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Nonparametric regression – some approaches∗

Tomislav Marošević†

Abstract. In this paper we describe two approaches to non-
parametric regression. First, we consider the nearest neighbour ap-
proach, as a procedure which serves mainly for obtaining an ad hoc
smoothing and interpolating. Next, we describe the roughness penalty
approach. This gives a certain compromise between the demand for
goodness-of-fit of regression curve to the given data and the condition
that the regression curve has not too many oscillations.
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Sažetak. Neparametarska regresija — neki pristupi. U
ovom radu opisana su dva pristupa problemu neparametarske regre-
sije. Razmotren je pristup najblǐzeg susjeda, kao postupak koji služi
uglavnom za dobivanje ad hoc glad̄enja i interpolatora. Takod̄er,
opisan je i pristup nametanjem krivudavosti. Njime se postǐze odred̄ena
mjera izmed̄u zahtjeva za dobrom prilagod̄enosti funkcije regresije
danim podacima i uvjeta da pripadna krivulja regresije nema preve-
like oscilacije.

Ključne riječi: neparametarska regresija, pristup najblǐzeg sus-
jeda, pristup nametanjem krivudavosti, najmanji kvadrati s name-
tom, glad̄eni spline-ovi

1. Introduction

For the given data (ti, yi), i = 1, . . . , m, obtained by a certain experimental or
empirical way, it is often necessary to explore relations between independent
and dependent variables which the data represent.
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As a procedure of analyzing these interrelations which are described as
“cause and effect”, the regression has two main purposes:
1) to explore and to present the relationship between the design variable t (re-
spectively p independent variables x = [x1, . . . , xp]T in the p-dimensional case)
and the response variable y;
2) to predict, for any given point t, the values of observation y at the point t.

Assume that ti and yi are related by the regression model:

yi = g(ti) + εi, i = 1, . . . , m,

where εi represent errors with mean zero (Eεi = 0) and common variance σ2

(Var εi = σ2), and g(ti) are values of some unknown function g at the points
t1, . . . , tm. The function g is usually referred to as the regression function.

Parametric regression models assume that the form of g is known, except
for finitely many unknown parameters (see [?], [?]). For instance, the following
models are well known:
a) linear regression of the form g(t) = at + b, where a, b are parameters;
b) nonlinear exponential model g(t) = a + b · ect, where a, b, c are parameters.
Parameters in a model are estimated on the basis of the given data by some
appropriate method. If one can assume that the data are contaminated by
errors with normal distributions N(0, σ2), then the least squares method will be
used, that is, a discrete L2 approximation (see [?]). In applications L1 or L∞
approximations are often used, too (see [?]).

A nonparametric regression model allows a much greater level of indefinite-
ness and generally only assumes that g belongs to some infinite dimensional
space of functions (see [?]).

In Section 2. we describe the nonparametric regression by the nearest neigh-
bour approach, and in Section 3. we consider the roughness penalty approach.

2. Nearest neighbour approach

General property of this approach is that regression is used in a more or less ad
hoc fashion, without much thought as to the mechanism underlying the system
under consideration (see [?]).

A nearest neighbour approach is a simple means for smoothing the data,
which represents a very local procedure of digital filtering.

Among the simplest of the digital filters is the hanning window, at which
the equal distance between knots in t-domain is supposed. By using such win-
dow, each observation y(t) is replaced by the average according to the rule

y(t) ← y(t− 1) + 2y(t) + y(t + 1)
4

.

A hanning filter is excellent for “smoothing out rough edges”. But, it is much
less satisfactory for neglecting those observations which deviate much from the
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others. The attempt to correct strongly deviating observations requires the use
of the H filter several times, but it can disturb the internal structure of the data.

Example 1. Repeated application of the hanning window in the following
case essentially disturbs an internal structure of the data.

t 1 2 3 4 5 6 7 8 9
y(t) 1 1 1 1 1000 1 1 1 1
H 1 1 1 250.75 500.5 250.75 1 1 1

HH 1 1 63.44 250.75 375.62 250.75 63.44 1 1
HHH 1 16.61 94.66 235.14 313.18 235.14 94.66 16.61 1

Continuation of this procedure would lead to stationary data.
An alternative filter, which eliminates the major effects of very deviating

observations (“outliers”) and prevents their expanding through the entire data
set, is obtained by the use of the so called median smooth algorithm. It is
applied by the rule

y(t) ← med {y(t− 1), y(t), y(t + 1)} ,

where med denotes the middle element according to the magnitude among the
given three neighbour elements.

