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To form up a multiple-robot system, a robust adaptive control scheme is addressed. The control scheme is based
on the methodology of sliding mode control (SMC). The formation system is leader-follower-based, whose dynam-
ics are subject to uncertainties. A fuzzy compensator is adopted to approximate the uncertainties. To attenuate the
approximation error, a robust adaptive law of the fuzzy compensator is introduced. In the sense of Lyapunov, not
only such a control scheme can asymptotically stabilize the whole formation system, but also the convergence of
the approximation error can be guaranteed. Compared with the sole sliding mode controller without compensator,
some numerical simulations verify the feasibility and effectiveness of the control scheme for the multiple-robot
system in the presence of uncertainties.
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Robusno upravljanje višerobotskim formacijama korištenjem klizećeg regulatora i neizrazitog kompen-
zatora. Kako bi se formirao višerobotski sustav korištena je robusna adaptivna shema upravljanja. Upravljačka
shema je bazirana na metodologiji upravljanja klizećim režimom (SMC). Formacijski sustav baziran je na vo�a-
sljedbenik metodi čija je dinamika podložna nesigurnostima. Za aproksimiranje nesigurnosti korišten je neizraziti
kompenzator. Kako bi se prigušila aproksimacijska greška razvijen je robusni adaptivni upravljački zakon. Ko-
rištenjem takvog upravljačkog zakona ostvarena je stabilnost prema Lyapunovu, te je moguće garantirati konver-
genciju aproksimacijske greške. U usporedbi s regulatorom zasnovanim na klizećem režimu bez kompenzatora,
neke numeričke simulacije potvr�uju izvedivost i efikasnost ovakve sheme upravljanja višerobotskim sustavom uz
prisutnost nesigurnosti.

Ključne riječi: Višerobotski sustav, Klizeći režim, Vo�a-sljedbenik formacija, Nesigurnosti, Neizraziti regulator

1 INTRODUCTION

A multi-robot system composed of several mobile
robots can perform collaborative tasks in manufacturing,
surveillance and space exploration. Such coordination
among the robots is an important and promising research
field [1–3]. Compared to a complex single-robot system,
the ability of coordinating the robots is superior, including
but not limited to economy, effectiveness and efficiency
[4, 5]. There are many cooperative tasks like formation,
coverage and target aggregation, where the formation con-
trol problem stands out because the robots can efficiently
accomplish cooperative tasks by forming up and maintain-
ing some formations [6, 7].

Up to now, various formation schemes have been pre-
sented and carried out. They can roughly be classified as
behavior-based methods, virtual structure techniques and
leader-follower schemes [4, 8]. Among them, the leader-
follower approaches have become the most popular ones

because the idea is simple enough to permit complete anal-
yses and experiments, but the internal formation stability
can be theoretically guaranteed [9, 10].

The basic idea of the leader-follower formations [8,11]
is that one robot in a multi-robot system is selected as
leader and the other robots are called followers. The leader
is responsible for guiding the formation and the followers
are required to track the leader in the desired distance l and
the desired relative angle ψ . Accordingly, there are two
kinds of control frameworks, i.e., l− l and l−ψ . Consider-
ing the leader-follower approaches, a characteristic is that
the formation problem of the multi-robot system is trans-
formed into the independent trajectory tracking problem of
each follower robot [4,8–11]. Although the basic idea is in
dispute over its ’single point of failure’, such characteristic
benefits the formation problem a lot.

Concerning the leader-follower formation maneuvers,
various control methods have been reported, i.e., model
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predictive control [10], feedback linearization control [12],
backstepping control [13], decentralized control [14], in-
telligent control [15, 16] and sliding mode control (SMC)
[17–20], to name but a few. Since SMC is of invariance to
matched uncertainties [21, 22], the SMC method has been
paid more and more attention. This paper investigates the
application of SMC for the leader-follower formation con-
trol problem of multiple robots.

Uncertainties are inevitable in practice [23]. The
leader-follower formation maneuvers are subject to uncer-
tainties [24]. The uncertainties include parameter fluc-
tuations, model uncertainties and random external distur-
bances, which turn out to be mismatched [11]. Since the
mismatched uncertainties cannot be suppressed by the in-
variance of SMC, a critical assumption in the aforemen-
tioned reports [17–20] is that the uncertainties must have
a known boundary in order to guarantee the formation sta-
bility. However, the assumption is not mild because the
boundary value is hard to exactly know in advance. The
lack of the important information may cause several draw-
backs such as deficiency of the system stability, decrease
of the system robustness and deterioration of the system
performance. In order to take SMC into account for the
formation control problem, it is necessary to approximate
and compensate the uncertainties.

