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Excitations accompanying photoionizations in molecules (shake
-up processes) are studied on the basis of degenerate many-body 
Rayleigh-Schr6dinger perturbation theory (MB - RSPT). 

These excitations give rise to satellite lines accompanyin ioni
zation lines. Decomposition of correlation effects in these processes 
into those corresponding to single-particle excitation and single
-particle ionization is discussed. 

INTRODUCTION 

During a photoionization process a second electron may be promoted from 
a filled orbital to an unfilled but bond orbital or to continuum. The former 
case is named the »shake-up« process and the latter is called the »shake - off« 
process. In the »shake - up« process a sharp line to the low- kinetic energy 
side of the main photoelectron peak is observed at an energy E = h v - Eh - E*, 
where Eh is the ionization energy and E* is the additional excitation energy. 
In the »shake - off« process, two electrons are emitted and we observe a 
continuum to the low - kinetic energy side of the main peak is observed1. In 
particular growing interest in photoelectron spectroscopy requires understanding 
of these phenomena. 

The many - body techniques are recently applied in the study of photo
ionization in atoms and molecules. The Green function technique2- 9 , equation 
of motion method10- 13, the natural transition orbitals method14•15 as well as 
quasi-degenerate and/or degenerate MB - RSPT16•17 have been used to study 
processes in photoelectron spectroscopy. MB-RSPT has been used to calculate 
molecular excitation energies18 and intermolecular interaction energies19•20 • 

Very recently, the Green function technique has been applied to the calcu
lation of »shake up« energies21•22• These are found to be secondary poles of 
the Green function. 

In the present work we study excitations accompanying photoionizations by 
degenerate MB-RSPT. MB-RSPT is widely used in the study of the correlation 
energy problem, which is of recent ab - initio numerical interest23- 25• The 
diagrammatic technique is a very powerful tool for studing the correlation 
energy problem to various orders and various forms of MB-RSPT (different 
separation of the Hamiltonian) for ground state as well as for excitation pro
cesses. This technique provides the possibility to see »structure« of the corre-
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lation contribution and also to see the dominant diagrammatic contributions, 
which can then be summed up to all orders of perturbation theory. 

The aim of this paper is to formulate the problem of excitation processes 
accompanying photoionization by degenerate MB-RSPT and to show how the 
correlation energy can be decomposed into single-particle excitation and single 
particle ionization. 

For the sake of comple teness we briefly recapitulate the theory. 

The Formula,tion of Excitations Accompanying Photoionizat~on 
by Degenerate MB - RSPT 

Degenerate many-body Rayleigh-Schrodinger perturbation theory has been 
formulated in the »microscopic« theory of N-fermion systems as a suitable tool 
for the introduction of the effective interaction26- 30• The first complete derivation 
of this many-body theory was performed by Brandow29 in order to give a 
correct theoretical definition for the nuclear shell model potential. 

Let us assume that a perturbed Hamiltonian of an atomic or molecular 
system may be written as 

(1) 

where 10 is the scalar quantity, H 0 is an unperturbated Hamiltonian and H1 is 
a perturbation. In the second quantization formalism 'these operators have the 
form 

H 1 = (1/2) ~ <AB Iv I CD> xA+ XB X 0 Xe - ~ <A I w I B > xA+ XB (2/ 
ABCD AB 

where xA+ and XB are creation and annihilation operators defined on the ortho
normal set of spinorbitals which are solutions of the one - particle eigenproblem 
(h + w) I A>= cA I A>. One of the basic concepts of degenerate MB-RSPT is 
a properly preselected non-degenerate »core« state vector31• 

I <Po> = II xA+ Io> (3) 
AeFS 

Ho I <Po>= Eo<o> I q;;o >; E0 = ~ "A (4) 
AeFS 

where the index A runs over all occupied (taken from the Fermi sea) one-particle 
functions, and J 0 > is the normalized vacuum state vector. Using this core 
state vector we generate a certain finite d-dimensional model space 

(5) 