Repeated applications of this algorithm are not going to obscure the data.
Already after two or three iterations we obtain the resulting transformed set,
which is not changed by further smoothing (the label of the last repetition
after which there are no changes is 3R). The 3R filter can be used to eliminate
the effect of the outliers (i.e. very much deviating observations), but it usually
induces the rough edges. Hence, the H filter can be applied to smooth away the
rough edges.

Example 2. Most of the good properties of the combined 3RH procedure can
be illustrated in the case of the data set (consisting of 21 days of returned goods
at a large department store, see [?]) given in Table 1. For the initial and final
point (day) we follow the convention of not changing the values of the endpoints
for the 3R filter, and for the H filter we take the average of the end value and
its first neighbour value.
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Figure 1: Nearest neighbour approach

Day 1 2 3 4 5 6 7 8 9 10 11

Returns 30 42 53 62 33 68 72 81 50 75 62

3 30 42 53 53 62 68 72 72 75 62 62

3R 72

3RH 36.0 41.75 50.25 55.25 61.25 67.5 71.0 72.0 69.5 64.5 62

Day 12 13 14 15 16 17 18 19 20 21 .

Returns 51 80 60 51 25 44 41 50 57 63 .

3 62 60 60 51 44 41 44 50 57 63 .

3R 44 .

3RH 61.5 60.5 57.75 51.5 45.75 44.0 45.5 50.25 56.75 60.0 .

Table 1

The use of such procedures as 3RH is mainly to provide an ad hoc smoothing
and interpolation.

3. Roughness penalty approach

If our aim is to minimize the deviation (i.e. residual error) in the choice of a
regression curve, the solution could be any regression curve which interpolates
the given data points. For instance, joining these points by straight lines would
give a polygonal regression. If we also add condition of smoothness for the inter-
polating curve, the obtained curve could have a lot of variations, in accordance
with the variations of the given data.

Quantifying the roughness of a curve can be done in various ways. For
instance, one could consider max

t∈[a,b]
|g′′(t)|, or the number of inflection points. As

a global measure of roughness on an interval [a, b] (where a < t1 < . . . < tm < b),

one uses the integrated squared second derivative
∫ b

a

[g′′(t)]2dt.
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Suppose that g ∈ C2([a, b]) and let us define the penalized sum of squares

F (g) =
m∑

i=1

[yi − g(ti)]
2 + α ·

∫ b

a

[g′′(t)]2dt , (1)

where α ∈ [0,∞〉 is the given smoothing parameter.
The regression function ĝ is obtained by minimizing the functional F over

the class of all continuously twice-differentiable functions g, g ∈ C2([a, b]).
The smoothing parameter α represents the relation between the residual er-

ror
m∑

i=1

[yi − g(ti)]
2 and the roughness

∫ b

a

[g′′(t)]2dt. If α is large, the roughness

of the minimizer ĝ of the functional F is small, and conversely, the roughness
of ĝ is large, provided α is small.

One can show that the solution ĝ to the minimization problem for the func-
tional F is a natural cubic spline for the data (ti, ĝ(ti)).

Definition 1. Suppose we are given real numbers t1, . . . , tm on some interval
[a, b] satisfying a < t1 < . . . < tm < b. A function g defined on [a, b] is a cubic
spline if the following two conditions are satisfied:

i) on each of the intervals 〈a, t1〉, 〈t1, t2〉, . . . , 〈tm, b〉, g is a cubic polynomial;

ii) the polynomial pieces fit together at the points ti in such a way that g
itself and its first and second derivatives are continuous at each knot ti,
and hence on the whole of [a, b].

Denote gi = g(ti), γi = g′′(ti), i = 1, . . . ,m. Then a natural cubic spline g
(for which γ1 = γm = 0 by definition) is completely specified by the vectors (see
[?])

g = [g1, . . . , gm]T , γ = [γ2, . . . , γm−1]T .

