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The difference in total pi-electron energy of two conjugated 
isomers can be expressed as the integral < W(x) > of the function 
W(x) have been determined. The main conclusion of this study 
bining analytical and numerical methods various properties of 
W(x) have been determined. The main conclusion of this study is 
that the value of < W(x) > is determined grossly by W(O), namely 
that algebraic structure count is the unique factor by wJ::\ich the 
relative stability of isomers is governed. In such a way the basic 
postulate of resonance theory has been justified. · 

INTRODUCTION 

Recent topological studies on the total pi-electron energy (E) of conjugated 
hydrocarbons1- 3 ensured abundant information about its dependence on mo­
lecular structure. However, a closely related problem, namely the question 
which structural factors cause stability differences between conjugated isomers 
has, not yet been completely solved. This is mainly due to the fact that the ap- · 
proximate expressions available for E, although accurate for reproducing E; 
are not sufficiently accurate for reproducing the energy differences4• On the 
other hand, there exists an exact integral expression for this energy difference, 

E(A) ~ E(B) :=: <W(x)> (1) 
where 

W(x) = log I P(G A• ix) I 
P(GB, ix) 

(2) 

GA and GB are molecular graphs5 representing two isomeric systems A and B, 
P(GA, x) and P(GB, x) are the corresponding characteristic polynomials5 and 
i = y - 1. The derivation. of eq (1) in a slightly different terminology is given 
in ref 6. The abbreviate notation 

1 oo · 

- S F(x) dx = <F(x)> 
lt - 00 

(3) 

was intro.duced in ref 7. 

* Presented at the Regional Colloquium on Theoretical Chemistry, Balatonfiired 
(Hungary), November 1975. 
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Eq (1) provides a functional dependence between E(A) - E(B) and the 
characteristic polynomials of the two molecular graphs G A and G 8 . Further­
more, the relations between these polynomials (i. e. their coefficients) and the 
molecular structure are now completely understood8. 

For reasons of mathematical simplicity, let us restrict our considerations 
to the alternant hydrocarbons with 2N conjugated atoms. A detailed analysis 
has shown that the final conclusions of this paper hold true for arbitrary 
conjugated molecules, including non-alternant and heteroconjugated systems. 
Further, we assume that P(GA, 0) ~ 0 and P(GB, 0) ~ 0, i.e. that no non­
-bonding pi-molecular orbitals are present in A and B, since these are neces­
sary conditions for A and B being chemically well defined compounds9• Then 
we can write 

N 

P(GA, x) = ~ (-1)' ai x w-2
J 

j = O 

N 

P(GB, x) = ~ (-1); bi x •N-2i 

j = O 

(4a) 

(4b) 

where a0 = b0 = 1 and aN ~ 0, bN ~ 0. It can be shown2 that for ' alternant · 
hydrocarbons the coefficients, when defined as in eqs (4) , obey ai ?:: 0, bi?:: 0 
for all j = 1, .. ., N. By substituting the formulas (4) back into (2) we get 

where 
W(x) = log (A/B) 

A = A(x) = x •.v + a
1 

x " ·-• + a2 x •.v-• + . . . + aN 

B = B(x) = x •.v + b
1 

x•.v-2 + b
2 

x •.v-• + ... + bN 

(5) 

(6a) 

(6b) 

From eqs (1), (5) and (6) one can see that the difference in pi-electron 
energy between two isomers is a rather complicated (but analytically well 
defined) function of all a/ s and b/s that is of the molecular structure. Therefore, 
although eq (1) contains all the topological information about E(A) - E(B), this 
cannot be straightforwardly deduced from it. In the present paper we will 
show the most important properties of the function W(x). Because of the large 
number of parameters which determine W(x), both analytical and numerical 
investigations were required. 