The methodology of fuzzy logic can effectively han-
dle complex nonlinear systems with uncertainties [25, 26].
Some real applications have been reported, such as MEMS
triaxial gyroscope system [27], mechanical manipulator
[28] and vector voltmeter [29]. In order to attack the un-
certainties of the SMC-based formation control problem,
this paper considers the fuzzy logic method as an alterna-
tive choice. So far, how to overcome the adverse effects
triggered by such mismatched uncertainties still remains
unsolved and problematic for the SMC-based formation
maneuvers.

Since an adaptive fuzzy inference system can approxi-
mate a wide class of nonlinear systems via arbitrary close-
ness [27], this paper proposes a multiple-input multiple-
output fuzzy inference system to compensate the uncer-
tainties. The fuzzy system has to adaptively approximate
the uncertainties because the assumption that the uncer-
tainties have an unknown boundary holds true. To atten-
uate the approximation error, a robust adaptive law is em-
ployed. The fuzzy compensator and the sliding mode con-
troller work in parallel to achieve the robust formation ma-
neuvers. The SMC law and the robust adaptive law are
derived from the Lyapunov’s direct method. The feasibil-
ity, validity and robustness of the proposed approach are
illustrated by a multi-robot system. Compared with the re-
sults via the sole SMC method without compensator, the
proposed approach can improve the tracking performance.
The benefit we can earn from the proposed approach is that

Fig. 1. Schematic of the nonholonomic mobile robot

the approach is only subject to the mild assumption that the
uncertainties have an unknown boundary.

2 MATHEMATICAL MODEL

2.1 Modeling a single robot

The robot in Fig. 1 is unicycle-like. It is round with 2r
in diameter and has two parallel driven wheels. The wheels
are independently controlled by two DC motors and they
are with the same axis. One wheel is mounted on each
side of the robot’s center. Since the robot is capable of
simultaneous arbitrary rotation and translation in the hori-
zontal plane, it can be described by a 3-dimensional vector
τ = [x y θ ]T . The translational coordinates can be depicted
by (x, y), which are the midpoint between the two driven
wheels. The midpoint is also the center of the round robot.
Shown by the dash lines in Fig. 1, another coordinate sys-
tem fixed on the robot’s body is assigned. The rotational
coordinate θ , meaning the orientation angle with respect
to the fixed frame, can be calculated via the two coordinate
systems. To capture the robot’s position, a position sensor
is located at the front castor.

Consider a multiple robot system composed of N
robots. The robots in the group are identical (See in Fig.
1). Assuming that pure rolling and non-slipping motion,
the ideal kinematic equations of the nth robot [17] are de-
scribed by

τ̇n =




ẋn
ẏn
θ̇n


=




cosθn 0
sinθn 0

0 1


 ·
[

vn
wn

]
(1)

where vn and wn are the linear and angular velocities of
the nth robot, respectively. The assumption means (1) is
subject to the following nonholonomic constraint.

[
−sinθn cosθn 0

]
· τ̇n = 0 (2)

Consider the variations on the mass and the moment
of inertia and the external uncertainties like the slipping
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or skidding effects. The dynamic equations to depict the
motion of the nth robot [17] are defined by




ẍn
ÿn
θ̈n


=



−ẏnθ̇n
ẋnθ̇n

0


+




cosθn 0
sinθn 0

0 1


un

+




cosθn 0
sinθn 0

0 1


∆nun +πn(τn, τ̇n)

(3)

here the control input is un, defined by un = [αn βn]
T .

α = Fn/mn is the robot acceleration and βn = σn/Jn is the
angular acceleration of the robot, where mn, Jn, Fn and σn
denote the nominal mass, the nominal moment of inertia,
the force and the torque applied to the robot, respectively.
∆n is the parameter variations, written by

∆n =

[
εn 0
0 ε ′n

]

here εn and ε ′n represent the variations on the mass and the
moment of inertia, respectively. In (3), πn(τn, τ̇n) written
by [πnx πny πnθ ]

T means the mixed model uncertainties and
external disturbances.

Remark 1: (3) formulates the dynamic model of the sin-
gle robot with uncertainties in Fig. 1. There are two terms
to depict the system uncertainties. Mathematic definitions
about the category of uncertainties can be found in [23].
Since ∆n enters the robot system by the control channel, the
parameter variations in (3) belong to matched uncertainties
without doubt. Since πn(τn, τ̇n) mixes model uncertainties
and external disturbances, it is usually mismatched. The
two uncertain terms will result in the uncertainties of the
following formation dynamics.

