CCA-1056

YU ISSN 0011-1643 547.233:547.241 Original Scientific Paper

Synthesis and Spectral Properties of Hydroxy- and Methoxy-Substituted Benzeneazophosphonates

Lj. Tušek and V. Jagodić

Department of Physical Chemistry, »Ruđer Bošković« Institute, 41000 Zagreb, Croatia, Yugoslavia

Received April 7, 1977

Diethyl and dibutyl hydroxy- and methoxy-substituted [α -(4-benzeneazoanilino)-N-benzyl]phosphonates have been prepared. The corresponding monoesters were obtained by the partial hydrolysis of the diesters. Molecular weight determination in chloroform solution showed that the monoesters are dimeric. Infrared spectra, recorded in chloroform solution as well as in the solid state, confirmed this association as being due to the hydrogen bonding between the P=O and P—OH group. In the hydroxy-substituted compounds, the phenolyc OH group also participates in such a bonding.

INTRODUCTION

Continuing our investigation of benzeneazophosphonic acid derivatives, some new hydroxy- and methoxy-substituted [α -(4-benzeneazoanilino)-*N*-benzyl]phosphonates have been prepared. In our previous works^{1,2} it has been shown that the site of the benzeneazo group attachment has a major influence on the properties of the corresponding monoesters. With this regard monoesters exhibit either a zwitterion or a dimerized structure. Although the alkaline hydrolysis of diesters of various α -anilinobenzylphosphonic acid derivatives afforded in most cases the corresponding sodium salts of the monoesters^{1,3}, the hydroxy-substituted diethyl [4-(2-naphtolazo)- α -anilinobenzyl]phosphonates failed to do so and gave instead products of decomposition¹. This observation initiated our interest to synthesize a number of the cited diesters in order to investigate the influence of the substituents on their alkaline hydrolyisis. The following compounds have been prepared:

R=	=R'	X	Y		\mathbf{R}	R'	X	Y		\mathbf{R}	R'	Х	Y
1	Et	H	OH	7	Et	Na	H	ONa	13	Et	H	H	OH
2	Et	OH	H	8	\mathbf{Et}	Na	OH	H	14	Et	H	OH	H
3	Et	OMe	\mathbf{H}	9	\mathbf{Et}	Na	OMe	H	15	Et	Η	OMe	Η
4	Bu	H	OH	10	Bu	Na	H	ONa	16	Bu	H	H	OH
5	Bu	OH	H	11	Bu	Na	OH	H	17	Bu	Η	OH	H
6	Bu	OMe	H	12	Bu	Na	OMe	H	18	Bu	H	OMe	H

