Maximum Overlap Hybridization in PF_{5} and SF_{4}

King-Mo Sun, Thomas C. W. Mak*, and Wai-Kee Li*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T. Hong Kong

Received April 23, 1976
The method of Murrell as modified by Golebiewski has been applied to determine the maximum overlap hybrid orbitals for PF_{5} and SF_{4}. For the former system, three cases have been considered: σ overlap integrals of the central atom valence and F 2p orbitals are (i) taken as angular parts of P atomic orbitals projected in the bond directions, (ii) evaluated using SCF atomic wave functions with equidistant F ligands, and (iii) calculated using experimental bond lengths. The resultant overall hybridizations are compared and discussed. For SF_{4}, only case (iii) has been carried out. In addition, the wave function of the lone pair orbital is obtained with symmetry consideration and orthonormality relationships among all the hybrids. This appears to be an inexpensive way to determine the form of the lone pair and to estimate its size.

INTRODUCTION

The concept of hybridization has played an important role in the understanding of bonding in molecules. Hybrid orbitals for molecules containing equivalent bonds can be deduced by standard applications of group theory. ${ }^{1}$ On the other hand, for molecules possessing little or no symmetry, or for systems with non-equivalent bonds, the principle of maximum overlap is generally invoked in the construction of hybrid orbitals. ${ }^{2,3}$ An elegant method applicable to all MX_{k} systems was first developed by Murrell ${ }^{4}$ and later simplified by Golebiewski. ${ }^{5}$ The version by Golebiewski, which is briefly described below, will be applied to PF_{5} and SF_{4}, each of which has two non-equivalent sets of hybrid orbitals.

In a previous paper, ${ }^{6}$ the form and size of the lone pair orbitals in carbene-, ammonia-, and water-like systems were determined by a simple version of hybridization theory. In this note, the same is achieved for the SF_{4}, instead of only the s and p orbitals as in the previous cases, the approach to the determination of the lone pair is entirely different.

METHOD OF CALCULATION

For a molecule MX_{k}, the bonded hybrid orbitals h_{i} on \mathbb{M} are linear combinations of orthonormal atomic orbitals Φ_{j} :

[^0]\[

\left($$
\begin{array}{c}
h_{i} \\
\vdots \\
\dot{h}_{k}
\end{array}
$$\right)=A\left($$
\begin{array}{c}
\phi_{1} \\
\vdots \\
\dot{\phi}_{n}
\end{array}
$$\right)=\left($$
\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{k 1} & \cdots & a_{k n}
\end{array}
$$\right)\left($$
\begin{array}{c}
\phi_{1} \\
\vdots \\
\dot{\phi}_{n}
\end{array}
$$\right)
\]

where $\mathrm{n} \geqslant \mathrm{k}$. In addition, the ligands $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}$ are assumed to be σ-bonded to M by means of orbitals $\Theta_{1}, \ldots, \Theta_{k}$ respectively. To determine the coefficient matrix \mathbf{A}, the overlap matrix

$$
S=\left(\begin{array}{ccc}
\left\langle\theta_{1} \mid \varnothing_{1}\right\rangle & \cdots & \left\langle\theta_{1} \mid \phi_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\theta_{k} \mid \phi_{1}\right\rangle & \cdots & \left\langle\theta_{k} \mid \varnothing_{n}\right\rangle
\end{array}\right)
$$

is first constructed and then the real symmetric matrix $\mathbf{S S}^{\mathrm{T}}$ (\mathbf{S}^{T} being the transpose of \mathbf{S}) diagonalized by an orthogonal matrix u :

$$
\begin{equation*}
\mathbf{S S}^{\mathrm{T}}=\mathbf{u}^{\mathrm{T}} \mathbf{d}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{k}}\right) \mathbf{u} \tag{3}
\end{equation*}
$$

where d is a diagonal matrix with real positive elements (the eigenvalues) $\alpha_{1}, \ldots, \alpha_{k}$. The matrix \mathbf{A} in equation (1) can then be calculated explicitly by the formula

$$
\begin{equation*}
\mathbf{A}=\mathbf{u}^{\mathrm{T}} \mathbf{d}\left(\alpha_{1}^{-1 / 2}, \ldots, \alpha_{\mathbf{k}}^{-1 / 2}\right) \mathbf{u} \mathbf{S} \tag{4}
\end{equation*}
$$

where all square roots $\alpha_{i}^{-1 / 2}$ are taken as positive. The hybrids h_{i} obtained in this way are the maximum overlap bonded hybrid orbitals on the central atom M. ${ }^{5}$

When the bonded hybrids are obtained, the lone pair hybrid may be determined with symmetry consideration and orthonormality relationships among all the hybrid orbitals.