Let us state some theorems, the proofs of which can be found in [?].
Theorem 1. The vectors g i γ specify a natural cubic spline if and only if

the condition

QT g = Rγ (2)

is satisfied. If (??) is satisfied, then the roughness penalty will satisfy

∫ b

a

[g′′(t)]2dt = γT Rγ = gT Kg, K = QR−1QT , (3)

where hi = ti+1 − ti, i = 1, . . . ,m− 1, and
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+ 1
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. . .
...

1
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+ 1
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)
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)
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

,

R =




2(h1 + h2) h2 0 · · · 0

h2 2(h2 + h3) h3 · · · ...
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. . . 0
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. . . . . . . . . hm−2
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.

Theorem 2. Suppose m ≥ 2 and t1 < t2 < . . . < tm. Given any values
z1, . . . , zm, there is a unique natural cubic spline g with knots at the points ti
satisfying g(ti) = zi, for i = 1, . . . ,m.

Theorem 3. Suppose m ≥ 2, and let g be the natural cubic spline in-
terpolant to the values z1, . . . , zm at points t1 < t2 < . . . < tm, satisfying
a < t1 < t2 < . . . < tm < b. Let g be any function in C2([a, b]) for which
g(ti) = zi, i = 1, . . . , m. Then

∫ b

a

[g′′(t)]2dt ≤
∫ b

a

[g′′(t)]2dt,

where the equality holds only if g and g are identical.

Theorem 4. Suppose m ≥ 3 and let t1 < t2 < . . . < tm be points satisfying
a < t1 < t2 < . . . < tm < b. Given the data points y1, . . . , ym and a strictly
positive smoothing parameter α, let ĝ be the natural cubic spline with knots at
the points t1, . . . , tm, for which ĝ = (I + αK)−1y.

Then, for any g ∈ C2([a, b])

F (ĝ) ≤ F (g),

where the equality holds only if g and ĝ are identical.
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For (ti, yi), i = 1, . . . , m − 1 the smoothing natural cubic spline, as the
solution to the problem (??), has the following form on the intervals [tj , tj+1]:

ĝ(t)=





ĝ1 − (t1 − t)ĝ′(t1), t ≤ t1,

(t−tj)ĝj+1+(tj+1−t)ĝj

hj
− 1

6 (t− tj)(tj+1− t)·
[
(1+ t−tj

hj
)γj+1 + (1+ tj+1−t

hj
)γj

]
,

tj ≤ t ≤ tj+1,

ĝm + (t− tm)ĝ′(tm), t ≥ tm,
(4)

where ĝ = [ĝ1, . . . , ĝm]T is the solution to the equation

(I + αK)g = y, K = QR−1QT , (5)

and the numbers γ2, . . . , γm−1 can be obtained by solving the equation

(R + αQT Q)γ = QT y . (6)

The equation (??) follows from (??) and (??).

Remark 1. The smoothing parameter α can be chosen on the basis of a free
subjective choice, or conversely, by using some choice method, as for instance
the “cross-validation” (see [?]).

Remark 2. A more general problem of the weighted smoothing can be set
up by minimizing the functional:

FW (g) =
m∑

i=1

wi [yi − g(ti)]
2 + α ·

∫ b

a

[g′′(t)]2dt , (7)

where wi > 0, i = 1, . . . , m, are the data weights. Analogously to the Theorem
4.,

ĝ = (W + αK)−1Wy, (8)

where W is a diagonal matrix with diagonal elements wi ([?]).
Example 3. For the artificial data given in Table 2. we have made the

smoothing spline which results from the roughness penalty approach, with a free
choice of the smoothing parameter α.

t 0 2 3 5 8 11 12 16 20
y(t) 10 8 5 4 3.5 6 7 8 8.5

Table 2.

Calculations were done using Mathematica. In Figure 2 we illustrate the graphs
of the splines obtained for α = 0 (interpolation), α = 10, and α = 100, respec-
tively.

Figure 2: Regression by penalized least squares
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Remark 3. There is a natural generalization of the smoothing splines in
dimensions two or higher. In this case, some features of the fitting by one
dimensional splines are carried over, and some are not ([?]).
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