2.2 Leader-Follower Formation Scheme

In the group of robots, each robot is with its own kine-
matic and dynamic models as (1) and (3), respectively. To
realize their formation maneuvers, it is necessary to de-
fine a control mechanism. The leader-follower approach
is such a mechanism to coordinate the robots. The ap-
proach is hierarchical. One robot in the group is assigned
to be the leader robot. The other robots are named fol-
lowers. The relationship among the followers is equal to
each other. Each follower is cascaded to the leader so that
N − 1 leader-follower pairs exist. Take a leader-follower
pair as an example. The follower’s motion is decided by
the leader. The decision is made in light of the desired dis-
tance and the desired relative angle between the follower
and the leader.

Without loss of generalization, the ith robot in the
group is picked as the leader robot. One robot among all
the followers is also selected and index k represents the

Fig. 2. Schematic of the leader-follower mechanism

follower. The pair in Fig. 2 is employed to demonstrate
the leader-follower mechanism. Provided that a receiver is
located at the centre of the leader robot i, Fig. 2 illustrates
the definitions of the distance lik and the relative angle ψik
between the leader and the follower. lik is defined by the
distance between the centre of the leader robot i and the
front castor of the follower robot k, formulated by

lik =
√
(xi− x̄k)

2 +(yi− ȳk)
2 (4)

In (4), the coordinates (xi yi) denote the centre position
of the leader and the coordinates (x̄k ȳk) denote the caster
position of the follower, where x̄k = xk +r cosθk, ȳk = yk +
r sinθk and r is the radius of the robots.

According to the geometric relationship, ψik in Fig. 2
is determined by

ψik = π +ζik−θi (5)

here θi is the orientation angle of the leader robot i and ζik
is calculated by

ζik = arctan
yi− yk− r sinθk

xi− xk− r cosθk
(6)

In order to achieve the formation maneuvers, each fol-
lower needs to keep at the desired distance and the desired
relative angle with respect to the leader. Since the robots
are subject to uncertainties, their formation dynamics in-
herently become uncertain. The motivation of the paper is
to develop a control scheme that can form up the robots
while resist the adverse effects of uncertainties on the for-
mation stability. To concentrate on the motivation, The
following ideal conditions are considered, 1) there are no
collisions between the robots, 2) there is no communica-
tion delay between the leader and all the followers, 3) each
follower robot knows not only its own position and veloc-
ity but also the corresponding information of the leader.
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Differentiate (4) and (5) twice with respect to time t and
substitute (2) into the derivatives. Then, the second deriva-
tives of lik and ψik can be obtained. Define Tik = [lik ψik]

T .
The dynamic equations depicting the leader-follower for-
mation maneuvers [11] are described by

T̈ik = Gik(I2 +∆k)uk +Lik(I2 +∆i)ui +Fik +Pik (7)

where I2 is a 2×2 identity matrix, Gik is written by

Gik =

[
cosφik r sinφik
−sinφik

lik
r cosφik

lik

]

Lik is described by

Lik =

[
−cosψik 0

sinψik
lik

−1

]

here φik = ψik + θik and θik = θi − θk. Further, Fik =
[F1 F2]

T and Pik = [P1 P2]
T are given as follows.

F1 = (ψ̇ik)
2lik +2ψ̇ikθ̇ilik +(θ̇i)

2lik− r cosφik(θ̇k)
2

−(ẏkθ̇k− ẏiθ̇i)cos(ψik +θi)− (ẋiθ̇i− ẋkθ̇k)sin(ψik +θi)

F2 =
−(ẏk φ̇ik−ψ̇ik ẏi)sin(ψik+θi)−(ẋk φ̇ik−ψ̇ik ẋi)cos(ψik+θi)−rθ̇k φ̇ik sinφik

lik

+ l̇ik((ẏi−ẏk)cos(ψik+θi)−(ẋi−ẋk)sin(ψik+θi)−rθ̇k cosφik)

lik2

P1 =− (πix−πkx)cos(ψik +θi)− (πiy−πky)sin(ψik +θi)

+ rπkθ sinφik

P2 =

(πix−πkx)sin(ψik +θi)
−(πiy−πky)cos(ψik +θi)+ rπkθ cosφik− likπiθ

lik

Define xik = [x1ik x2ik ]
T = [lik ψik]

T . Then, the follow-
ing state equations are deduced from (7).

ẍik = Gikuk +dik(xik, ẋik, t) (8)

where dik(xik, ẋik, t)=Gik∆kuk+Lik(I2+∆i)ui+Fik+Pik.

