavljena metoda koristi dva adaptivna neizrazito-
neuronska sustava (ANFIS) za podešavanje matrica kovarijanci procesnog i mjernog šuma čime se povećava točnost
i konzistencija RBPF algoritma. Tako�er koristi se i optimizacija roja čestica (PSO) za optimiziranje performansi
otipkavanja. Eksperimentalni rezultati pokazuju efikasnost predloženog algoritma.

Ključne riječi: istovremena lokalizacija i kartiranje (SLAM), FastSLAM, ANFIS, PSO

1 INTRODUCTION

The simultaneous localization and mapping (SLAM) is
a fundamental problem of robots to perform autonomous
tasks such as exploration in an unknown environment. It
represents an important role in the autonomy of a mobile
robot.

The most classical SLAM solutions are methods based
on extended Kalman filter (EKF-SLAM) and based on
Rao-Blackwellized particle filter (FastSLAM). However,
EKF-SLAM suffers from two major problems: the compu-
tational complexity and data association [1-2]. Recently,
the FastSLAM algorithm approach has been proposed as
an alternative approach to solve the SLAM problem [3-5].

FastSLAM is an instance of Rao-Blackwellized parti-
cle filter, which partitions the SLAM posterior into a lo-
calization problem and an independent landmark position
estimation problem. There are two versions of FastSLAM
in the literature, FastSLAM1.0 and FastSLAM2.0 [4]. As

FasSLAM2.0 is superior to FastSLAM1.0, we focus on the
second version that for easily called FastSLAM in this pa-
per. In FastSLAM, extended Kalman particle filter (EKPF)
is used for the mobile robot position estimation and EKF
is used for the feature location’s estimation.

The key feature of FastSLAM is the fact that the data
association decisions can be determined on a per-particle
basis, and hence different particles can be associated with
different landmarks. Each particle in FastSLAM may even
have a different number of landmarks in its respective map.
This characteristic gives FastSLAM the possibility of deal-
ing with multi-hypothesis association problem. The ability
to simultaneously pursue multiple data associations makes
FastSLAM significantly more robust to the data associa-
tion problems than other algorithms such as EKF-SLAM.
The other advantage of FastSLAM arises from the fact that
particle filters can cope with nonlinear and non-Gaussian
robot motion models. There have been many investigations
on FastSLAM. However, FastSLAM also has some draw-
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backs. In [8-10], it has been noted that FastSLAM degen-
erates over time. This degeneracy is due to the fact that a
particle set estimating the pose of the robot loses its diver-
sity. One of the main reasons for loosing particle diversity
in FastSLAM is sample impoverishment [8-10]. It occurs
when likelihood lies in the tail of the proposal distribution
[4]. Researchers have been trying to solve these problems
in [4], [11-16]. In [16], a modified FastSLAM1.0 is pre-
sented by soft computing. In this algorithm, an adaptive
neuro-fuzzy extended Kalman filter is used for landmark
feature estimation and a novel multi swarm particle filter is
presented to overcome the impoverishment of FastSLAM.

In all the aforementioned studies, however, FastSLAM
has some drawbacks. A significant difficulty in design-
ing of RBPF can often be traced to incomplete a priori
knowledge of the process covariance matrix Qt and mea-
surement noise covariance matrixRt. In most real applica-
tions, these matrixes are unknown. On the other hand, an
incorrect a prior knowledge of Qt and Rt may seriously
degrade the RBPF performance. In this paper to solve
these problems, an intelligent RBPF based SLAM is pro-
posed. In this algorithm, two adaptive Neuro-Fuzzy infer-
ence systems(ANFIS) are used for tuning the process and
measurement noise covariance matrices for increasing con-
sistency. The free parameters of adaptive Neuro-Fuzzy in-
ference systems are trained using the steepest gradient de-
scent (GD) to minimize the differences of the actual value
of the covariance of the residual with its theoretical value
as much as possible. In addition, we use PSO to optimize
the performance sampling of the RBPF. The PSO causes
the particle set tend to the high likelihood region before the
weight is updated, thereby the impoverishment of particles
can be overcome.

The rest of the paper is organized as follows. In Sec-
tion 2, FastSLAM problem is reviewed. The proposed al-
gorithm is presented in Section 3. In Section 4, the simu-
lation and experimental results are presented.