ANALYTICAL PROPERTIES OF W(x) 

Coefficients a1 and b1 are equal to the number of C-C bonds in the 
molecules A and B, respectively8• Hence, from the fact that A and B are iso­
mers it follows that a1 = b1 . Let further assume that ai = bi for j = 1, .. . , n - l 
and an ~ bn. Molecules A and B will be always chosen in such a manner that 
an> bn. Then by dividing polynomial A(x) by B(x) one obtains 

Therefore for large I x I 

A(x) 

B(x) 
=1+ 

W(x) - log 

x2n 

1 
+o 

x211+2 
(7) 

x'" 
(8) 
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By taking into account that aN ,c: 0, bN ,c: 0, it follows from eq (5) , 

W ' (O) = 0 

aN-1 
W " (O) = -­

aN 
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(9a) 

(9b) 

(9c) 

Hence function W(x) is extremal for x = 0. Whether this is a maximum 
(W" < 0) or a minimum (W" > 0), dependes on a balance of the four coefficients 
aN- 1 , aN, bN-1 , bN (eq (9c)). Since A(x) > 0 and B(x) > 0 for all x, W(x) is a 
continuous and smooth function and we can simply conclude the following. 

(a) W(x) is an even function; therefore it is sufficient to analyse it in the 
interval (0, oo). 

(b) If W has a maximum for x = 0, because of (8) there are additional k 
maxima and k minima of W(x) in interval (0, oo), where 0 ~ k ~ N - 1. 

(c) If W has a minimum for x = 0, there are additional k + 1 maxima and 
k minima in interval (0, oo), where 0 ~ k ~ N - 1. 

The actual value of k depends in a rather complicated way on all a/s and 
b/s. 

Up to this moment it has been tacitly assumed that all coefficients are 
mutually independent. However, this is by no means the case, since any ai 
refer to the same molecule A and reflects its topological properties8, 10. The same 
is, of course, valid for b/ s. 

The (hidden) dependences between coefficients ai (and bi) result in ad­
ditional properties of W(x) . Some of these properties can be established by a 
numerical analysis which is exposed in the next section. 

NUMERICAL WORK 

The idea behind the present numerical analysis is the following. Let us 
construct the function W(x) , corresponding to a particular pair of isomers A 
and B. We wish now to study the changes in W(x) which arise when coefficient 
aN is monotonically decreased while an is left constant. However, if we vary aN, 
we must vary also aN_ 1 , aN_., . .. , since these coefficients should not be changed 
independently. We have chosen the following model: the variation of ai is 
proportional to difference a; - b; and decreases linearly when j changes from 
N to n; the coefficients a; for j ~ n are thus left constant. In other words, 
a;(d) = a; -di · d, with 

(j-n)(a .-b) 
d. = I I 

I (N-n)(aN - bN) 
(10) 

In this way we have only one independent parameter d . We write : 

W(x, d) = log [A(d)/B] (11) 

where 
N N 

A(d) = ~ a/d) x •N-•I = A- d ~ d; x •N-•J (12) 
j = O j = n + l 
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Figure 1 presents a characteristic example of a family of W(x, d} £unctions 
for A = phenanthrene, B = anthracene and d = 0, 3, 6, 9, 12, 15 and 18. The 
form of these functions covers all cases which actually appear in chemical 
considerations, provided that aN ¥- 0 and bN ¥- 0. By inspection of Figure 1 
conclusions (d) - (h) follow. Our numerical experience suggests that (d) - (h) 
are generally valid for all molecular systems without non-bonding pi-electron 
levels. 

W( x, d l 

0.5 0 

x 

Fig u re 1. A family of W(x, d) functions for A = phenan thre n e , P(GA, x ) = x" - 16 x " + 98 xto -
- 297 x• + 479 x • - 407 x• + 166 x' - 25, and B = anthracene, P(G 8 , x) = x" - 16 xt• + 98 xt• -
- 296 x• + 473 x • - 392 x• + 148 x ' - 16. Curves 0, 1, 2, 3, 4, 5 a nd 6 corr espond to d = 0, 3, 6, 9, 12, 15 

and 18, ·respectively . 

(d) In all cases of chemical interest, k = 0. Hence (b) and (c) can be now 
reformulated in a more precise form. 

(e) If aN > bN, the function W is maximal for x = 0 and monotonically 
decreases in interval (0, oo) . If, however, aN! bN = 1, W(x) may have also a 
minimum for x = 0, but then < W(x)> = 0, as will be shown in (g). 

(f) If aN ~ bN, W(x) is minimal for x = 0 and has besides only one more 
extreme (a maximum) in (0, oo). This maximum is rather shallow since its 
position is shifted towards the large values of x. 

(g) If aN = bN or aN/bN = 1, function W(x) has very small values in the 
whole interval (0, oo). Therefore, < W(x)> = 0. 

(h) In all cases W(x) rapidly converges to zero with increasing x (c. f. 
eq (8)). 