\.j+ 
where 6.u are ordered products with fixed numbers of creation and annihi
lation operators. We assume that the model space D 0 is an eigenspace of the 
unperturbed. Hamiltonian with an eigenenergy E,,Coi. Let P 0 be a projector onto 
D0 , than Tr (P0 = d and H = P 0 H0 = H 0 P 0 = E._<0> P 0 • If we assume that the 
perturbation H1 is an »analytical perturbation«32, then there exist d perturbed 
eigenvalues 

(6) 
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tending to the unperturbed energy Ea.<"l when the perturbation H1 is »switched 
- off«, i. e. H1 ~ 0. The energy difference ti E,_ = E,_ - E0, where /..EM and 
E0 is the perturbed energy of the core subsystem, are then determined as 
eigenvalues of the following non - hermitian d - dimensional model eigen
problem 

HRS IP,_>= t:i E,_ J p ). > 
HRS= (E,_<ol -Eo<Ol) p o (a)+ GRS 

(7) 

(8) 

HRs is the model Hamiltonian defined in the model space D 0, and GRs is the 
model interaction defined in the framework of the diagrammatic technique 
as follows 

00 

GRs ={Po bl Po}Lc + ~ ~ , {Po Hi Gk1 Hi G k' Hi ... Gk" H i P o}Lc = 
n = l kik2 ... kn 

(9) 

where the subscript LC means that only linked connected diagrams33 are con
tributing, and nonnegative summation indices are determined by the two 
conditions 

n 

m 

~ K i ~ m for m = 1, 2, ... , n - 1 
i = l 

The powers of the unperturbed propagator Gk from (9) are defined by 

G K= r-~o- P 
l (E .. (Ol _ ;O)K 

for K = 0 

for K ~ 1 

(10) 

(11) 

The model space D 0 for a »shake-up« process may be spanned by th e following 
unperturbed state vector : 

I 1?' > = xK+ XI XH I po> 

Ho J 1?' > = (Eo <ol + EK - Er - EH) I <P' > 
(12) 

(13) 

where E0<
0
l is the unperturbed eigenenergy defined by (4) and I, H E FS, K ¢ FS, 

I ~ H. Generally speaking, this unperturbed state vector I <I>' > may be 
interpreted in two alternative ways: (i) as ionization of an H electron and 
simultaneous excitation of an I electron to a K state, or (ii) as ionization of 
an I electron and excitation of an H electron to a K state. It should b e noted 
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that these two possible mechanisms of the given »shake-up« process cannot 
be distinguished in the frame work of the time-independent formalism. 

To specify clearly the states K , I, and H, we assume that in both cases 
ionization is described by H. Since the model space Q 0 spanned by I <I>' > is 
a one-dimensional space (d = 1) it is not necessary to solve the model eigen
problem (7), its eigenvector I 'PA. > can be simply identified with I <I>'>, 

~ E' = < P' I HRs J <Ji' > = EK - Er - EH + < P' I GRs I <Ji' >, (14) 

where E' = ~ E' + E0 is the energy of the »shake-up« state described in the 
zero-order approximation by J <I>'>, i . e. the difference ~ E' is direct measure 
of the energy of the »shake-up« process. Following the diagrammatic rules 
the matrix elements < rJ>' J GRs I <I>'> from (14) can be divided into three 
contributions (see Figure 1.) 

K +i:Sf 
H 

Figur e 1. The diagr ammatic decomposition of the mat rix elements < cl>' I GRs I cl>' > 

< P' I GRS I «P' > = < «P' I G ~~ I «P' > + 

+ < P' I G ~~ I <Ji' > + < P' I G~~ I <Ji' > (15 

Here the matrix element <<I>' I GRs<'l I rJ> ' > represents the sum of all possible 
diagrammatic contributions with free particle K and hole I lines. These dia
grams contribute16 to the ionization potential IH = EH - E 0 , where EH is the 
energy of single ionized systems described in the zero-order approximation by 
XH I rl>o >, 

I - - E + < P' I G (1) I <Ji' > H - H RS (16) 

