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The theoretical aspect of the directional solidification :is briefly 
described. Two different experimental techniques were used for 
the production of directionally solidified high refractory oxide and 
carbide eutectics. Microstructure, crystallography, mechanical pro
perties and mechanism of failure were investigated. Some of the 
inves·tLgated eutectics retain considerable strength at elevated tem
perature, whereas the majority of alloys and sintered oxide bodies 
show rapid loss in strength. Eutectic in the system B4C-SiC shows 
excepti.onally high wear r~sisfance. · 

SOLIDIFICATION OF EUTECTIC MELTS 

When a melt of exactly the eutectic composition is solidified, two solid 
phases (in a binary system) form at the liquidus temperature and all of the 
liquid disappea•rs before the temperature decreases further. It was already 
known since the 1920's1 that by controlling solidifica·tion (removing heat pre
ferentially fr.om one direction) a microstructure can be produced which con
sists of a matrix :phase withim which is dispersed an ali~ned second phase. 
The second phase may be in the form of needles, rods or two phases can 
occur as alternate lamellae. The phases can be thought of as one s.i:ngle. crystal 
imbedded in a maitrix of another single crystal. 

It is now well established that the two phases grow simultaneously2 so 
that their common interfaces would be perpendicular to the solid-liquid inter
face. Each lamella has its own isolid-liquid interface. It follows tha1t the 
liquid in front of each lamella becomes enriched ·in the major component of 
the neighboring lamellae as shown in Figure 1 and that transverse diffus~on 
of both components must take place. It has been observed and to a cer.taim 
degree ex;plained foeoretically3, that the planar front growth is necessary to 
obtain normal eutectic microstructures. The oondition for the breakdown of 
the planar interface is given by4 

G< ~Tf. R 
D 

(1) 

where G is the temperature gradient, D is diffusion coefficient in the l.iquid, 
R is the growth rate and ~Tf is the freezing range of the mixture. To obtain 
the planair front grnwth and to produce well-alligned eutectic microstructures, 
it is then necessary to use steep temperature gradients, slow growth rates and 
very pure starting materJals. Non-pla111ar liquid-solid interface results in a 
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Figure 1. Diffusion paths for the g rowth of a lamellar eutectic. Ref. 3. 

colony microstructure in which the interface brea1"s down into regions of 
high curvature separated by higher concentration of impurities. 

It has been shown experimentally and has been explained .theoretically5 

that in the eutectic microstructures the distance between the lamellae or rods 
(Ii.) depends ·on the irate. of so1idifica•tion (R) and that the relationship is 

(2) 

Most eutectic systems show a strong preference for a rod fo!'lffi or lamellae 
form of microstructure. This behavior is dependent on differences in the total 
solid-solid inte.rfacial energy, which in turn .iJS partly dependent on the relative 
volumes ·of the two eutectic phases. It is easy to derive on geometr~cal grounds6 

that if the relative volume fraction (VF) of two phases is less than 0.28 minor 
phase will grow in the form of rnds. Lamellar type ·of micros.tructures can ·be 
expected i f VF> 0.28. On Figure 2 rod to lamellar morpho1ogy cha111ge in 
terms of interfacial area/unit volume change for several metallic eutectics is 
shown. 

Preferred cry:stallographic orientations are often formed during controlled 
solidification of eutectic melts. It seems that in most cases the •preferred 
orientahons which develop are associated with low va1ues of the interfacial 
energ·ies and with the similarity of a·tomic densities of the ill1terfacial planes7• 

It has been postulated8 that to obtain nonfaceted .growth*, a factor a should 
be less than 2. Factor a was defined as: 

* Normal eutectic microsbructures contaill1 nonfaceted phases. 
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Figure 2. Rod to lamellar morphology change in terms of interfacial area/unit volume. Ref. o. 

(3} 

where Q is a crystallographic factor always less than or equal .to one, ~SF 
is the entropy ·Of melting and R is the gais constant. Most metals and organic· 
materials haive lrow entropies of melting so that the condition a< 2 is easily 
met. Refractory oxides and carbides have high entropies .of fusion and sh{)<Uld 
show faceted growth. However, this ~s not the case and normal eutectic 
microstructures can be abtfilned in most refractory oxide systems. 