	Frysica	u, spectral, and	Ana	nnit	Duta	ne ío	021110	nazuad nai	suzo Fuos	sphonic Aci	a Derivative	ŝ
.bqn	<u> Потил</u> іа	M. p./ºC	⁰/₀/pɪ	An	al. Ca.	lc'd/%		Char	acteristic ir	group frequ ifrared spec	uencies/cm ⁻¹ ii trum	a the
Con	F OLIMITA	Recr. solv.	эiΥ	U C	H	Z	ር ካ	<i>v</i> P=0		δ(O) - C	<i>ν</i> Ρ—Ο—(C)	v NH, v OH
-	$\mathrm{C}_{23}\mathrm{H}_{\mathrm{26}}\mathrm{N}_{3}\mathrm{O}_{4}\mathrm{P}$	173—174 EtOH	06	62.86 63.09	5.96	$9.56 \\ 9.84$	7.05 7.23	1235 vs		1156 w 1144 s	1052 s 1028 s	3260 m 3160 m
21	$C_{23}H_{26}N_{3}O_{4}P$	156.5—157.5 EtOH—H ₂ O, 9:1	98	62.86 62.68	$5.96 \\ 6.19$	9.56 9.83	7.05	1235 vs		1143 s	1040 s 1020 vs	3250 s 3160 m
ŝ	$C_{24}H_{28}N_{3}O_{4}P$	151—152 EtOH	86	63.56 63.62	$6.12 \\ 6.53$	9.27 9.49	6.80 6.87	1240 vs		1154 m 1140 s 1125 m	$\begin{pmatrix} 1045 \ s^{\circ} \\ 1025 \ vs \end{pmatrix}$	3270 m 3175 w 3118 w
4	$C_{27}H_{34}N_{3}O_{4}P$	129—130 EtOH	64	65.44 65.36	6.92 7.21	8.48 8.78	6.25 6.31	1235 vs br		(1146 vs (1130 sh	1068 s 1030 vs	3260 s 3170 m 3060 m br
10	$C_{27}H_{34}N_{3}O_{4}P$	146—147 EtOH	22	65.44 65.30	$6.92 \\ 7.18$	8.48 8.32	6.25 6.39	1220 s		(1158 m (1145 w	1060 m 1025 s	3390 w 3200 m br
				Na	H_2O		д	v P=0 $v_{as}PQ_2^-$	$\nu_{\rm sym} {\rm PO_2}^-$	δ(O)_C	γ P—O—(C)	ν ΝΗ, ν ΟΗ, Η2Ο
P	$\mathrm{C}_{21}\mathrm{H}_{20}\mathrm{N}_{3}\mathrm{O}_{4}\mathrm{PNa}_{2}$	265 ^a EtOH	60	$10.10 \\ 10.37$		$9.23 \\ 9.45$	6.80 7.06	1258 m	1110 s	1158 w 1145 w	1065 s	3600 w br 3340 w br
8	C ₂₁ H ₂₁ N ₃ O ₄ PNa 1.5 H ₂ O	240—242 ^a EtOH	78	$5.00 \\ 4.81$	5.86 6.65	9.13 9.36	6.73 6.65	1245 s br (1190 m 1180 s	1075 vs	(1150 m (1140 m	$\begin{pmatrix} 1060 & s & br \\ 1045 & s & br \end{pmatrix}$	3700—3200 m
6	C22H23N3O4PNa H2O	220ª EtOH	92	4.94 4.65	3.87 3.18	9.03 9.29	6.66 6.68	1250 m 1200 m 1180 s	1078 VS	$\begin{pmatrix} 1155 & \mathrm{sh} \\ 1145 & \mathrm{s} \end{pmatrix}$	1050 vs° 1032 vs	3520 m br 3380 m br 3300 m br

TABLE I

Phosphonic Acid Deringtines ¢ of Substituted Ron and Analutical Data Phusical. Spectral. LJ. TUŠEK AND V. JAGODIĆ

10 C ₂₃ H ₂₄ N ₃ O ₄ PNa	2 300 ^a EtOH	78	9.51 9.21		8.69 8.49	6.41 1260 s 6.63	1110 VS	1158 m 1144 m	(1070 vs 1058 sh	3600 w 3560—3240 m
11 C ₂₃ H ₂₅ N ₃ O4PN H ₂ O	a 245ª EtOH	72	4.51	3.76 3.42	8.76 8.81	6.46 1240 s br 6.81 (1190 s 1175 s	1080 s	1140 s	(1040 s 1029 s	3500—3220 m
12 C ₂₄ H ₂₇ N ₃ O4PN ²	245—246 EtOH	70	4.84 4.60		8.84 8.68	6.51 1250 m 6.88 1200 m 1180 s	1072 s	1148 m 1140 m	1032 s°	3530 w 3300 m
	isonos das	llu sr	υ	Н	Z	$\mathbf{P} \qquad \begin{array}{c} \nu \ \mathbf{P} = \mathbf{O}, \\ \nu \ \mathbf{P} \mathbf{O}_{2^{-}} \end{array}$	rout in ti punti	δ(O)—C	<i>v</i> P—O—(C) <i>v</i> P—O—H	ν NH, ν OH
13 C ₂₁ H ₂₂ N ₃ O ₄ P	158—160 EtOH—H ₂ O, 9:1	90	$61.31 \\ 61.45$	5.39 5.69	10.22 10.35	7.53 1175 m br 7.59		1156 m 1140 m	1060 w br	3400—3160 m
14 C ₂₁ H ₂₂ N ₃ O ₄ P	153—154 EtOH—Et ₂ O, 3:2	64	$61.31 \\ 61.63$	5.39 5.68	$10.22 \\ 10.47$	7.53 1170 m br 7.67		1140 s	1040 m br	3350 w br 3200 w br
15 C ₂₂ H ₂₄ N ₃ O ₄ P	183—184 EtOH—H ₂ O, 4:1	80	$62.11 \\ 62.42$	5.68 5.85	9.88 9.76	7.28/1248 vs 7.18/1230 sh		1154 s 1140 s br	1030 vs° 1000 vs	3370 m
16 C ₂₃ H ₂₆ N ₃ O ₄ P	150 ^b EtOH—H ₂ O, 4:1	72	62.86 63.13	5.96 5.86	9.56 9.84	7.05 1173 s br 6.84		(1156 s br 1140	$\begin{pmatrix} 1064 \\ 1050 \\ s br \end{pmatrix}$	3400 m br 3180 m br
17 C ₂₃ H ₂₆ N ₃ O ₄ P	134—135 EtOH—H ₂ O, 3:2	16	62.86 62.96	5.96 6.22	9.56 9.81	7.05 1165 s br 7.29		1140 s br	1045 s br	3440—3150 m
18 C ₂₄ H ₂₈ N ₃ O ₄ P	165—166 EtOH—H ₂ O, 4:1	80	63.57 63.51	6.22 6.29	9.27 9.25	6.83(1245 vs 7.06(1230 sh		1155 s 1142 s	1048 m° 1028 s 990 vs	3385 m
^a Melting with deco	mposition. ^b M. p. was	diffi	cult to	observ	re becar	use of the dark co	llor ° v C	-0-C of OC	H3 group also	lies in this regior