The matrix element <<I>' I G Rs<'l I rJ> ' > represents the correlation contribution 
to the single particle ionization process. The matrix element <<I>' I GRs<

2
l I rJ>' > 

represents the sum of all possible diagrammatic contributions with a free hole 
H line. These diagrams contr ibute18 to the excitation energy~ E I-->K = E 1_.K- E0, 

where E I-->K is the energy of an excited electroneutr.al system described in 
the zero-order approximation by xK+ Xr I rl>o >, 

~ E 1__,K =EK-Er< P' I G~~ I <Ji'> (17) 

The matrix element <<I>' [ GRs<
2
l I rJ>' > represents the correlation contribution 

to the single particle excitation process. 

Finally, the matrix element < rJ> ' I G Rs<sJ i rJ>' > represents the sum of all 
possible remaining diagrams that are not included in the previous two matrix 
elements. These diagrams may, of course contain also free particle and/or hole 
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lines, but of such types which have not been included in the above - mentioned 
cases (16) and (17. Then the »shake-up« energy determined by (14) can be 
rewritten in the following form 

ti E' - I + ti E + < <P' I G <3> I <P' > - H I-..K RS (18) 

This means that when the »shake-up« process is treated in the framework of 
degenerate MB-RSPT it is possible to extract the ionization potential IH and 
the excitation energy tJ.. E I->K. This fact might be of value for (i) simple inter
pretation of the given »shake-up« process, and (ii) also for a less elaborate 
calculation of the »shake-up« energy tJ.. E', since the quantities IH and tJ.. E I--,,K 

can be properly estimated from photoelectron and UV spectroscopy, respectively. 
In order to simplify the calculation it is advantageous to formulate the theory 
in such a way as to calculate that the energy difference between the »shake-up« 
energy and the ionization potential tJ.. E' - IH instead of performing the direct 
calculation of »shake-up« energies. 

ti E' -IH =ti. EI->K + < <P' I G~~ I <P' > (19) 

The theory formulated in this way is true of spinorbitals. Its application 
to a concrete molecular system is more complicated, because tqe model space 
Q 0 , as will be outlined below, is not a one-dimensional space. This model space 
can, of course, be factorized on the subspaces with lower dimension using the 
constants of motion S2 and Sz. 

In the following part we give a short outline of the present theory of 
closed-shell molecular systems for which the solution of restricted Hartree
-Fock equations34 is known. Let us study N-electron (N = 2n) molecular systems 
which are in the zero-order approximation described by the closedshell »Core« 
state vector 

n 
I <P 0 > = II (Xi/ X;~) 0 > (20) 

i=l 

where X ia.+ (Xi~+) is the creation operator of the spin-;-orbital 

I A > = I i > I a > ( \ A' > = I i > I ~ > ). 

Assuming that the orbitals { Ii>} are solution of the restricted HF equations 
in the canonical form, we can express the Hamiltonian in the so called normal 
form 

H = <<Po IHI <Po> +Ho+ Hl 

Ho = ~EA N rxA+ XA] 
A 

H1 = (1/2) ~ <AB Iv I en> N [XA+ xB+ x 0 XcJ 
ABCD 

(21) 

(22) 

(23) 

where < <!> 0 I H \ <!> 0 > is the restricted HF energy, fA is the HF orbital energy 
which does not depend on the spin part, i. e. fA = fA' = fi· The expression 
N [ ... ] is the normal product defined with respect to \ <!> 0 > 35• The model 
space Q 0 for the calculation of the »shake-up« process may now be spanned by 
three unperturbed state vectors with E .. co> = E0 co> + Ek - £; - fh and Sz = 1/2. 
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I A1 > = Xkp+ X;p Xhp I c]jo > 
I A2 > = xk,/ x; .. xhP I <Po > 
I As> = Xk/ X;p xh .. I <Po > 

The spin-symmetry adapted functions are the following: 

I <P0 ' > = 1 (I A 1 > + I A 3 > - I A 2 >) (quarted) v3 
I Po/> = vl 6 (21 Al> + I A2 > - I A3 >) (doublet) 