In the mentioned literature about the SMC-based for-
mation maneuvers [17–20], one common assumption is
that the uncertain term dik has a known boundary. How-
ever, the assumption is too strict to be satisfied in real-
ity. Owing to the invariance of SMC, this paper considers
that these uncertainties are mismatched with an unknown
boundary. To achieve the formation maneuvers under the
challenging assumption, a fuzzy compensator will be de-
signed to attack the issue.

Fig. 3. Prototype of the FIS

Remark 2: dik(xik, ẋik, t) depicts all the uncertainties
and it consists of 4 parts. Gik∆kuk, meaning the parame-
ter variations of the robot k, is matched. Since the leader-
follower cooperative mechanism (7) is applied to the fol-
lower k, Lik(I2 + ∆i)ui is hardly matched (The part can
hardly enter the control channel of the follower k). Further,
Fik and Pik are the aggregative representatives of model un-
certainties and external disturbances caused by slipping,
skidding, friction, drag, etc., which are inherently mis-
matched.

3 CONTROL DESIGN AND ANALYSIS

3.1 Design of Fuzzy Compensator

A fuzzy inference system (FIS) consists of four parts:
knowledge base, fuzzifier, fuzzy inference engine and de-
fuzzifier, where the knowledge base is composed of some
fuzzy IF-THEN rules and the fuzzy inference engine em-
ploys the rules. This section considers a multi-input multi-
output FIS. The structure of this FIS is displayed in Fig.
3, where the input vector is a = [a1, a2, . . . , am]

T ∈ Rm,
the output vector b = [b1, b2, . . . , bn]

T ∈ Rn and every
element in a and b is scalar. The multi-input multi-output
IF-THEN rules can be expressed by

R = ∪M
l=1Rl (9)

In (9), R indicates a collection of fuzzy rules, M denotes
the total number of rules and the lth rule is described by

Rl :IF a1 is Al
1 and a2 is Al

2 . . . am is Al
m

THEN b1 is Bl
1 . . . and bn is Bl

n

(10)

Al
p and Bl

q in (10) are the linguistic variables of the
fuzzy sets, where p = 1, 2, . . . , m and q = 1, 2, . . . , n.
Both the linguistic variables are determined by their

AUTOMATIKA 57(2016) 4, 1007–1019 1010



Robust Multi-robot Formations via Sliding Mode Controller and Fuzzy Compensator D. W. Qian, S.W. Tong, C. Xu

membership functions µAl
p
(ap) and µBl

q
(bq), here l =

1, 2, . . . , M.
Adopting the singleton fuzzifier mapping, the product

inference engine and the center-average defuzzifier map-
ping, the qth output of the FIS has a form of

bq =
M

∑
l=1

b̄l
qξl(a) = ΘT

q ξ (a) (11)

In (11), ξ (a) = [ξ1(a), ...,ξM(a)]T ∈ RM is the fuzzy
basis functions vector, where ξl(a) is calculated by

ξl(a) =
∏m

p=1 µAl
p
(ap)

M
∑

l=1
(∏m

p=1 µAl
p
(ap))

Θq = [b̄1
q, ..., b̄

M
q ]T ∈ RM is named the parameter vector,

where b̄l
q is an adaptively adjustable parameter. The vector

is the qth column of an M×n parameter matrix Θ.
Associated with the application of the FIS, the purpose

is to approximate the system uncertainties in (8) so that
the approximate values are definitely selected as the FIS
outputs, i.e., b = d̂ik(xik, ẋik, t). Moreover, the system
uncertainties in (8) are functions of xik and ẋik so that lik,
ψik, l̇ik and ψ̇ik are picked up as the FIS inputs, i.e., a =
[lik, ψik, l̇ik, ψ̇ik]

T .
The linguistic labels of Al

p are chosen as five levels,
i.e., NB, NS, ZO, PS and PB. The labels denote negative
big, negative small, zero, positive small and positive big,
respectively. The membership function of Al

p is Gaussian,
defined by

µAl
p
(ap) = exp

(
− (ap− cp)

2

2o2
p

)
(12)

where cp and op are the center and width of the Gaussian
membership function to describe the linguistic variable Al

p
and p = 1, 2, 3, 4.

From (11), the approximate values d̂ik(xik, ẋik, t) can be
calculated by d̂ik(xik, ẋik|Θ), written by

d̂ik(xik, ẋik|Θ) =

[
d̂ik,1(xik, ẋik|Θ)

d̂ik,2(xik, ẋik|Θ)

]

= ΘT ξ (xik, ẋik)

=

[
ΘT

1 ξ (xik, ẋik)
ΘT

2 ξ (xik, ẋik)

]
(13)

here Θ ∈R625×2 and ξ (xik, ẋik) ∈R625×1.
Assuming that an optimal parameter matrix Θ∗ exists

[25], the matrix Θ∗ has a form of

Θ∗ = argmin
Θ∈χ0

[sup ||d̂ik(xik, ẋik|Θ)−dik(xik, ẋik, t)||] (14)

where χ0 is a proper compact set. Considering the assump-
tion, the minimum approximate errors vector can be deter-
mined by

ρ = d̂ik(xik, ẋik|Θ∗)−dik(xik, ẋik, t) (15)

here ρ = [ρ1,ρ2]
T ∈R2.