RESULTS AND DISCUSSION

A. The PF; System

With reference to the coordinate system for PF_{5} shown in Figure 1, the following P atomic orbitals (Φ_{j}) have the proper symmetry to contribute to the formation of the five hybrids: $3 \mathrm{~s}, 3 \mathrm{p}_{\mathrm{z}}, 3 \mathrm{~d}_{\mathrm{z}} 2$, $\left(3 \mathrm{p}_{\mathrm{x}}, 3 \mathrm{p}_{\mathrm{y}}\right)$, and $\left(3 \mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, 3 \mathrm{~d}_{\mathrm{xy}}\right)$. Of these seven orbitals, the first three are fully utilized, i. e., each with a weight of 1 , while the last two pairs compete with each other to give a total weight of 2 .

To construct S, the following three situations are considered:
Case (i): In the simplest type of approximation ${ }^{2}$, the σ-type overlap integrals may be taken as projections of the angular parts of P atomic orbitals along the $P-F$ bonds, giving the relative value 1 , $(3)^{1 / 2}$, and (5 $)^{1 / 2}$ for $<3 \mathrm{~s}(\mathrm{P}) \mid$ $|2 \mathrm{p}(\mathrm{F})>,<3 \mathrm{p}(\mathrm{P})| 2 \mathrm{p}(\mathrm{F})>$, and $<3 \mathrm{~d}(\mathrm{P}) \mid 2 \mathrm{p}(\mathrm{F})>$, respectively. Thus the overlap matrix has the form:

$$
\begin{gathered}
\\
\theta_{1} \\
\theta_{2} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4} \\
\theta_{5}
\end{gathered}\left(\begin{array}{ccccccc}
3 p_{x} & 3 p_{y} & 3 p_{z} & 3 d_{z^{2}} & 3 d_{x^{2}-y^{2}} & 3 d_{x y} \\
1 & 0 & 0 & (3)^{1 / 2} & (5)^{1 / 2} & 0 & 0 \\
1 & 0 & 0 & -(3)^{1 / 2} & (5)^{12 / 2} & 0 & 0 \\
1 & 3 / 2 & (3)^{1 / 2} / 2 & 0 & -(5)^{1 / 2} / 2 & (15)^{2 / 4 / 4} & 3(5)^{1 / 2 / 4} \\
1 & -3 / 2 & (3)^{12 / 2} / 2 & 0 & -(5)^{1 / 2} / 2 & (15)^{1 / 2 / 4} & -3(5)^{1 / 2 / 4} \\
1 & 0 & -(3)^{1 / 2} & 0 & -(5)^{3 / 2} / 2 & -(15)^{1 / 2 / 2} & 0
\end{array}\right)
$$

Figure 1. Coordinate system for PF_{5}

Case (ii): The five P-F bonds are assigned the same length of $1.555 \AA$ the average of two experimental $\mathrm{P}-\mathrm{F}$ bond distances. ${ }^{7}$ The overlap integrals are calculated using the SCF P and F wave functions of Berry et al. ${ }^{8}$ Numerical values $<3 \mathrm{~s}(\mathrm{P})|2 \mathrm{p}(\mathrm{F})>=0.246590,<3 \mathrm{p}(\mathrm{P})| 2 \mathrm{p}(\mathrm{F})>=0.233804$, and $<3 \mathrm{~d}(\mathrm{P})|2 \mathrm{p}(\mathrm{F})\rangle=-0.055623$ are then used in constructing the overlap matrix.