2 BACKGROUND: FASTSLAM

To describe SLAM, let us denote the map byΘ and the
pose of the robot at time tbyst. The map consists of a
collection of features, each of which will be denoted byθn
and the total number of stationary features will be denoted
byN . In this situation, the SLAM problem can be for-
mulized in a Bayesian probabilistic framework by repre-
senting each of the robot’s position and map location as a
probabilistic density function as [4]:

p(st,Θ|zt, ut, nt) (1)

In essence, it is necessary to estimate the posterior den-
sity of maps Θ and poses st given that we know the
observationzt = {z1, ..., zt}, the control input ut =

{u1, ..., ut} and the data associationnt. Here, data associ-
ation represents the mapping between map points in Θ and
observation in zt .The structure of SLAM enables particle
filters to be applicable. This special particle filter is known
as the Rao-Blackwellized particle filter (RBPF). The RBPF
is introduced as an effective means to solve the SLAM
problem. The term ‘Rao-Blackwellized’ means factoring
of a state into a sampled part and an analytical part. The
FastSLAM computes the posterior over maps and a robot’s
path. The key mathematical insight of FastSLAM pertains
to the fact that the full SLAM posterior can be factorized
as follows when data associationnt is known [4]:

p(st,Θ|zt, ut, nt) = p(st|zt, ut, nt)
.
∏N
n=1 p(θn|st, zt, ut, nt)

(2)

where st = {s1, ..., st} is a robot path or trajectory. This
factorization states that the SLAM problem can be decom-
posed into estimating the product of a posterior over robot
path and N landmark posteriors given the knowledge of
the robot’s path. The FastSLAM algorithm implements the
path estimator p(st|zt, ut, nt) using a particle filter and the
landmarks pose p(θn|st, zt, ut, nt)are realized by EKF, us-
ing separate filters for different landmarks. Each particle
forms as follows [3-5]:

S
[m]
t =< st,[m], µ

[m]
1,t ,Σ

[m]
1,t , ..., µ

[m]
N,t,Σ

[m]
N,t > (3)

where [m] indicates the index of the particle, and st,[m] is
the m− th particle’s path estimate, and µ[m]

N,t,Σ
[m]
N,t are the

mean and the covariance of the Gaussian distribution rep-
resenting the n − th feature location conditioned on the
path st,[m]. In general, it is not possible to draw samples
directly from the SLAM posterior. Instead, the samples
are drawn from a simpler distribution called the proposal
distributionq(st,[m]|zt, ut, nt). The update algorithm of
posterior FastSLAM consists of sampling, landmark up-
date and resampling.

2.1 Sampling

In FastSLAM, the robot pose is sampled with respect
to both the motion ut and the measurement zt as follows:

q(s
[m]
t |st−1,[m], zt, ut, nt) (4)

An effective approach to accomplish this is to use EKF
generated Gaussian approximation as follows:

q(s
[m]
t |st−1,[m], zt, ut, nt)

EKF∼ N(st, s
[m]
t , P

[m]
t ) (5)

For this purpose, each particle is predicted using EKF ac-
cording to the following equations:

ŝ
[m]
t+1 = f(s

[m]
t , ut) (6)
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P
[m]−
t+1 = ∇ftP [m]

t ∇fTt +GuQtG
T
u (7)

where
∇ft =

∂f

∂st
, Gu =

∂f

∂u
(8)

Then, the mean and covariance of the proposal distribution
are updated at the measurement time by following equa-
tions:

s
[m]
t = ŝ

[m]
t +K

[m]
t (zk − h(ŝ

[m]
t )) (9)

P
[m]
t = P

[m]−
t − P [m]−

t HT
t (S

[m]
t )−1HtP

[m]−
t (10)

where

K
[m]
t = P

[m]−
t HT

t (S
[m]
t )−1

S
[m]
t = R+HtP

[m]−
t HT

t +Gθnt
Σ

[m]
nt,t−1G

T
θnt

(11)

In above equationsΣ[m]
nt,t−1 is the covariance of the land-

mark observed at time t but registered previously, Ht and
Gθnt

are Jacobians. From the Gaussian distribution gener-
ated by the estimated mean and covariance of the vehicle,
the state of each particle is sampled:

s
[m]
t ∼ N(s

[m]
t , P

[m]
t ) (12)

When there is no observation, the vehicle state is predicted
without the measurement update using (6) and (7). If many
landmarks are observed at the same time, (9) and (10) are
repeated for each observed landmark, and the mean and the
covariance of the vehicle are updated based on the previ-
ously updated one.