The designed FIS is a 4-input- 2-output system and the
linguistic variables of the inputs are divided into 5 levels.
Consequently, the FIS covers 54 fuzzy rules in its knowl-
edge base. There are two ways to reduce the number of
fuzzy rules. One is to cut the number of inputs. The other
is to reduce the number of levels. From (8), the uncertain
term dik(xik, ẋik, t) is functions of xik and ẋik. Once the
number of inputs is decreased, the FIS may not work be-
cause it cannot obtain enough information. Once the num-
ber of levels is reduced, the accuracy of the FIS will def-
initely decrease. The accuracy of the FIS may increase if
the number of levels is increased. But the increase will re-
sult in computational burden. Here, the number of levels is
selected as 5 by a trade-off between accuracy and compu-
tational burden.

Remark 3: It has been proven that fuzzy systems in the
form of (11) can approximate continuous function over a
compact set to an arbitrary degree of accuracy provided
that enough number of rules is given [25]. Here the ability
of approximation of the FIS is employed to approximate
the unknown uncertainties.

3.2 Design of Sliding Mode Controller

To coordinate the leader-follower pair in Fig. 2 by a
sliding mode controller, the sliding surfaces vector is de-
fined by

sik(t) = ẋe
ik +λxe

ik (16)

here sik(t) = [sik,1(t) sik,2(t)]T ∈R2, xe
ik = xik−xd

ik ∈R2 is
the state tracking errors vector, xd

ik is the desired trajecto-
ries vector and λ is a 2×2 positive-definite matrix.

Pointed out by V.I. Utkin [23], the SMC method covers
two stages. One is sliding mode stage. The other is reach-
ing mode stage. On the reaching mode stage, the system
states in (8) tend to the sliding surfaces vector (16) in the
state space. On the sliding mode stage, not only the SMC
system is of invariance against matched uncertainties, but
also the formation dynamics can be described by

sik = 02 (17)

Here 02 = [0 0] ∈R2. Substituting (16) into (17) yields

ẋe
ik(t) =−λxe

ik(t) (18)

(18) indicates that the formation performance is deter-
mined by the eigenvector of the matrix λ on the sliding
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mode stage. However, neither (17) nor (18) holds true in
the reaching mode stage. For the sake of formula expres-
sion, a reference vector is introduced as

δ (t) = ẋd
ik(t)−λxe

ik(t) (19)

Finally, the SMC-based control law is designed as

uk =−G−1
ik [d̂ik(xik, ẋik|Θ)− δ̇ +κsik +ηsign(sik)] (20)

where κ = diag{κ1, κ2}, η = diag{η1, η2}, κ1, κ2, η1,
and η2 are predefined parameters. Further, sign(sik) is de-
fined by sign(sik) = [sign(sik,1(t)), sign(sik,2(t))]T .

In (20), the control signal ui of the leader i actually ex-
ists as disturbances for the follower k. Since the task of the
leader i is to track a predefined trajectory, the leader’s con-
trol problem can be considered as the trajectory tracking of
a single robot. There has been a great deal of work in this
field and different control methods have been developed.
Usually, it is directly assumed that the leader robot is well
controlled by a developed technology [9].

3.3 Stability Analysis

Theorem 1: Define the sliding surfaces vector (16), de-
sign the fuzzy compensator (13) and adopt the control law
(20). The SMC-based formation control system with fuzzy
compensator is of asymptotical stability if

Θ̇q = Γq
−1sik,qξ (xik, ẋik) (21)

where Γq > 0 ∈R1, κq > 0, ηq > |ρq| and q = 1, 2.

Proof : Take the following positive definite function
into account as a Lyapunov candidate function.

V (t) =
1
2
(sT

iksik +
2

∑
q=1

Θ̃T
q ΓqΘ̃q) (22)

where Θ̃q = Θ∗q−Θq and Θ∗q is the qth column vector of
the optimal parameter matrix Θ∗.