Case (iii): Using the experimental values ${ }^{7}$ of $1.577 \AA$ and $1.534 \AA$ for the axial and equatorial $\mathrm{P}-\mathrm{F}$ bonds, respectively, and again employing the wave functions of Berry et al., a total of six overlap integrals are calculated. The numerical values are:

$$
\begin{aligned}
& <3 \mathrm{~s}(\mathrm{P}) \mid 2 \mathrm{p}(\mathrm{~F})>(\text { axial })=0.242270,<3 \mathrm{~s}(\mathrm{P}) \mid 2 \mathrm{p}(\mathrm{~F})>(\text { equatorial })=-0.250824 ; \\
& <3 \mathrm{p}(\mathrm{P}) \mid 2 \mathrm{p}(\mathrm{~F})>(\text { axial })=0.234372,<3 \mathrm{p}(\mathrm{P}) \mid 2 \mathrm{p}(\mathrm{~F})>(\text { equatorial })=0.232903 ; \\
& <3 \mathrm{~d}) \mid 2 \mathrm{p}(\mathrm{~F})>(\text { axial })=-0.053345,<3 \mathrm{~d}(\mathrm{P}) \mid 2 \mathrm{p}(\mathrm{~F})>\text { (equatorial) }=-0.057935 .
\end{aligned}
$$

Once the overlap matrix is constructed, the calculation of the hybrid orbitals is straightforward; the results for all three cases are given in Table I.

In case (i), since the elements of the overlap matrix involve only integers and their square roots, the coefficients of the resultant hybrids are expressible
in closed algebraic forms. The overall hybridization $\mathrm{sp}^{17 / 9} \mathrm{~d}^{19 / 9}$ agrees with the result obtained by Duffey ${ }^{9}$ in a less general way. In addition, Golebiewski also suggested that this is the hybridization involved in $\mathrm{PCl}_{5}, \mathrm{SbCl}_{5}, \mathrm{SF}_{4}$, and $\mathrm{ClF}_{3}{ }^{10}$ This scheme indicates that the $3 p_{x}$ and $3 p_{y}$ orbitals contribute $4 / 9$ each to the hybridization, while the $3 \mathrm{~d}_{x^{2}-y^{2}}$ and $3 \mathrm{~d}_{x y}$ orbitals contribute $5 / 9$ each. This over-emphasis of d-orbital participation results from the assumption that the P 3d orbitals overlap more effectively than the 3 p and 3 s orbitals with the F 2 p orbitals. Inspection of the numerical values of the overlap integrals given above shows that this simplifying assumption is unrealistic.

As expected, the results of cases (ii) and (iii) are very similar since the bond lengths used in the evaluation of overlap integrals are nearly equal. In both instances, the ($3 p_{x}, 3 p_{y}$) orbitals contribute more then 90% to the overall hybridization, while the $\left(3 \mathrm{~d}_{x^{2}-y^{2}}{ }^{2} 3 \mathrm{~d}_{\mathrm{xy}}\right)$ pair contributes less than 10%. The relatively insignificant part played by the latter is a consequence of the ineffective o-overlap of the F 2 p and the rather diffuse P 3d orbitals.

If it were known beforehand that the overlap integrals between $P 3 d$ and F 2 p orbitals were of such a small magnitude, the $\left(3 d_{x^{2}-y^{2}}, 3 d_{x y}\right)$ pair might then be safely ignored, leaving only $3 \mathrm{~s}, 3 \mathrm{p}_{\mathrm{x}}, 3 \mathrm{p}_{\mathrm{y}}, 3 \mathrm{p}_{\mathrm{z}}$, and $3 \mathrm{~d}_{z^{2}}$ orbitals as a basis. Indeed, this then becomes a rather standard exercise in quantum chemistry. ${ }^{11}$ However, it must be emphasized that the overlap integrals must be calculated before making such an assumption; there may be some PF_{5}-like systems where the $\left(\mathrm{d}_{\mathrm{x}^{2}}-\mathrm{y}^{2}, \mathrm{~d}_{\mathrm{xy}}\right)$ pair makes a significant contribution.

B. The SF_{4} System

With reference to the coordinate system for SF_{4} shown in Figure 2, it is evident that all the sulphur atomic orbitals in the \mathbb{M} shell except the $3 \mathrm{~d}_{x y}$ orbital have the proper symmetry to contribute to the formation of the four bonded hybrids. On the other hand, only $3 \mathrm{~s}, 3 \mathrm{p}_{z}$, and $3 \mathrm{~d}_{z^{2}}$ orbitals do so for the lone pair hybrid.