I P02' > = 1 > (I A 1 ) + I A2 >) (doublet) 
' ...; 2 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

An expression analogous to (19) can now be obtained. Of course, the model 
space Q 0 can now be factorized onto quarted (one-dimensional) and doublet 
(two-dimensional) subspaces. Substituting (26) into (18), we obtain the energy 
difference between the quartet »shake-up« peak and the ionization peak as a 
one-dimensional problem. The quartet !'l. E 0' - IH energy is then given by 

(30) 

In order to obtain the energy difference between the doublet states and 
the ionization peak, the two by two model characteristic problem (7) must be 
solved, since the doublet subspace is two-dimensional. 

DISCUSSION 

In recent work of Cederbaum21 and Purvis and Ohrn22 the Green functions 
were used to study the »Shake-up« processes in photoelectron spectroscopy. 
»Shake-up« energies were found as secondary poles of the Green function. The 
present approach is based on degenerate BM-RSPT. 

This approach provides the possibility of obtaining explicit formulae for 
»shake-up« energies or even more, for the energy difference between the 
»shake-up« and ionization peaks. It also shows that the decomposition of the 
correlation energy can be diagrammatically treated exactly. 

For the application of the present theory to molecular systems which will 
be our next aim, let us say a few words about the structure of the basic 
formula (19) . The energy difference between the »shake-up« peak and ionization 
peak is given by two terms. The first represents the simple excitation energy, 
while the second represents correlation and reorganization effects which are 
not included in the given ionization potential IH and in the excitation ener:gy 
!'l. EI->K . This fact can be very useful for application of this theory, since the 
term !'l. E I-+K may be estimated from separate theoretical calculation which 
simplifies the calculations. This fact reduces the number of terms occuring in 
the model interaction GRs· 

In some cases, especially in the valence region (correlation satellites21), 

satellites are not due to ionization out of a specific shell nor to simultaneous 
excitation. The ionic state corresponding to the shake-up line »borrows«21 in
tensity from several ionic states of the unperturbed form Xr I <1> 0 >. This would 
mean that the space Q 0 must be enlarged, e.g. {X-;{1 X11 XH, , X-;{2 X12 XH, .. . } 
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I <!> 0 > 36 We think that for these cases the formulation of the problem through 
quasi-degenerate MB-RSPT16,30 might be of value because this fact can be taken 
into account through construction of unperturbed model space Q 0 by P 0 defined 
as 

p O = ~ 14> e' > < Pe' I 
1 

where I <I>e' > is identical with I <!>' > i. e. 

I Pe'>= 14>'> = XK+ Xr XH I Po> 

(31) 

(32) 

Note that the formulation of the problem in this paper corresponds to the case 

(33) 

Due to the fact that in many cases satellite lines are located in a small energy 
range, their identification can hardly be made on the ground of an approximate 
energy calculation alone. In these cases it is as necessary to know the intensities 
as is to know the energies36• 

To conclude this article we note that it was not the aim of this work to -
present here the numerical results, but to formulate the problem of excitations 
accompanying photoionizations by degenerate MB-RSPT and to. show how on 
the basis of this theory the correlation and reorganization effects corresponding 
to single particle ionization and to single particle excitation can be treated 
exactly . using the diagrammatic technique. We believe that this should be 
useful for application of this theory and also for understanding of these phe
nomena. 
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SAZETAK 

Primjena mnogo-cestiCne Rayleigh-Schriidingerove perturbacijske teorije na studij 
pobudenja koja slijede fotoionizacijske procese u molekulama 

I. Hubac i V . Kvasnicka 

Pobudenja koja slijede fotoionizacijske procese u molekulama uzrokuju pojavu 
satelitskih linija u spektrima. One su studirane primjenom mnogo-cesticne Rayleigh
-Schri:idingerove perturbacijske teorije. Diskutirano je rastavljanje korelacijskih efe
kata na procese koji odgovaraju jednocesticnim pobudenjima. 
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