Differentiating (22) with respect to time t gives

V̇ (t) = sT
ik · ṡik +

2

∑
q=1

Θ̃T
q Γq

˙̃Θq (23)

From (16) and (19), (24) can be obtained.

sik(t) = ẋik(t)−δ (t) (24)

Differentiating (24) with respect to time t and substi-
tuting the first derivative of sik into (23) yields

V̇ (t) = sT
ik · (ẍik− δ̇ )+

2

∑
q=1

Θ̃T
q Γq

˙̃Θq (25)

From (8), (26) can be formulated by

V̇ (t) = sT
ik · [Gikuk +dik(xik, ẋik, t)− δ̇ ]+

2

∑
q=1

Θ̃T
q Γq

˙̃Θq

(26)

Substitute (15) and (20) into (26). Then, (27) can be
drawn

V̇ (t) =
−sT

ik · [d̂ik(xik, ẋik|Θ)−dik(xik, ẋik, t)+κsik

+ηsign(sik)]+
2
∑

q=1
Θ̃T

q Γq
˙̃Θq

=

−sT
ik[d̂ik(xik, ẋik|Θ)+ρ− d̂ik(xik, ẋik|Θ∗)+κsik

+ηsign(sik)]+
2
∑

q=1
Θ̃T

q Γq
˙̃Θq

=

−sT
ik[ρ +κsik +ηsign(sik)− Θ̃T ξ (xik, ẋik)]

+
2
∑

q=1
Θ̃T

q Γq
˙̃Θq

=

−sT
ikρ− sT

ikκsik− sT
ikηsign(sik)

+
2
∑

q=1
[Θ̃T

q Γq
˙̃Θq + sik,qΘ̃T

q ξ (xik, ẋik)]

(27)

Adopting the robust adaptive law (21), (27) becomes

V̇ (t) =−sT
ikρ− sT

ikκsik− sT
ikηsign(sik) (28)

Substituting ηq > |ρq| into (28) yields

V̇ (t)6−sT
ikκsik < 0 (29)

(29) means that the Lyapunov function (22) satisfies
V̇ (t)< 0. Consequently, the SMC-based formation control
system with fuzzy compensator is asymptotically stable in
the sense of Lyapunov once the robust adaptive law (21) is
adopted. 2

dik(xik, ẋik, t) is mismatched and it has an unknown
boundary. Owing to its adverse effects, the stability of
the formation system cannot be guaranteed by the invari-
ance of SMC. In order to guarantee the system stability,
the designed FIS is employed to approximate dik(xik, ẋik, t)
so that the SMC-based formation controller has the ability
against the adverse effects of mismatched uncertainties.

Remark 4: Gik is invertible. Gik is formulated by (7).
det(Gik) =

r
lik
< 1. Note that lik is formulated by the dis-

tance between the center of the leader i and the front castor
of the follower k, that is, lik is always larger than r.

4 SIMULATION RESULTS

The designed robust adaptive control scheme is com-
posed of one sliding mode controller and one fuzzy com-
pensator. The structure of the presented control scheme
is illustrated in Fig. 4. Concerning the control structure,

AUTOMATIKA 57(2016) 4, 1007–1019 1012



Robust Multi-robot Formations via Sliding Mode Controller and Fuzzy Compensator D. W. Qian, S.W. Tong, C. Xu

Fig. 4. Structure of the control scheme

the fuzzy compensator is located at the feedforward chan-
nel and cooperates with the sliding mode controller placed
at the feedback channel. The compensator and controller
work in parallel to achieve the formation maneuvers. To
demonstrate the feasibility, validity and robustness of such
a control scheme, some simulations are performed via a
multi-robot system and the results are discussed in this sec-
tion.

The multi-robot system consists of one leader and two
followers. The three mobile robots are identical (See in
Fig. 1). Each robot is 0.05m in radius. The leader is
controlled by the kinematic based sliding mode controller
to track its predefined trajectories [30]. The two follow-
ers each have the presented robust adaptive control scheme
(20) to track their leader, independently. The formation ob-
jective is to make the two followers maintain their desired
distances and relative angles with respect to the leader in
the presence of uncertainties.

The parameter variations matrixes of the three robots
are considered by

∆i = ∆k =

[
0.3× rand()−0.15 0

0 0.3× rand()−0.15

]

(30)
here i = 1 denotes the leader and k = 2, 3 denotes the two
followers. rand() is a MATLAB command and it gener-
ates a uniformly distributed random number on the open
interval (0, 1).

From (3), ∆n indicates the parameter variations such
that (30) means that the payload variations on the mass and
the moment of inertia are as much as maximum ±15% of
the nominal parameters. The reason that we consider the
15% variation is that each robot is driven by two DC mo-
tors. The 15% parameter variation is enough to cover the
regular parameter perturbation. Excessive variation may
result in motor overload in practice.