BENZENEAZOPHOSPHONATES

831

LJ. TUŠEK AND V. JAGODIĆ

RESULTS AND DISCUSSION

Physical properties, analytical and infrared data of dietsters 1—5, sodium salts of the monoesters 7—12 and monoesters 13—18 are given in Table I. Diesters were obtained as yellow or orange crystals. Methoxy-substituted dibutyl ester 6 was obtained as an oil difficult to purify and it was hydrolyzed without previous purification. When refluxed with an excess of alcoholic sodium hydroxide none of the diesters exhibited any significant rupture of the P—C bond and they gave the anticipated sodium salts of the monoesters in $60-90^{\circ/0}$ yield. This behavior is in contrast with the observed instability of a hydroxynaphtyl derivative in alkaline medium¹, but is in accord with the properties of other hydroxyphenyl substituted diesters³. During the hydrolysis of the *ortho*-hydroxybenzyl diesters 1 and 4, also the hydrogen of the phenolyc OH group was exchanged with sodium, while in para-hydroxybenzyl diesters 2 and 5 the OH group remained free, though the same excess of the alkali was used in both instances.

Sodium salts were obtained as yellow or orange solids. Although they all crystallize with water of crystallization and some are hygroscopic, after drying in vacuo 7, 10 and 12 were obtained anhydrous. The amount of water in other salts was determined by thermogravimetric analysis.

Molecular weight determinations of the monoesters (Table II) was possible to carry out only for the methoxy 15 and 18 and para-hydroxy 14 and 17 substituted compounds. Ortho-hydroxy 13 and 16 derivatives were insufficiently soluble. In chloroform solution the monoesters are dimeric, presumably owing to the hydrogen bonding between the P=O and P—OH groups. Properties of para-methoxy-substituted monoesters are similar to those of the monoesters of unsubstituted [α -(4-benzeneazoanilino)-N-benzyl]-phosphonic acid¹, though the solubility of the former monoesters in common organic solvents is somewhat decreased. Hydroxy-substituted monoesters are dark red, brown or violet compounds, very slightly soluble in organic solvents owing to the existing hydrogen bonding between the phosphonic and phenolyc OH groups.

Compd		Mol. wt. found	Mol. wt. calc'd for dimer	
14		833ª	823	
15		846ª	851	
17		920 ^b	879	
18		890 ^b	907	

TABLE II

Molecular Weights of Monoesters

Determined in chloroform: ^aby ebullioscopic method; ^bby Signer's method.

Spectral Studies

Neutral esters give sharp and strong bands between $1220-1240 \text{ cm}^{-1}$ presumably of the P=O stretching. In monoesters and their sodium salts the ionized PO₂⁻ group exists along with the P=O group as these compounds show multiple bands in the region 1175-1260 cm⁻¹. The absorption in this region has been ascribed to the P=O group and to the asymmetric stretching vibrations of the P₂⁻ group. Because of the dimeric structure arising from the hydrogen bonding between the P=O and P-OH groups, the methoxy-substituted monoesters give broad and complex band in vicinity of 1245 cm⁻¹, with a shoulder at 1230 cm⁻¹. The hydroxy-substituted monoesters show a very broad band, medium to strong intensity, at about 1170 cm⁻¹. The low frequency of this band indicates the presence of the PO₂⁻ group, presumably as the result of participation of the phenolyc OH group in the above mentioned hydrogen bonding.