2.2 Landmark Update

The FastSLAM algorithm represents the posterior land-
mark estimates p(θn|st, zt, ut, nt) using low-dimensional
EKFs. In fact FastSLAM updates the posterior over the
landmark estimates, respected by the mean µ

[m]
n,t−1 and

the covariance Σ
[m]
n,t−1. The update of posterior depends

on whether or not a landmark n was observed at time t.
For n 6= nt, the posterior over the landmark remains un-
changed. For the observed featuren = nt, the mean and
covariance is as follows [4]:

ẑt = g(s
[m]
t , µnt,t−1) (13)

Gθnt
= ∇θnt

g(st, θnt
)|
st=s

[m]
t ;θnt=µ

[m]
nt,t−1

(14)

Zn,t = Gθnt
Σ

[m]
nt,t−1G

T
θnt

+Rt (15)

Kt = Σ
[m]
nt,t−1G

T
θnt
Z−1
n,t (16)

µ[m]
nt,t

= µ[m]
nt,t−1

+Kt(zt − ẑt) (17)

Σ
[m]
nt,t = (I −KtGθnt

)Σ
[m]
nt,t−1 (18)

2.3 Resampling

The importance weight of particles is computed by con-
sidering the most recent observation as follows:

w
[m]
t = w

[m]
t−1

p(zt|s[m]
t )p(s

[m]
t |ut, nt)

N(st, s
[m]
t , P

[m]
t )

(19)

Since the variance of the importance weights increase over
time [3-5], resampling is required. In the resampling pro-
cess, particles with low importance weight are eliminated
and particles with high weights are multiplied.

3 IMPROVED FASTSLAM

As already motioned, FastSLAM uses a conventional
RBPF. In RBPF, complete a priori knowledge of the pro-
cess and measurement noise statistics is assumed. How-
ever, in real-life applications these matrices are unknown.

An incorrect a priori knowledge of Qt andRt may lead
to performance degradation and inconsistency [17-18]. It
can even lead to practical divergence [17-18].This is be-
cause EKF is used in the design of the proposal distribution
and landmark position estimation. On the other hand, the
performance of EKF depends largely on the accuracy of
the knowledge of process covariance matrix Qt and mea-
surement noise covarianceRt.

One of the efficient ways to overcome the above weak-
ness is to use an adaptive algorithm. Two major approaches
that have been proposed for adaptive EKF are multiple
model adaptive estimation (MMAE) and innovation adap-
tive estimation (IAE) [17-18]. Although the implementa-
tion of these approaches is different, they both share the
same concept of utilizing new statistical information ob-
tained from the residual (innovation) sequence. In this pa-
per, we adaptively tuned matrices Qt and Rt by two AN-
FIS. This is because there are two EKF in FastSLAM, one
is for updating the proposal distribution (EKPF) and other
is for updating landmark’s position estimation. As land-
marks are static, Rt is adaptively tuned when the landmark
position is updated. In addition, as measurements in EKF
and EKPF are the same andRt is tuned when the landmark
position is estimated, the only Qt is adaptively tuned when
the proposal distribution is updated.

In proposed method, proposal distribution is generated
by adaptive Neuro-Fuzzy extend Kalman particle filter to
obtain a better importance sampling distribution. However,
as the EKF approximates the nonlinear function in the state
dynamic and measurement models, the degradation of the
particles is still inevitable. To solve this problem and im-
prove of samping, PSO [20-21] is merged in Neuro-Fuzzy
extend Kalman particle filter before sampling to move par-
ticles towards region of the state space where a posterior
probability density is significant. It can be overcome the
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impoverishment of particles. While, the optimization pro-
cess makes the particles which are far away from the true
state tend to the region where the true state has a greater
probability of emergence, it can enhance the effect of each
particle.

