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The 71-orbital OCE-SCF calculation reported by Moccia® has
been repeated with electron repulsion integrals stored to greater
precision: for the energy, effective field gradient, virial theorem,
dipole moment, molecular quadrupole moment etc. the results are
considerably altered and generally improved. i

A series of OCE bases for HCIl has been constructed by adding
STO’s to a basis proposed by Gilbert and Wahl for Cly?3. In the
largest basis, 29-orbitals, the total energy —460.068938 au at the
equilibrium internuclear distance is lower than that in the 71-

-orbital basis, —460.052595 au.

The two bases are compared with experiment and with the
results from Two-Centre-Expansion theory, in order to assess their
relative validity and usefulness.

INTRODUCTION

Solving the Hartree-Fock-Roothaan (HFR) equations is simplified if the
basis orbitals @; are centred on the same point; One Centre Expansion (OCE)
wavefunctions. An OCE basis is appropriate when the molecule has high
symmetry about a point and no inner-shell electrons except at the point (e. g.
CH,! or NH,?), and when a molecular property is highly dependent on the
electron distribution mear one point, as in present calculations. As an OCE
basis is increased, it approaches a complete set®* and can, in principle, ap-
proach the Hartree-Fock (H-F) wavefunction.

For the EFG at the Cl nucleus in HC], the operator is (3 cos?@, — 1)/7,?,
with r, the distance from the Cl nucleus and ©, the angle from the principal
axis of the EFG tensor®%. This operator is large for small values of r, and
electron density near the Cl nucleus dominates the contributions to the EFG?
Thus an OCE basis for HCI centred on Cl should approximate the EFG well,
since a large OCE basis is flexible near its centre. An OCE calculation on HCI
in a basis of 71 Slater-type orbitals (STO’s) by Moccia% gave an EFG
agreeing with the best experimental value available at that time? to within
experimental uncertainty. This calculation was repeated to study the relation
of the electron distribution to the EFG.

However, because in the Moccia calculation the electron repulsion in-
tegrals were stored to 6 significant figures!, while in ours they were stored
to 16, the occupied MO’s with higher eigenvalues, which are most sensitive

tPermanent address: McGill University
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to changes in the integrals, differed enough between the two calculations to
give a difference in the EFG of 6%. A 6% difference from experimental is
less than that from a two-centre double-{ STO calculation (8% error)!, but
greater than that from extensive twocentre ab-initio STO calculations on HCl
(1°/0 —2° error)'»!3, Why does Moccia’s basis® give a less accurate EFG than
two-centre bases which include fewer orbitals on Cl? How can we construct
an OCE basis more accurate for the EFG? These questions are examined in
later papers®:7:14:15,
1. TYPES OF OCE WAVEFUNCTIONS

OCE wavefunctions fall into two classes: (i) configuration interaction
wavefunctions (OCE-CI)'®, (ii) molecular orbital self-consistent field (OCE-
-SCF) wavefunctions?. Some calculations use both procedures!'?’, with a single
determinant optimized by the HFR procedure and other determinants con-
structed with the unoccupied HFR orbitals. The OCE-SCF method was chosen
over OCE-CI for this work because to first-order the expectation value of a
one-electron operator is unchanged by inclusion of CI® except when < o >,
is nearly cancelled by <Co >,,q.'%, which does not occur in HCI.

2. CHARACTERISTICS OF THE OCE-SCF METHCD AND WAVEE‘UNCTIONS
a) Computational Advantages

Only if OCE-SCF calculations are simpler or quicker than many-centre
calculations of comparable accuracy is their use justified. However all electron
repulsion integrals in an OCE-SCF calculation can be evaluated quickly com-
pared to the multicentre integrals which arise otherwise; the orbital products
and rﬁ are expressed as finite combinations of products of spherical har-
monics on the expansion centre; many terms vanish upon integration over
the angular coordinates?’; thus these integrals are evaluated much more
rapidly in an OCE basis. The number of non-zero electron repulsion integrals
is substantially reduced: because of the symmetry of the spherical harmonics,
about 85% of the possible integrals vanish; for typical many-centre calculations
this fraction is less than 50%2.