EXPERIMENTAL METHODS 

Two experimental methods were used to solidify oxide-oxide and carbide-carbide 
eutectics. There are (i) ; a modified Bridgman-Starkbarger method9,10, and (ii), a 
floating molten zone technique11• The first technique requires a furnace similar to 
that shown on Figure 3. Ingots are directionally solidiified by lower1ng the loaded 
crucible, suspended from the upper travelilng head of the furnace, by an Mo wire 
through the susceptor at the desired solidification rate. Because of the difficulty of 
measuring the actual growth rate of the ingnt, it is assumed that the rate of growth 
is equal to the lowering rate of the crucible, i. e. the soltdification rate. The 
lowering rate of the crucible is usually 0.5-30 cm/hr and the furnace is 
capable of reaching temperatures up to - 2500 °c. In our experiments the melting 
temperatures were = 50 °c above the eutectic liquidus. The thermal gradient at the 
eutectic liquidus temperature, determined by a W-Re thermocouple, was = 200 °C/cm. 
All melting and solidification procedures were conducted 1n a•rgon. With the floating 
zone technique temperature gradients of 500--1500 °C/cm can be obtained. The actual 
heathng of the pres.ilntered road Ls accomplished by radiation from a small carbon 
rung susceptor and the molten zone is only 3-4 mm thick. 
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Figure 3. Interior layout of solidification furnace. Ref. 13. 

The resultiing ingots can be sectioned and used for optical and x-ray in
vestigations. With both techniques it is possible to obtain large ingots which can 
be used for the investigations of mechanical, electrical, optical, magnetic or thermal 
properties. 

REFRACTORY OXIDE AND CARBIDE EUTECTICS 

Microstructure 
The fo11owing refraotoTy oxide eutectics were di.rectionally solidified: 

Al6Si20 13 (mullite)-Al20/0 , MgAl20 4-Al20 3
12, MgO-MgAl20 4

13, Zr02-Mg014, 

Ti02- Mg015, Zr02- CaZr03
10•15, Zr02-SrZr03

15, CaO-Mg010•15, Al20 3-Zr02
16, 

Al20 3-Y20 3
9• Only one carbide system SiC-B4C was direct~onally solidified. 

Normal eutectic microstructures, lamellar, rod OT fibrous type could be prn
duced with most high melting oxide eutectics by using directional solidifi
cation. For example, the eutectic between MgO and MgA120 4 is an attr.active 
candidate for directional solidification; the phase diagram is shown in Figure 
4. The eutectic is at 45 wt ()/o MgO and 55 wt O/o M20 3 and has a liquidus 
temperature of 1995 °C. This composition yields~ 14 vol. ·O/o MgO, .so that on 



Croat. Chem. Acta 48 (4) 1976 [To face page 427] 

Figure 5. Microstructure of ingots solidified a t 1 cm/hr . A. MgO-MgAJ,O, eutectic, transverse 
section. B. Zr02-MgO eutectic transverse section. C. Zr02-SrZr03 eutectic, long itudinal section. 

Ref. 13 and 15 . 
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Figure 6. A. Lamellar Zr02-SrZrOa e u tect ic, quenched to show isot h ermal solid-liquid interface 
B . Zr02-SrZrOa eutectic solidified at 6 cm 'hr. Colony microstructure . Ref. 15. 
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Figure 4. The system MgO-MgAl204. Ref. 18. 
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directional solidificatron the eutectic might be expected to yield a composite · 
consisting of MgA120 4 (spinel) matrix reinforced with MgO whiskers. Figure 
5A shows transverse section of an iingot solidified at 0.9 cm/hr where no 
colony microstructure is present. Similarly, colony free microstructures shown 
on Figure 5B and C could be oibtaiined if Zr02-SrZr03 and Zr02-MgO 
eutectic . me1ts we.re directionally solidified using relatively pure oxides and 
rates of solidification less than 2 cm/hr. In these ca:ses a planar front .growth 
was achieved as shown in the Figure 6A. Higher solidification rates always 
produced colony type microstructures (Figure 6B). ln systems which show 
stirong tendency towards metastability, either glass or metastable pha,se for
mation, the :solidifica.tion process may in:ot follow the equilibrium (f>hase diagram. 
The metastable behavJior prevents the formation of the normal eutectic mi
cro.structures as e. g. in the system Al20 3-Si:02 and MgAl20 ,-Al20 3

10• 

With high temperature ox,ide eutectics the spacing {A.) between rods or 
lamellae and the solidification •rate (R) are related by the well-known for
mula A a R-'h. 