The proposed algorithm is similar to FastSLAM and
consists of sampling, feature update and calculating impor-
tance weight and resampling. The main difference between
the proposed algorithm and FastSLAM is as follows:

• Tuning statistics

• Modifying of sampling

3.1 Tuning statistics

a) Tuning Rt
The covariance matrix Rt represents the accuracy of

the measurement instrument. The enlargement of the co-
variance matrix Rt for measured data means that we trust
this measured data less and more on the prediction. As
landmarks are static, we adapt the covariance matrix Rt
when the landmark position is updated. Hence, the algo-
rithm for tunning the measurement noise covariance Rt
can be derived. In this case, IAE algorithm to adapt the
measurement noise covariance matrix Rt is derived. Here
the technique known as covariance matching is used. The
basic idea of this technique is to make the actual value of
the covariance of the residual to be consistent with its the-
oretical value. The innovation sequence rt = (zt − ẑnt,t)
has a theoretical covariance as:

S
[m]
t,EKF = Gθnt

Σ
[m]
nt,t−1G

T
θnt

+Rt (20)

The actual residual covariance Ĉt can be approximated by
its sample covariance, through averaging inside a moving
window of size N as follows:

Ĉt =
1

N

t∑

i=k−N+1

(rTi ri) (21)

If the actual value of covariance Ĉt has discrepancies with
its theoretical value, then the diagonal elements of Rt
based on the size of this discrepancy can be adjusted. The
objective of these adjustments is to correct this mismatch
as far as possible. The size of the mentioned discrep-
ancy is given by a variable called the degree of mismatch (
DOMt,EKF ), defined as:

DOMt,EKF = St,EKF − Ĉt (22)

The basic idea used to adapt the matrix Rt is as fol-
lows: from equation (20) an increment in Rt will increase
St,EKF and vice versa. Thus, Rt can be used to vary
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Fig. 1. Inputs Membership functions

 
-1.3 -0.83 -0.63 -0.43 -0.23 0 0.23 0.43 0.63 0.83 1.3 0

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1
L LM LZ Z HZ HM H 

Fig. 2. Output Membership function

St,EKF in accordance with the value of DOMt,EKF in
order to reduce the discrepancies between St,EKF and Ĉt
. The adaptation of the (i, i) element ofRt is made accord-
ing to the (i, i) element of DOMk,EKF .

In this paper, ANFIS is proposed to adjust Rt . The
overall adaptive Neuro-fuzzy inference system employs a
bank of subsystems where each subsystem employs a two-
input-single-output ANFIS. This is because the dimen-
sions of DOMt and Rt are both 2 × 2 .These two-input-
single-output ANFIS are employed to tune each diagonal
of element of Rt . The inputs of ANFIS are DOMt,EKF

and DeltaDOMt,EKF . Here, DeltaDOMt,EKF is de-
fined as:

DeltaDOMt,EKF = DOMt,EKF −DOMt−1,EKF

(23)
Figure 1 presents membership functions for
DOMt,EKF (i, i) and DeltaDOMt,EKF . Adjust-
ment of Rt is performed using the following equation:

Rt = Rt + ∆Rt (24)
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Table 1. Rule Table
Input2

L ML Z MH H
L H H HM HZ Z
ML H HM HZ Z LZ
Z HM HZ Z LZ LM
MH HZ Z LZ LM LIn

pu
t 1

H Z LZ LM L L

where ∆Rt is the ANFIS output and membership function
of output is shown in Fig.2. This ANFIS is a five layers
network as shown in Fig.3. The fuzzy rules that complete
the ANFIS rule base are as in Table 1.

 

... 

... 
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ΣΣΣΣ

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Layer 5 

Input2 Input1 

W25 

Output 

W1 

      

 

Fig. 3. The Structure of ANFIS for tuning R t and Q t

The ANFIS is trained using data from the same environ-
ment that SLAM will work in it. The training algorithm
adjusts the network weights through the minimization of
the following cast function:

Et =
1

2
tr(e2t ) (25)

where
et = St,EKF − Ĉt (26)

By using the back propagation (BP) learning algorithm, the
weighting vector of ANFIS is adjusted such that the error
defined in (25) is less than a desired threshold value after
a given number of training cycles. The well-known BP
algorithm may be written as:

Wt+1 = Wt − η
∂Et
∂Wt

(27)

here η is the learning rate and Wt = [mt, σt, ωt]
T is the

tuning parameters of ANFIS. Where mt and σt , respec-
tively, are the center and width of the Gaussian member-
ship function. Also wl are the link weights in fifth layer.
The gradient of E with respect to an arbitrary weighting
vector Wt is as follows:

∂Et
∂Wt

= −et
∂∆Rt
∂Wt

(28)

By the recursive application of the chain rule, the error
term for each layer is first calculated, and then the param-
eters in the corresponding layers are adjusted.