Another advantage arises in calculating OCE-SCF wavefunctions at a
series of internuclear distances. Since [pq|rs] is independent of internuclear
distance if all orbitals are on the same centre, a change in internuclear distance
without a change of basis requires no recalculation of the [pq | rs]. Some nuclear
attraction integrals must be recalculated, but these are few compared to the
[pq | rs].

b) Limitations of the OCE-SCF wavefunction
The exact molecular electronic vy satisfies the Schrddinger equation,

ZIZ

(-1/22?7% +122203)y—323 —

i i ia |

1

with i, j electrons and a nucleii. At nucleus a, where 1y, vanish, vy is multiplied
by an infinite factor on the left of (1). If the ratio Hy/y (= E) is to remain
finite at ry, = 0, v must satisfy??23

A
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A 3
with v the average of y over a sphere of radius 7;,. (2) is the cusp condition
on y?*; for non-zero v (rj,, = 0), there is a discontinuity in directional de-
rivatives of 1 through the point 7, = 0%5.

Consider an OCE basis composed of STO’s
¢i (n: l: m, C: 7, @1 é) =N (n’ C) P exp (_' C T) S[m (@7 ¢)7 (3)

with N (n, () a normalization factor and S, (@, @) a spherical harmonic. In-
cluding STO’s with n = 1, the OCE wavefunction satisfies (2) if ¢ is the ex-
pansion centre, since for n =1, (0 ®/0 1),y = —CN(n,{) Si, (0,0) = 0. If «
is not the expansion centre, (2) cannot be satisfied, since directional derivatives
of (3) are continuous everywhere but » = 0. If enough basis functions are in-
cluded, the OCE wavefunction can approximate a cusped function arbitrarily
closely at an off-centre .

How well does an OCE-SCF wavefunction account for the energy of
attraction between the nuclei and electrons and the energy of repulsion
between electrons? The potential at a point 7 = (v, &, @) due to a nucleus ¢ is

vV, () = Z,r, : @

with Z, the nuclear charge and 7, the distance of 7 from a. V,(¥) can be
expanded?$,

oo 1 rl 1
Vi) =an Z B e — i <080, B8O, B); )
1=0 20+ 1 U1

with (r<,rs ) the (lesser, greater) of (r,, 7) and ©,, @, the angular coordinates
of a. The attraction between the electrons and nucleus a in the HF ap-
proximation is

B e g

E,=—3N, <y |V jy,>. (6)
k

Each vy is expanded in terms of the basis orbitals,
v =2Cy &y
i

with @; given by (3). Then (6) can be expressed in terms of integrals of the
form

§% drg® f2dOsnO [ ddS,, (6,85, O, 9)S,, 6,9, )

where S, (0, @) and Sym, (O, P) are from basis orbitals and Sj, (6, D)
from (5). The exact form of the radial integrands g (r) is mot important. The
angular integral in (7) is zero unless?

L >0
and (8)
|L—1; | <7

Thus in an OCE basis, terms in (7) with I larger than twice the largest l-value
in the basis vanish. If orbitals are included on another centre, their expansion
in terms of spherical harmonics on the first centre is infinite; there would
then be no largest I; or I; in (7). Thus a two-centre basis does mnot result in
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neglect of higher I-terms in (5) so restricting the basis to a finite set on one
centre causes truncation of the off-centre nuclear attraction energy*.

Similarly, the electron repulsion operator r 1; can be expanded

l
oo 18 T l
T _1;1 =4 2 =& ‘lj<|_’1 DI (@1’ ¢1) S (@2’ ¢2)’
1=0 21+1 7'> m=—1

with (r,7>) now the (lesser, greater) of (r,, 7,). In evaluating [pq | rs] terms
arise containing the factors

I?: d @1 sin @1 I gﬂ d ¢1 S lym, (@1’ ¢1) S lymg (@1’ ¢1) Slm (@1’ ¢1)
and

J540,sin6, [ db,S, 0,8)S,, (0,98)S8,, (6, 8);

the product of these vanishes unless I, + I, >1, and 1. + [, >1, so there is
also truncation of the electron repulsion energy in a finite OCE basis. In a
given basis these errors can be reduced by adding orbitals of higher 1.