The complexity of the bands in sodium salts is due to the water of crystallization. Bonded presumably to the PO_2^- group, the water may change the polarity of the oxygen atoms and bring about the appearance of such a spectrum². Symmetric vibration of the PO_2^- ion is found in sodium salts between 1070—1110 cm⁻¹.

Hydrogen bonded P(O)OH group should exhibit three typical bands in the region $1600-2800 \text{ cm}^{-1(2,4,5)}$. Such bands are found only in the methoxy-substituted monoesters. From the foregoing discussion, the hydroxy derivatives are not expected to show these bands. Indeed, the band that should appear at $1600-1740 \text{ cm}^{-1}$ is missing, while the other two bands if present, are masked by the hydrogen bonded phenolyc OH group.

All the compounds absorb in the region $1125-1160 \text{ cm}^{-1}$ and between $1000-1070 \text{ cm}^{-1}$. The former bands have been assigned to the C-O-(P) bond⁶ and the latter to the P-O-(C) vibration⁷. The bands are more complex in monoesters and their sodium salts than in neutral esters. In sodium salts the bands are partly superimposed on the symmetric PO₂⁻ vibration and in monoesters on the symmetric PO₂⁻ and P-O-(H) stretching frequencies.

The N—H stretching frequencies in neutral esters are lower than in the corresponding monoesters probably due to hydrogen bonding between the NH and P=O groups. In the monoesters, because of their association, such type of hydrogen bonding is sterically unlikely.

Only diesters were sufficiently soluble in chloroform for recording and studying the ¹H NMR spectra. As shown in Table III, the resonances of the methyl groups in diethyl esters are doubled. Such doubling is caused by the relative position of the ester groups with respect to the benzene ring. The same phenomenon has been observed with some dialkyl esters of phenyl-substituted organophosphorus compounds^{8,9}, as well as with diesters of α -anilinobenzylphosphonic acid³. Due to the coupling with the phosphorus and to the nonequivalency of the protons, the methylene groups appear as multiplets. Dibutyl esters give too complex spectrum to allow the analysis.

The broad doublets observed in 1, 2, 4, and 5 at δ 4.7—5.3 were assigned to the benzylic OH proton coupled to the phosphorus and the NH proton. Only diester 3 showed clearly a doublet of a doublet (J = 24 and 8.5 Hz) as result of these couplings. The NH proton was found as a broad singlet between δ 5—6 while the phenolyc OH group was usually hidden by the aromatic protons.

TABLE III

¹H NMR Spectra of Phosphonic Acid Diesters

Compound	Chemical shift δ in ppm (J in Hz) ^a
1	1.14, 1.24 (two t, each 3 H, $J = 6.5$, two CH ₂ CH ₃), 3.64—4.44 (m, 4 H, two OCH ₂), 5.27 (broad d, 1 H, $J = 23.5$, PCH), 5.4 (broad s, 1 H, NH ^b), 6.60—7.96 (m, 13 H, ArH), 8.92 (s, 1 H, OH ^b)
2	1.07, 1.20 (two t, each 3 H, $J = 7$, two CH ₂ CH ₃), 3.47—4.37 (m, 4 H, two OCH ₂), 4.75 (broad d, 1 H, $J = 23$, PCH), 5.2 (broad s, 1 H, NH ^b), 6.50—7.95 (m, 14 H, ArH + OH ^b)
3	1.13, 1.28 (two t, each 3 H, $J = 6.5$, two CH ₂ CH ₃), 3.48 (s, 3 H, OCH ₃), 3.56—4.43 (m, 4 H, two OCH ₂), 4.73 (dd, 1 H, $J = 24$ and 8.5, PCH), 6.43 (s, 1 H, NH ^b), 6.52—7.88 (m, 13 H, ArH)
4	0.60—1.88 (m, 14 H, two CH ₂ CH ₂ CH ₃), 3.60—4.34 (m, 4 H, two OCH ₂), 5.21 (broad d, 1 H, $J = 23$, PCH), 5.4 (broad s, 1 H, NH ^b), 6.58—7.96 (m, 13 H, ArH), 8.90 (s, 1 H, OH ^b)
5	0.54—1.83 (m, 14 H, two $CH_2CH_2CH_3$), 3.56—4.23 (m, 4 H, two OCH_2), 4.71 (broad d, 1 H, $J = 23$, PCH), 5.0 (broad s, 1 H, NH ^b), 6.38—7.92 (m, 14 H, ArH + OH ^b)

^a In CDCl₃ at 60 MHz: ^b D₂O exchangeable proton.