As a consequence of (h) , large values of x give negligible contributions to 
<W(x)>. For instance, the integration over intervals (- oo, -1.5) and 
(1.5, oo) contributes to the total value of E(phenanthrene) - E(anthracene) 
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only by 0.005 B· Accordingly, the greatest contribution to <W(x)> comes from 
integration over the interval of x around the zero point. 

Thus we have reached our final conclusions 

(i) the value of E(A)- E(B) is grossly determined solely by W(O) = 
= log (aN/bN), while all other coefficients ai, bi have a second order influence. 

DISCUSSION 

The chemical interpretation of conclusion (i) is based on the well known12 

fact that there is a close algebraic relation between aN and the Kekule 
structures of A. In the case of alternant hydrocarbons, 

aN = [ASC(A)]2, bN = [ASC(B)F 

where ASC deJ?,otes the algebrnic structure count13• Hence, 

ASC(A) 
W(O)= 2log ---

ASC(B) 

(13) 

(14) 

and we see that the main topological factor which causes stability differences 
between conjugated isomers is the difference in their algebraic structure count. 
The larger the ASC, the larger the predicted stability. 

This, on the other hand, coincides with one of the basic c'oncepts of reso­
nance theory14, namely that ASC(A) > ASC(B) implies E(A) > E(B). The 
recent findings15>16 that resonance energy (another measure of stability) is simply 
a line·ar function of log ASC, which has been interpreted15 as a »come-back« 
of the resonance theory, is in accord with the results of our study. 

Throughout the present discussion we have not conjectured any definitive 
functional dependence of E(A) - E(B) on W(O). In the first approximation one 
can, of course, assume a linear relationship 

E(A) - E(B) = C W(O) (15) 

with C being a constant. But eq (15) combined with eq (14), in fact reproduces 
the . result obtained earlier in ref 3 using a completely different way of 
reasoning. 

Although ASC is the dominant topological factor determining the relative 
stability of isomers, other factors may sometimes have also a non-negligible 
effect. In the previous section we have found that the contributions of large 
values of x to integral <W(x)> are rather small. This is, however, true only 
if n is large and an - b" is small. 

It is known17 that there exist pairs of isomers for which both inequalities 
ASC(A) < ASC(B) and E(A) > E(B) are fulfilled simultaneously. Therefore 
such isomers violate the resonance theory. The smallest possible pair of such 
»exceptional« structures are the two C18H20 isomers17, the molecular graphs of 
which are G1 and G2 • 
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For these graphs n = 2, a 2 - b 2 = 6 and thus the violation of resonance theory 
can be ascribed to those topological factors which effect coefficients a2 and b 2 • 

It is known18 that a 2 - b2 will be large if the extent of branching of A and B 
is considerably different. In graphs G1 and G 2 this is evidently the case, namely 
while G1 has just one branching point, and G 2 has 7 such points. 

For isomers usually occurring in the chemistry of conjugated systems, the 
extent of branching hardly ever differs so drastically. Therefore, either n > 2 
or an - bn is small (or' both). For instance, in the case of the phenanthrene­
-anthracene pair, which we have studied, n = 4 and a4 - b4 = 1. Consequently, 
violations of the resonance theory are of a small or no practical importance, 
and in the vast majority of cases, considerations based solely on ASC give 
correct predictions. 

This conclusion should be slightly changed in the case of non-alternant 
and heteroconjugated molecules. For those systems aN ts also related to Kekule 
structures, but in a much more complicated manner19,20 . Then instead of eq (14) 
one has to use eq (9a) and to determine aN and bN by the graphical method 
developed by Wilcox19. 
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SAZETAK 

0 strukturnim ciniocima koji uzrokuju razlike u stabilnosti konjugiranih izomera 

I. Gutman i A . Graovac 

Razlika ukupne n-elektronske energije za dva konjugirana izomera dade se izra­
ziti integralom <W(x)> funkcije W(x), cija smo svojstva odredili koriStenjem ana­
litickih i numerickih postupaka. Kao glavni zakljueak slijedi da je integral <W(x)> 
uglavnom odreden sa W(O), naime da je racun algebarskih struktura glavni cinilac koji 
ravna relativnom stabilnoscu izomera. Na ovaj nacin opravdan je temeljni postulat 
teorije rezonancije. 
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