By the recursive application of the chain rule, the error
term for each layer is first calculated, and then the param-
eters in the corresponding layers are adjusted as follows:

mt+1 = mt − η ∂E
∂mt

σt+1 = σt − η ∂E∂σt

ωt+1 = ωt − η ∂E∂ωt

(29)

b) Tuning Qt

As the covariance matrix Rt is tuned in EKF by first
ANFIS in landmark estimation step, it is necessary that
only the noise covariance matrix Qt is tuned adaptively
in EKPF in sampling step. The covariance matrix Qt rep-
resents the uncertainty in the process model (odometery).
An increase in the covariance matrix Qt means that we
trust less the process model and vice versa. The tuning of
Qt is adaptively adjusted using second ANFIS. The idea
behind the process of adaptation Qt is similar to the adap-
tation ofRt in EKF. For this purpose, the residual of EKPF
using (20) can be rewritten as follows:

S
[m]
t,EKPF = Ht(∇ftP [m]

t ∇fTt +GuQtG
T
u )HT

t

+Gθnt
Σ

[m]
nt,t−1G

T
θnt

+Rt
(30)

The actual residual covariance in EKPF is Ĉt , similar to
the actual residual covariance in (21). It may be deduced
from equation (29) that a variation in Qt will affect the
value of St,EKPF . If the covariance matrix Qt is in-
creased then St,EKPF is increased and vice versa. Thus,
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if a mismatch between St,EKPF and Ĉt is observed then
a correction can be made through augmenting or diminish-
ing the value of Qt . The three general adaptation rules are
defined as follows:

1. If DOMt,EKPF (1, 1) is Low and DOMt,EKPF (2, 2)
is Low then ∆Qt is High.

2. If DOMt,EKPF (1, 1) is Zero and DOMt,EKPF (2, 2)
is Zero then ∆Qt is Zero.

3. If DOMt,EKPF (1, 1) is High and DOMt,EKPF (2, 2)
is High then ∆Qt is Low.

The covariance matrix Qt is adapted as follows:

Qt = Qt∆Qt (31)

where ∆Qt is the ANFIS output and DOMt,EKPF (1, 1)
and DOMt,EKPF (2, 2) are ANFIS inputs. The second
ANFIS model is similar to first ANFIS used for tun-
ing Rt and is a two-input-single-output Neuro-Fuzzy in-
ference system. However, its input is different. The
inputs of second ANFIS are DOMt,EKPF (1, 1) and
DOMt,EKPF (2, 2) . The structure of second ANFIS is
as Fig.3.

3.2 Modifying of Sampling using PSO

To merge PSO into particle filter, we must define a
fitness function. The fitness function must consider the
newest observations and in addition the fitness function
particles with high likelihood should have small values.
For this purpose, we propose a fitness function as follows:

f̃0(st) = (zt − ẑnt,t)
T
[
S
[m]
t

]−1

(zt − ẑnt,t) (32)

where S[m]
t is the residual covariance matrix defined in

(11), ẑn,t is the predicted measurement and zt is the ac-
tual measurement. The particles should be moved such
that the fitness function is optimal. This is done by tuning
the position and velocity of the PSO algorithm. The stan-
dard PSO algorithm has some parameters that need to be
specified before use. Most approaches use uniform proba-
bility distribution to generate random numbers. However it
is difficult to obtain fine tuning of the solution and escape
from local minima using a uniform distribution. Hence,
we use velocity updates based on the Gaussian distribu-
tion. In this situation, there is no more need to specify the
parameter learning factors c1 and c2 . Furthermore, us-
ing the Gaussian PSO, the inertial factor ω was set to zero
and an upper bound for the maximum velocity vmax is not
necessary anymore [22]. Therefore, the only parameter to
be specified by the user is the number of particles. Initial
values of the particle filter are selected as the initial pop-
ulation of PSO. Initial velocities of PSO are set equal to

zero. The PSO algorithm updates the velocity and position
of each particle by the following equations [22]:

s
[i]
t = s

[i]
t−1 + ~v

[i]
t (33)