To construct \mathbf{S}, among the three situations considered for PF_{5}, only case (iii) is carried out for SF_{4}. In the calculation of the two-center overlap integrals, the structural parameters used are those given in Figure $2 \boldsymbol{1}^{12}$ the sulphur atomic wave functions employed are those reported by Craig and Thirunamachandran ${ }^{13}$ (hereafter referred to as CT); the fluorine functions are the ones used in the PF_{5} study. The numerical values of the six basic overlap integrals are:
$<3 \mathrm{~s}(\mathrm{~S})|2 \mathrm{p}(\mathrm{F})>(1.646 \AA)=0.22781,<3 \mathrm{~s}(\mathrm{~S})| 2 \mathrm{p}(\mathrm{F})>(1.545 \AA)=0.25864 ;$
$<3 p(S)|2 p(F)>(1.646 \AA)=0.26551,<3 p(S)| 2 p(T)>(1.545 \AA)=0.27807 ;$
$<3 \mathrm{~d}(\mathrm{~S})|2 \mathrm{p}(\mathrm{F})>(1.646 \AA)=0.03482,<3 \mathrm{~d}(\mathrm{~S})| 2 \mathrm{p}(\mathrm{F})>(1.545 \AA)=0.01571$.
The forms of the bonded hybrids $\left(h_{i} ; i=1, \ldots, 4\right)$ are given in Table II. As mentioned earlier, there are only three coefficients to be determined for the lone
TABLE I
The Maximum Overlap Hybrid Orbitals in $P F_{5}$

Case	Hybrid	3s	$3 \mathrm{p}_{\mathrm{x}}$	$3 \mathrm{p}_{\mathrm{y}}$	$3 \mathrm{p}_{\mathrm{z}}$	$\mathrm{d}_{\mathrm{z}}{ }^{2}$	$\mathrm{d}_{\mathrm{x}-{ }^{2}-\mathrm{y}^{2} \text { }}$	d_{xy}	Overall Hybridization
(i)	$\begin{aligned} & h_{1} \\ & h_{2} \\ & h_{3} \\ & h_{4} \\ & h_{5} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & (2)^{1 / 2} / 3 \\ & -(2)^{1 / 2} / 3 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ (6)^{1 / 2} / 9 \\ (6)^{1 / 2} / 9 \\ -2(6)^{1 / 2} / 9 \end{gathered}$	$\begin{gathered} (2)^{1 / 2} / 2 \\ -(2)^{1 / 2 / 2} \\ 0 \\ 0 \\ 0 \end{gathered}$	-c -c d d d	$\begin{gathered} 0 \\ 0 \\ (30)^{1 / 2} / 18 \\ (30)^{1 / 2} / 18 \\ -(30)^{1 / 2} / 9 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ (10)^{1 / 2} / 6 \\ -(10)^{1 / 2} / 6 \\ 0 \end{gathered}$	$\mathrm{sp}^{17 / 9} \mathrm{~d}^{19 / 9}$
(ii)	$\begin{aligned} & h_{1} \\ & h_{2} \\ & h_{3} \\ & h_{4} \\ & h_{5} \end{aligned}$		$\begin{gathered} 0 \\ 0 \\ 0.6926 \\ -0.6926 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0.3998 \\ 0.3998 \\ -0.7997 \end{gathered}$	$\begin{gathered} 0.7071 \\ -0.7071 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} -0.5563 \\ -0.5563 \\ 0.3564 \\ 0.3564 \\ 0.3564 \end{array}$	$\begin{gathered} 0 \\ 0 \\ -0.0824 \\ -0.0824 \\ 0.1648 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & -0.1427 \\ & 0.1427 \\ & 0 \end{aligned}$	$\mathrm{sp}^{2.9186} \mathrm{~d}^{1.0814}$
(iii)	$\begin{aligned} & h_{1} \\ & h_{2} \\ & h_{3} \\ & h_{4} \\ & h_{5} \end{aligned}$	0.4315 0.4315 0.4574 0.4574 0.4574	$\begin{aligned} & 0 \\ & 0 \\ & 0.6912 \\ & -0.6912 \\ & 0 \end{aligned}$	0 0 0.3991 0.3991 -0.7982	$\begin{gathered} 0.7071 \\ -0.7071 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} -0.5602 \\ -0.5602 \\ 0.3523 \\ 0.3523 \\ 0.3523 \end{array}$	$\begin{gathered} 0 \\ 0 \\ -0.0860 \\ -0.0860 \\ 0.1720 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ -0.1489 \\ 0.1489 \\ 0 \end{gathered}$	$\mathrm{Sp}^{2.9113} \mathrm{~d}^{1.0887}$

[^1]

Figure 2. Coordinate system and the relevant structural parameters of $\mathbf{S F}_{\mathbf{4}}$.
pair hybrid (h_{1}) and they can be obtained uniquely with the orthonormality relationships among all the hybrid orbitals. The form of h_{1} is also given in Table II.

