Explicit Formulæ for the Calculation of Molecular Multipole Moments over Slater Type Orbitals

Title:
EXPLICIT FORMULAE FOR THE CALCULATION OF MOLECULAR MULTIPOLe MOMENTS OVER SLATER TYPE ORBITALS

Authors:
Ante Graovac, Zvonimir B. Maksić and Josip Mikac

Affiliation:
'Rudjer Bošković' Institute, 41001 Zagreb, Yugoslavia

Abstract:

EXPLICIT FORMULAE FOR THE CALCULATION OF MOLECULAR MULTIPOLe MOMENTS OVER SLATER TYPE ORBITALS

Source:
Croat. Chem. Acta. 77/001

Language of text:
Eng.

Language of summary:
Eng.

Reference Centre:
Referral Centre, Trg maršala Tita 3, Zagreb, Yugoslavia

Descriptors

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>dipole moments</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>molecular integrals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecular multipoles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadrupole moments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slater type orbitals</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Address:

Scientia Yugoslavica
c/o Referalni centor
Trg maršala Tita 3
41001 Zagreb, Yugoslavia

Order form

Name:

Place:

Synopsis

Pages:

Figures:

Synopsis Code:

Source:
Croat. Chem. Acta. 77/001

Language of text:
Eng.

Language of summary:
Eng.

Number of references:
13

Address:

Scientia Yugoslavica
c/o Referalni centor
Trg maršala Tita 3
41001 Zagreb, Yugoslavia
Explicit Formulæ for the Calculation of Molecular Multipole Moments

A method for the rigorous calculation of the molecular multipole moments integrals over Slater type atomic orbitals is presented. It is shown that the multipole moments integrals are easily reduced to linear combinations of two-centre overlap integrals which can be routinely calculated.

Full paper available: Referral Centre, 41001 Zagreb, P.O.B. 327, Yugoslavia

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>1 dipole moments</th>
<th>3 molecular multipoles</th>
<th>5 Slater type orbitals</th>
<th>7 molecular integrals</th>
<th>4 quadrupole moments</th>
<th>6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A47</th>
<th>Abstr. numbers</th>
<th>CCACAA-SYUD 77/001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RCZ · SYU</td>
</tr>
</tbody>
</table>

Multipole moments of the electronic charge distribution in molecules play an important role in the description of physical and chemical properties of molecules and their interactions. For example, dipole moment μ provides information about electronic distribution at medium distances from a suitable origin of a coordinate system and second moments $<x^2>$, $<y^2>$, and $<z^2>$ describe the outer shape of the electronic charge cloud. The latter entities are also closely related to the diagonal components of the diamagnetic susceptibility tensor. Third and higher moments are connected with second and third-order nonlinear optical effects which are conveniently studied by laser light sources. The electrostatic interaction between molecules is easily expressed in terms of multipole moments and this type of approach seems to be very useful for investigation of large molecules of biological importance as well as for a study of certain types of chemical reactions. Finally, dipole, quadrupole and octupole moments are highly sensitive to the quality of the molecular wave functions and serve as very good probes for a quantitative appraisal of semiempirical charge distributions in molecules. In this note we report on a method for the exact calculation of the multipole moments integrals over Slater type atomic orbitals (STO). The multipole moments of the form $x^i y^j z^k$ up to the third order $(1 \leq i + j + k \leq 3)$ were considered. Their matrix elements are reduced to linear combinations of two-centre overlap integrals which are routinely calculated in numerous programs now in use in quantum chemistry. Master formulæ for the calculation of multipole moments integrals STOs up to the fifth period for first moments, fourth period for second moments and third period of the Mendeleev system of elements for third moments are given. Full paper involves details of the numerical procedure, worked examples and master formulæ.
<table>
<thead>
<tr>
<th>Synopsis/informative abstract</th>
<th>Abstract number</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author's address: Zvonimir B. Maksic, "Rudjer Boskovic" Institute, 41001 Zagreb, Yugoslavia

<table>
<thead>
<tr>
<th>Author</th>
<th>Place</th>
<th>Signature</th>
<th>ZIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZBM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>