~v
[i]
t = |randn| (P [i]

pbest − s
[i]
t−1) + |randn| (Pgbest − s[i]t−1)

(34)
where P [i]

pbest denote the best position that particle i has

achieved so far, and Pgbest the best of P [i]
pbest for any i =

1, ..., N . The PSO moves all particles towards the high
likelihood regions which is the global best of PSO.
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Fig. 4. Experiment environment

When the best fitness value reaches a certain threshold, the
optimized sampling process is stopped. With this set of
particles the sampling process will be done on the basis of
the proposal distribution.

4 RESULTS

4.1 Simulation

Simulation experiments have been carried out to eval-
uate the performance of the proposed approach in compar-
ison with FastSLAM2.0. The proposed solution for the
SLAM problem has been tested for the benchmark en-
vironment, with varied number and position of the land-
marks, available in [19]. Fig.4 shows the robot trajectory
and landmark location. The star points (*) depict the lo-
cation of the landmarks that are known and stationary in
the environment. The initial position of the robot is as-
sumed to be x0 = 0 . The robot moves at a speed 3m/s and
with a maximum steering angle of 30 degrees. In addition,
the robot has 4 meters wheel base and is equipped with a
range-bearing sensor with a maximum range of 20m and a
180 o frontal field-of-view.

The control noise is σv = 0.3 m/s and σγ = 3o . A con-
trol frequency is 40 Hz and observation scans are obtained
at 5 Hz . The measurement noise is 0.1m in range and
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0.1o in bearing. Data association is assumed unknown.
To evaluate the proposed method, its performance is com-
pared with FastSLAM2.0 and improved FastSLAM (IFast-
SLAM) [16] for the benchmark environment.

First, we consider the situation where measurement
noise is wrongly considered as σr = 0.01 , σθ = 0.01 .
The performance of the proposed method is compared with
IFastSLAM and FastSLAM2.0 where its measurement co-
variance matrixRt is kept static throughout the experiment
with 35 landmarks. The proposed algorithm uses wrongly
statistics and then adapts Rt and Qt matrices in EKPF and
EKF through ANFIS and attempts to minimize the mis-
match between the theoretical and actual values of the in-
novation sequence in EKF and EKPF. The free parameters
of ANFIS are automatically learned by GD during training.
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Fig. 5. Proposed method: a) Estimated robot path and es-
timated landmark with true robot path and true landmark.
The “. . . ” is the estimated path, the “+” are the estimated
landmark positions. b) Root mean square error (RMSE) of
position.

Figure 5 and Fig. 7 show the comparison between algo-

rithms. It can be clearly seen that the results of the pro-
posedalgorithm are better than those of FastSLAM2.0 and
IFastSLAM. In other words, in the proposed algorithm, the
estimated vehicle path and estimated landmark coincide as
close as possible with the actual path and the actual po-
sitions landmarks. This is because the proposed method
adaptively tuned the measurement covariance matrix Rt
and process noise covariance matrices Qt . In fact, these
matrices converges to the actual covariance matrices Rt
andQt while matricesRt andQt in FastSLAM2.0 are kept
fixed over time. Fig.6 and Fig.8 show that measurement
covariance matrix Rt converges to the actual covariance
matrix Rt in proposed method. In addition, Fig.9 shows
results for IFastSLAM. It can be seen that the IFastSLAM
is more accurate than FastSLAM2.0 in this situation
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Fig. 6. Measurement covariance matrix of proposed
Method.