TABLE II
The Maximum Overlap Bonded Hybrids $\left(\mathrm{h}_{\mathrm{i}}, i=1, \ldots, 4\right)$ and the Lone Pair Hybrid $\left(\mathrm{h}_{1}\right)$ of SF_{4}

$\begin{aligned} & \text { D. } \\ & \text { 足 } \\ & \text { 分 } \end{aligned}$	Coefficients of Atomic Orbitals							
	S	p_{z}	p_{x}	p_{y}	$\mathrm{d}_{\mathrm{z}}{ }^{2}$	$\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$	$\mathrm{d}_{x z}$	d_{yz}
h_{1}	0.5871	0.3390	0.0	0.7071	-0.0944	-0.1774	0.0	-0.0088
h_{2}	0.5871	0.3390	0.0	-0.7071	-0.0944	-0.1774	0.0	0.0088
h_{3}	0.3771	-0.5879	0.7058	0.0	0.0463	0.0999	-0.0437	0.0
h_{4}	0.3771	-0.5879	-0.7058	0.0	0.0463	0.0999	0.0437	0.0
h_{1}	0.0841	0.1317	0.0	0.0	0.9877	0.0	0.0	0.0

The profile of the lone pair orbital may be illustrated by plotting its probability density $\left|h_{1}\right|^{2}$ against distance in the direction of its maximum. Figure 3 shows the $\left|h_{1}\right|^{2}$ curve of SF_{4}, the most interesting feature being a maximum at $r_{\text {max }}=0.635 \AA$. As suggested previously ${ }^{6}$, this provides a plausible estimate of the size of the SF_{4} lone pair. Since other estimates for this value are not readily available in the literature, it is noted that the $r_{\text {max }}$ values for the carbene, ammonia, and water lone pairs have been reported as $0.380,0.289$, and $0.244 \AA$, respectively ${ }^{6}$. Therefore, the present estimate for SF_{4} appears to fall in a reasonable range.

Attention is now turned to the forms of hybrid orbitals. Since the sulphur 3 s and 3 p orbitals overlap much more effectively than the 3rd orbitals do with the fluorine 2 p orbitals, it is not surprising that the maximum overlap mode]

Figure 3. Profile of SF_{4} lone pair ($\left|\mathrm{h}_{1}\right|^{2}$ in arbitrary units).
yields that all bonded hybrids compose almost entirely of 3 s and 3 p orbitals, while the lone pair hybrid has an exceptionally high d-content. An obvious point to make at this juncture is that the quality of the lone pair orbital obtained by this method depends heavily on the quality of the atomic wave functions used. [When Clementi's ${ }^{14}$ sulphur 3 s and 3 p functions and the 3d orbitals of CT are used in the calculation, the resulting hybrids are quite similar to those listed in Table II. Therefore, it may be said that the Clementi and CT wave functions are comparable with each other.] Among the four bonded hybrids, those for the longer bonds (h_{1} and h_{2}) have a d-content that is three times as large as that for h_{3} and h_{4}. Again, this is a reflection on the difference between the two basic overlap integrals $<3 \mathrm{~d}(\mathrm{~S}) \mid 2 \mathrm{p}(\mathrm{F})>(1.646 \AA)$ and $<3 \mathrm{~d}(\mathrm{~S}) \mid$ $\mid 2 \mathrm{p}(\mathrm{F})>(1.545 \AA)$.

Finally, it is mentioned that applying the method desribed here to systems such as ClF_{3} and BrF_{3}, which have two lone pairs and where d-orbital participation is expected, would not yield a unique solution for the lone pair hybrids. This is because there are not enough orthonormality relationships to determine all the coefficients. Rather, some additional assumptions have to be made in order to resolve this difficulty ${ }^{4,15}$.