EXPERIMENTAL

Melting points were uncorrected. The infrared spectra were recorded for Nujol mulls and for solutions in chloroform with Perkin-Elmer 257 spectrophotometer. ¹H NMR spectra were obtained with a Varian A-60A spectrometer in deuterochloroform solutions with tetramethylsilane as the internal standard. Thermogravimetric analyses were performed with a Cahn RG electromicro balance applying a heating rate of 2⁰/min and an atmosphere of static air. Molecular weights were determined by Clark's modification of Signer method¹⁰ and with a Beckmann's ebullioscope. As a standard solute, penta-acetylglucose (B.D.H. micro-analytical reagent) was used.

The analyses were performed in the Analytical Laboratory of the »Ruder Bošković« Institute.

Materials

Diethyl and dibutyl phosphonate were purchased from Eastman Organic Co. and were freshly distilled. The required Schiff's bases 4-benzeneazo-N-(2-hydroxybenzalaniline), 4-benzeneazo-N-(4-hydroxybenzalaniline) and 4-benzeneazo-N-(4-methoxybenzalaniline) were prepared as described¹¹.

General Method for the Preparation of Esters of Benzeneazophosphonic Acid

Diethyl esters 1-3 and dibutyl esters 4-6 were prepared by heating of diethyl and dibutyl phosphonate, respectively, with an equimolar amount of the appropriate Schiff base in an oil bath at 100 °C for 6-8 h. Contrary to the original method of preparation 1^2 , this condensation was carried out without any catalyst. Only for the preparation of diesters 4-6, some abs ethanol was added to the above mixture. Addition of a few drops of water to the reaction product and subsequent cooling afforded 1-5 as crystalline solids.

Sodium salts of the monoesters 7-12 were obtained by the hydrolysis of 1-6 as previously described¹. The only modification was the amount of sodium hydroxide which was increased to 2.5—3 mol/mol of diester. For the preparation of monoesters 13—18, the solution of the corresponding

sodium salt in water was accidified by a small excess of 5% hydrochloric acid added

dropwise. After allowing the mixture to stand at room temperature for a few hr. the precipitates formed were collected by filtration, washed with cold water, dried and recrystallized.

REFERENCES

V. Jagodić and Lj. Tušek, J. Org. Chem. 37 (1972) 1222.
 V. Jagodić and Lj. Tušek, Croat. Chem. Acta 44 (1972) 445.

- 3. V. Jagodić, Croat. Chem. Acta 48 (1976) 325.
- 4. L. C. Thomas, R. A. Chittenden and H. E. R. Hartley, Nature 192 (1961) 1283.
- 5. L. C. Thomas and R. A. Chittenden, J. Opt. Soc. Amer. 52 (1962) 829. 6. L. C. Thomas and R. A. Chittenden, Spectrochim. Acta 20 (1964) 489.
- 7. L. C. Thomas, Interpretation of the Infrared Spectra of Organophosphorus Compounds, Heyden, London, 1974.
- 8. T. H. Siddal and C. A. Prohaska, J. Amer. Chem. Soc. 84 (1962) 2502; 84 (1962) 3467.

- 9. F. A. Cotton and R. A. Schunn, J. Amer. Chem. Soc. 85 (1963) 2394.
 10. E. P. Clark, Ind. Eng. Chem. 13 (1941) 820.
 11. F. G. Pope and W. I. Willett, J. Chem. Soc. 103 (1913) 1258.
 12. A. N. Pudovik and M V. Korchemkina, Izv. Akad. Nauk SSSR, Ser. Khim. (1952) 940.

SAŽETAK

Sinteza i spektralna svojstva hidroksi i metoksi supstituiranih benzenazofosfonata

Lj. Tušek i V. Jagodić

Sintetizirani su dietil i dibutilesteri hidroksi i metoksi supstituirane [a-(4-benzenazoanilino)-N-benzil]fosfonske kiseline. Odgovarajući monoesteri dobiveni su djelomičnom hidrolizom diestera. Određivanja molekularne težine monoestera u otopini kloroforma pokazuju da se radi o dimernim spojevima. Infracrveni spektri potvrđuju ovu asocijaciju koja je uzrokovana vodikovim vezama između P=O i P-OH grupa. U hidroksi supstituiranim monoesterima i fenolna OH skupina također učestvuje u ovoj vezi.

INSTITUT »RUĐER BOŠKOVIĆ« 410001 ZAGREB

Prispjelo 7. travnja 1977.