Furthermore, Pik in (8) is related to πn in (3). Note
that πix−πkx and πiy−πky exist in Pik, meaning that it is
not representative to define πi = πk. Here, the following
different functions are assigned to the leader and the two

followers, defined by

πix = πiy = πiθ = 0.5sin(2πt)
πkx = πky = πkθ = 0.2sin(πt) (31)

All the widths in (12) are set by
√

2π
8 . Since the linguis-

tic variables are divided into 5 levels, the centers of cp are
set by −π

2 , −π
4 , 0, π

4 , π
2 , respectively. Other parameters in

(21) are selected by Γ1 = Γ2 = 0.00005. Additionally, the

parameter matrix λ in (16) is chosen as λ =

[
2.3 0
0 2

]
.

κ and η in (20) are determined by κ =

[
5 0
0 15

]
and

η =

[
0.5 0
0 0.5

]
, respectively.

4.1 Line Formation Moving in Circular Trajectories

Consider a set of concentrically circular trajectories.
The initial posture vector of the leader is located at τ1 =
[0.5m 0m 1

2 πrad]T . The initial posture vectors of the
two followers are set by τ2 = [0.8m − 0.4m 0rad]T and
τ3 = [1m 0.5m πrad]T , respectively.

According to the above initial posture vectors, the
initial distances and relative angles of the two follow-
ers with respect to the leader can be calculated as x0

12 =
[0.5m 3.2

4 πrad]T and x0
13 = [0.707m 3

4 πrad]T . The de-
sired system states of the two followers are set by xd

12 =
[0.13m 1

2 πrad]T and xd
13 = [0.26m 1

2 πrad]T . The desired
linear and angular velocities of the leader robot are set by
vd

1 = 0.5m/s and wd
1 = 1rad/s.

Fig. 5 demonstrates the group of robots forms up a line
formation while moving in the concentrically circular tra-
jectories, where the colorful squares denote the initial po-
sitions of the three robots and the colorful circles indicate
the robots in the dynamic process. In each square or cir-
cle, the arrow means the orientation angle of the robot. To
demonstrate their postures and formation, the black dash
in Fig. 5 bonds the robots together at the same moment.
From Fig. 5, the two followers follow the leader and keep
the desired distances and the desired relative angles.

To demonstrate the formation performance of the pre-
sented control scheme, the comparisons between the de-
signed robust adaptive SMC method (R-A SMC) and the
sole SMC method are shown in Figs. 6-9, where the pa-
rameters of the sole sliding mode controller are kept un-
charged from the presented control scheme.

The curves in Fig. 6a and b illustrate the distance l12
and the relative angle ψ12 between Leader 1 and Follower
2, respectively. In Fig. 6c and d, the distance l13 and the
relative angle ψ13 between Leader 1 and Follower 3 are
displayed. Fig. 7a and b shows the control inputs α2 and
β2 of Follower 2. The curves of the control inputs α3 and
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Fig. 5. Straight line formation of the multi-robot system
while moving in concentric circles

β3 of Follower 3 are demonstrated in Fig. 7c and d. The
sliding-surface vectors of the two followers are shown in
Fig. 8. Fig. 9 illustrates the outputs of the designed FIS.

From Fig. 6, the performance of the presented control
scheme is better without doubt. In Fig. 6, the curves by
the sole sliding mode controller apparently fluctuate in the
dynamic process because the controller cannot adaptively
resist unknown uncertainties. This fact indicates the two
followers sway to and fro in practice. As a result, the for-
mation maneuver by the sole SMC method is not as accu-
rate as expected. In contrast, the curves by the presented
control scheme are much smoother.

In Fig. 7, the curves by both the methods dramatically
jump back and forth. The phenomenon is chattering, a
drawback of the SMC methodology. The jumping points
in Fig. 7 are different in each of the simulations because
the uncertainties in (31) are random. To overcome the phe-
nomenon, one can employ a saturation function instead of
the signum function in (20).

Proven in Theorem 1, the sliding-surface vectors in Fig.
8 are of asymptotic stability in the presence of mismatched
uncertainties. The SMC-based controller and the fuzzy
compensator work together to realize the robust formation
control of the group of uncertain robots.

The uncertainties term dik and its approximations by
the fuzzy compensator are illustrated in Fig. 9. From Fig.
9, the outputs of the designed FIS have apparent errors at
the outset because the FIS is updating the system parameter
matrix Θ in terms of the robust adaptive law (21) in order to
track the unknown uncertainties. Finally, the FIS outputs
can track the uncertainties and the formation performance
can be improved by the fuzzy compensator.