The crystallo:graphic relationships of a number of the oxide-oxide eute
ctics have been investigated using Laue and Buerger p.recessioili x-ray techni
ques. Generally we find that if both phases are cubic, the growth direction 
of both phases is the [111] direction with all (hkl) planes parallel. The lattice 
mismatch is accomodated with a dislocation network at the i:nterface. Deter
mination of foe crystallographic relationship in more complex systems is in 
progress15• 

Mechanical Properties 

There are several factors which could improve mechanical properties of 
ceramic materials with eutectic microstructures over that obtamed .by con
ventional sintering ·or hot pressing. Some of these factors a·re: (i) high strength 
at the high temperature of the mrnor phase in the whisker form (ii) stability 
of microstructure at high temperature (iii) the matrix phase may be placed i<n 



428 V . S. STUBICAN 

compression upon cooling, which will increase the strength of eutectic com
po·site. 

Fracture strength was studied at temperatures up to 1600 °C with ingots 
solidified at different rates. The obtained results showed that the strength 
of these composites varied little with the temperature up to 1600 °c and was 
insensitive to the. rate of solidif.ication. Comparison of the flexural strength 
of ceramic eutectics with hot pressed Alz03 , Si3N4 and a Ni-alloy (Figure 7) 
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Figure 7. Flexural strength of several eutectics compared with hot pressed AbOa(HP), SiaN.CHP) 
and Ni-alloy B - 1900. Ref. 11. 

shows that ceramic eutectics may be some of the strongest known materials 
at high temperature11• A partioularly interesting area for further •research is 
determiin:ation of the fracture strength of high refractory eutectics at tempe
rature 1600-2000°C. 

Fracture surface energies measured at room temperature for MgO
-MgA1204 eutectic and Zr02-CaZr03 eutectic averaged to 22 X 103 er.g/cm 
and 5 X 104 erg/cm respectively. At 1600 °c fracture surface energies increased 
to 45 X 103 erg/cm2 and 100 X 104 erg/cm respectively. The sudden increase 
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Figure 8. Fracture surface of Zr02-MgO eutectic at room t emperature. (etched with HCL). SEM 
photomicrog raph. Ref. 15. 
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between 1000-1600 °c may be explained by the absorption of energy in 
deforming more ·plastic matrix and in the shear process in pulling fibers out 
of the matrix. 

Topography of fractured surfaces was investigated with ingots fractured 
at different temperatures by using SEM. The effect of the fractured surface 
was found to be orientahon dependent. In several cases the noticeable inter
action betwe,en the fracture path iam.d the microstructure was observed. Figure 
8 shows deviation of crack by MgO in Zr02-MgO eutectic ingot which was 
fractured at room tempera.ture. With specimes broken at high temperatures 
1200-1500 °c, which com.tained ductile matrix e.g. CaZr03 , the minor phase 
Zr02 was partially extracted from the ductile matrix11 • 

Wear res~stance was measured17 wJth SiC-B, C solidified ingots of eutectic 
composition. The minimum wear was found with eutectic composition at a 
solidificatiion rate o f apprnximately 9 omihr. The wear of the ingot of eutectic 
composi.tion solidified at 9 cm/hr was considerably less than the wear ·of 
solidified B, C or hot presed SiC (Figure 9). 
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Figure 9. wear loss of B , C-SiC e u tectic compared with that of B ,c a nd SiC. R ef. 17. 
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SAZETAK 

Kristalizacija eutektickih mikrostruktura iz oksidnih karbidnih talina 

V. s. Stubiean 

Opisan je teorijski aspekt usmjerene ,solidifikacije. Koristene 1su dvije razlicite 
e~sperimentalne tehnike za pripremanje usmjereno solidificirainih visoko otpornih 
oksidnih i karbidnih eutektika. Istrazivana je mikrostruktura, kristalografija, me
hanicka svojstva i mehanizam promailaja (mechanism of failure) . Neki od istrazivanih 
eutektikuma zadrfavaju znatI11U otpornost na povisenim temperaturama, dok veciina 
slitina i sintrovanih oksidnih tijela pokazuju brz gubitak otpornosti. Eutektik u 

· sistemu B4C---SiC pokazuje izuzetno visoku i trajnu otpornost. 
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