To conclude, the present method is an attempt to obtain inexpensively a quantitative picture of the lone pair orbital in SF_{4}-like systems. In view of the vital role the lone pairs play in models of directed valence such as the VSEPR theory ${ }^{16}$, it appears worthwhile to pursue this method further, so that the lone pair orbitals of various molecular systems may be studied and compared.

Acknowledgement. The authors wish to thank Professor Z. B. Maksić and the referee for valuable comments.

REFERENCES

1. F. A. Cotton, Chemical Applications of Group Theory, 2nd ed., Wiley (Interscience), New York, 1971.
2. For a recent review in this field, see \mathbb{M}. R a ndić and Z. B. Maksić, Chem. Rev. 72 (1972) 43.
3. G. Del Re, Theoret. chim. Acta; 1 (1963) 188; A. Veillard and G. Del Re, ibid. 2 (1964) 55; G. Del Re, U. Esposito, and M. Carpentieri, ibid. 6 (1966) 36.
4. J. N. IM urre11, J. Chem. Phys. 32 (1960) 767.
5. A. Gołebiewski, Trans. Faraday Soc. 57 (1961) 1849.
6. W.-K. Li and T. C. W. M a k, J. Mol. Structure 25 (1975) 309.
7. L. S. Bartell and K. W. Hansen, Inorg. Chem. 4 (1965) 1777.
8. R. S. Berry, M. Tamres, C. J. Ballhausen, and H. Johansen, Acta Chem. Scand. 22 (1968) 231.
9. G. H. Duffy, J. Chem. Phys. 17 (1949) 196.
10. A. Gołebiewski, Acta Phys. Polon. 23 (1963) 243.
11. A. Julg and O. Julg, Exercises de Chimie Quantique, Dunod, Paris 1967, p. 35.
12. W. M. Tolles and W. G. Gwin n, J. Chem. Phys. 36 (1962) 1119; K. Kimura and S. H. B a uer, ibid. 39 (1963) 3172.
13. D. P. Craig and T. Thirunamachandran, J. Chem. Phys. 45 (1966) 3355.
14. E. Clementi, a supplement to IBM J. Res. Develop. 9 (1965) 2.
15. P. G. Lykos and H. MI. Schmeising, J. Chem. Phys. 35 (1961) 288.
16. R. J. Gillespie, Molecular Geometry, Van Nostrand Reinhold, London, 1972.

SAZ゙ETAK
 Hibridizacija maksimalnog prekrivanja u molekulama $\mathbb{P F}_{5}$ i $\mathbf{S F}_{4}$

> K. M. Sun, T. C. W. Mak i W. K. Li

Izračunani su hibridi maksimalnog prekrivanja za molekule PF_{5} i SF_{4} primjenom matrične metode Murrell-Golebiewski. Lokalizirana orbitala koja opisuje osamljeni par elektrona u molekuli SF_{4} dobivena je s pomoću zahtjeva simetrije i ortonormiranja hibrida. Pokazano je da hibridizacija u molekuli PF_{5} u prvoj aproksimaciji ima oblik sp³. Odstupanje od toga kanonskog oblika vrlo je malo. Osamljeni par elektrona u molekuli SF_{4} sadržava izrazito visok udjel d-orbitala.

DEPARTMENT OF CHEMISTRY
THE CHINESE UNIVERSITY OF HONG KONG Prispjelo 23. travnja 1976. SHATIN
N. T. HONG KONG

[^0]: * Address correspondence to these authors.

[^1]: $a=\left\{\left[25-(145)^{1 / 2}\right] / 720\right\}^{1 / 2}\left[1-(5 / 29)^{1 / 2}\right]+\left\{\left[25+(145)^{1 / 2}\right] / 720\right\}^{1 / 2}\left[1+(5 / 29)^{1 / 2}\right]=0.399451$.
 $\mathrm{b}=\left[(1 / 3)-\left(2 a^{2} / 3\right)\right]^{1 / 2}=0.476403$.
 $c=\left[(1 / 2)-a^{2}\right]^{1 / 2}=0.583472$.
 $d=-\left[(1 / 3)-b^{2}\right]^{1 / 2}=-0.326150$.