4.2 More Formation Maneuvers
Fig. 10 demonstrates the group of robots forms up

a triangle when moving along the concentric circles. In
Fig. 10, the initial posture vectors of the three robots
are kept unchanged from the numerical example in Sub-
section 4.1. Accordingly, the initial distances and rela-
tive angles of the two followers with respect to the leader
are also kept unchanged. The desired system states of
the two followers are set by xd

12 = [0.13m 1
4 πrad]T and

xd
13 = [0.26m 1

2 πrad]T . The controller and compensator
parameters are also kept unchanged from the aforemen-
tioned straight line formation in the concentric circlers.

Fig. 11 illustrates the multi-robot system forms up a
straight line when moving along sinusoidal trajectories.
In Fig. 11, the initial posture vector of the leader is set
by τ1 = [0m 0m 0rad]T and the initial posture vectors of
the two followers are set by τ2 = [1m − 1m 3

4 πrad],
and τ3 = [−1m 1m 1

4 πrad]T, respectively. According
to the above three initial posture vectors, the initial dis-
tances and relative angles of the two followers with re-
spect to the leader are calculated as x0

12 = [
√

2m 3
4 π]T

and x0
13 = [

√
2m − 1

4 π]T. The desired system states
of the two followers are set by xd

12 = [0.4m 1
2 π]T and

xd
13 = [0.4m − 1

2 πrad]T. The desired linear and angular ve-
locities of the leader robot in Fig. 11 are set by vd

1 = 1m/s
and wd

1 = sin(t)rad/s. The controller and compensator pa-
rameters are still kept unchanged. They are the same as the
parameters of the aforementioned two formations.

4.3 Extensions
To demonstrate the scalability of the presented con-

trol scheme, two more robots are complemented to the
aforementioned three-robot simulation platform. The five
robots are identical. The presented control scheme is car-
ried out by such an augmented multi-robot system. Dis-
played in Fig. 12, the five uncertain robots form up a pen-
tagon when moving along straight line trajectories. In
Fig. 12, the initial posture vector of the leader is set by τ1 =
[0m 0m 0rad]T . The initial posture vectors of the followers
are set by τ2 = [0m 0.3m 0rad]T , τ3 = [0m 0.6m 0rad]T ,
τ4 = [0m −0.3m 0rad]T and τ5 = [0m −0.6m 0rad]T , re-
spectively. According to these initial posture vectors, the
initial distances and relative angles of the four followers
with respect to the leader can be calculated as x0

12 = [0.3m
π
2 rad]T , x0

13 = [0.6m π
2 rad]T , x0

14 = [0.3m −π
2 rad]T and

x0
15 = [0.6m −π

2 rad]T . To form up and maintain the pen-
tagonal formation, the desired system states of the follow-
ers are set by xd

12 = [0.2m 4
5 πrad]T , xd

13 = [0.32m πrad]T ,
xd

14 = [0.32m − 4
5 πrad]T and xd

15 = [0.2m − 3
5 πrad]T , re-

spectively. The desired linear and angular velocities of
the leader robot are set by vd

1 = 0.5m/s and wd
1 = 0rad/s.

The parameters of the controller and compensator for the
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Fig. 6. Distances and relative angles of the two followers with respect to the leader. a. Distance l12, b. Relative angle
ψ12, c. Distance l13, d. Relative angle ψ13.
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Fig. 7. Accelerations and angular accelerations of the two follower robots. a. Acceleration of Follower 2 α2, b. Angular
acceleration of Follower 2 β2, c. Acceleration of Follower 3 α3, d. Angular acceleration of Follower 3 β3.
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Fig. 10. Triangular formation of the multi-robot system
while moving in the concentric circles
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while moving in sinusoidal trajectories
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Fig. 12. Pentagon formation of 5 robots while moving in
straight lines.

pentagonal formation are still kept unchanged. Although
Fig. 12 shows the presented method is scalable, the result
is under the assumption that there are no communication
problems between the leader and its followers. The as-
sumption is mild enough for small-scale formations but it
is rather idealized for large-scale formations.

5 CONCLUSIONS
This paper has addressed the formation control prob-

lem for swarms of uncertain mobile robots. The forma-
tion mechanism is based on the leader-follower scheme.
To suppress the mismatched uncertainties when forming
up the robots, the SMC-based control method with fuzzy
compensator is employed, where the SMC controller and
the fuzzy compensator are located at the feedback and
feedforward channels, respectively. The theoretical anal-
ysis proves that the coordinated formation control system
with mismatched uncertainties is of asymptotic stability in
the sense of Lyapunov. The presented control scheme has
achieved the formation maneuvers of a multi-robot system
composed of three mobile robots. The simulation results
have demonstrated the effectiveness, feasibility and scala-
bility of the presented control scheme.
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