Finally, we compare the performance of the proposed
method and FastSLAM2.0 while the measurement noise
and the control noise are similar to the previous experi-
ment and the number of particles decreases in the two al-
gorithms. Fig.10and Fig.11 show results for this case. It is
observed that the proposed method is more accurate than
FastSLAM2.0 in this situation (such as the previous situ-
ation). This is because sample impoverishment improves
in the proposed method. The adaptive EKPF is valid when
the posterior distribution can be closely approximated by
a Gaussian distribution. The proposed method introduced
the PSO algorithm into the adaptive EKPF to improve the
distribution samples, and speed up the convergence of the
particle set. The perturbation particle set which was opti-
mized by the particle swarm makes most of particles that
were scattered faraway from true states gather around re-
gions where true states may be present with high prob-
ability. Therefore, the effect of each of each particle is
enhanced and diversity advantage is improved. Also the
impoverishment of particles can be overcome. The per-
formance of the proposed method does not depend on the
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Fig. 7. FastSLAM2.0: a) Estimated robot path and esti-
mated landmark with true robot path and true landmark.
The “. . . ” is the estimated path, the “+” are the estimated
landmark positions. b) RMSE of position.
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Fig. 8. Measurement covariance matrix of FastSLAM2.0.

number of particles while the performance of FastSLAM
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Fig. 9. IFastSLAM: a) Estimated robot path and estimated
landmark with true robot path and true landmark. The
“. . . ” is the estimated path, the “+” are the estimated
landmark positions. b) RMSE of position.

depends on the number of particles. This is because PSO
in the proposed method places the particles in the high like-
lihood region.

4.2 Experimental

The proposed algorithm is compared to FastSLAM2.0
using the car park data set, a popular dataset in the SLAM
community. The experimental platform is a 4-wheeled ve-
hicle equipped with a GPS, a laser sensor and wheel en-
coders as shown in Fig.12.

The vehicle was driven around the park. The velocity and
the steering angle were measured with encoders but uneven
terrain induced additional non systematic errors because
of wheel slippage and vehicle attitude. Consequently, the
odometry information from the encoder is poor as shown
in Fig. 13. The artificial features were used that consisted
of 60 mm steel poles covered with reflective tape. Since the
true position of the features was also obtained with GPS,
a true navigation map was available for comparison pur-
poses. Also, a kinematic GPS system is used to provide
ground truth for the robot position.

The performance of proposed algorithm is compared to the
classical FastSLAM2.0 in situation when the correspon-
dences between the observation and the features were as-
sumed unknown and 20 particles were used for both al-
gorithms. Each algorithm was executed many times to
confirm the variance of the estimate error. For the un-
known data association, the individual compatibility near-
est neighbor test is used. The proposed algorithm starts
with a wrongly known Rt and then adapts the Rt through
ANFIS and attempts to minimize the mismatch between
the theoretical and actual values of the innovation se-
quence. Fig.14 and Fig.15 show the comparison between
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Fig. 10. Proposed method: a) Estimated robot path and es-
timated landmark with true robot path and true landmark.
The “. . . ” is the estimated path, the “+” are the estimated
landmark positions. b) RMSE of position.
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Fig. 11. FastSLAM2.0: a) Estimated robot path and esti-
mated landmark with true robot path and true landmark.
The “. . . ” is the estimated path, the “+” are the estimated
landmark positions. b) RMSE of position.

 

Fig. 12. The vehicle used for experiment.
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Fig. 14. (a) FastSLAM2.0 (b) Proposed Method. The “. . . ”
is the path estimated, the ’+’ are the estimated beacon po-
sitions, the ‘__’ is the GPS path reference and the “o” are
the beacon positions given by the GPS.
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Fig. 15. RMSE of position.

the proposed algorithm and the FastSLAM2.0. Fig.14
shows the trajectory and landmark estimates produced by
algorithms, while Fig.15 shows the RMSE of the robot
position. The results show that the performance of the
proposed algorithm is better than that of FastSLAM2.0.
This is because that the proposed algorithm tunes Qt and
Rt adaptively and diversity particles are more than that of
FastSLAM2.0. This improves data association, estimation
accuracy and consistency.

5 CONCLUSION

This paper presents an intelligent RBPF to solve SLAM
problem. In this method, an adaptive EKPF for robot pose
estimation, and an adaptive EKF for landmark feature es-
timation is developed. Then PSO is used to optimize the
performance of sampling in the adaptive EKPF. The PSO
causes the particle set to tend to the high likelihood re-
gion before the weight is updated, thereby the impoverish-
ment of particles can be overcome. Themain advantage of
our proposed method is its better accuracy and consistency
compared to the classical FastSLAM. This is because in
our proposed method, the theoretical value of the innova-
tion sequence matches with its real value.
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