3. CHOICE OF BASIS

The general form (3) of the STO contains the spherical harmonic
Sim (0, @). Normalized associated Legendre polynomials are chosen as the
©-dependent part?’. For the @-dependent factor there are two common choices:
the complex functions exp (im®)%, or the real functions sin|m|@ and
cos |m | @27, For this work the real functions were chosen because they
lead to Fock matrices with real elements; with complex orbitals the Fock
matrix is in general complex. Complex matrices have two disadvantages: they
require twice as much computer memory as the corresponding real matrix,
and many matrix diagonalization methods®® are restricted to real matrices.
Formulas for the real spherical harmonics are given in Reference 26.

For an SCF calculation of HCI the necessary m-values can be determined
exactly. Consider HCl with Cl at the origin and the proton on the + z-axis.
The MO structure of HCI is3t (1s0)? (2s0)? (2po)? (2pm)* (3pm):. The o MO’s
depend upon the angle @ about the z-axis in the same way as the @-factor
of a spherical harmonic with m = 0; the # MO’s have the ®-dependence of
a spherical harmonic with m = 4+ 1. Thus the @®-dependence of all MO’s of
HCI is given correctly by a basis including STO’s with only the three m-values
— 1,0, and + 1.

No limit can be placed on the n- or l-values needed. The n-value deter-
mines the sharpness of the radial peaking and the Il-value the sharpness of
the angular peaking, For m >>1, the radial factor of an STO,

R (n: C: ”') == Tnﬁl exp ('— t 7')7 (9)

vanishes for r = 0 and approaches 0 as r— oo, with a maximum at a point
Tmax P€tween the extremes. The sharpness of this maximum is the width at
half-height of (9). Differentiating (9):

Tmax = M —1/C, (auv) (10)

The widths at half height of the radial function (9) for values of n from 4 to 20
and Tma, = 2.41 au are compared with a similar value for the 1s orbital of H



SCF CALCULATIONS ON HCL 249

TABLE I
Radial peaking of STO’s. Widths at half height (au) for STO’s with r_, = 2.41 au

n \ width (au)
— ! .
4 3.32
5 2.87
6 2.56
7 2.33
8 2.15
9 2.00
10 1.90
11 | 1.80
12 1.72
13 1.64
14 1.57
15 ‘ 1.52
16 | 1.47
17 1.42
18 | 1.37
19 ‘ 1.34
20 \ 1.30

(Table I), since orbitals are added to an OCE basis for HCl to approximate
electron density at the proton. The radial part of the H 1s orbital is

Ry (r) = exp (—1),

which falls to half its maximum value (rm.x = 0) at r = 0.69 au; the quantity
corresponding to width at half height of the STO’s on Cl is twice this, 1.38 au.
This sharpness is attained for n >>18 (Table I). This peaking is illusory,
occuring in all directions, though needed only at the proton32.

Orbitals with n = 18 are not used in OCE bases; in one approach? n- and
l-values are selected by constructing normalized OCE-MO’s to maximize
overlap with MO’s from two-centre calculations; the exponents { are selected
by minimizing the molecular energy in a series of calculations.

The present approach starts (in HCl) with an accurate published basis for
Cl in a two-centre calculation of Cl,*® and adds orbitals to approximate the
electron distribution near the proton. The basis enlargement process will be
reported®. A rather small basis yields a lower molecular energy and several
molecular properties closer to the HF limit for HCl than the 71-STO basis
of Moccia8.

Moccia developed a large OCE basis for HCIl by the first approach over
a number of years®®S. The basis includes 71 orbitals; only 51 are listed because
each orbital with m = 1 there is another with identical n,1, and T but with

= — 1. A similar convention is followed later in listing m MO’s.

Orbitals 1 through 9 are essentially a triple-{ set of 1s, 2s, and 3s orbitals
(3 l-values for every, n,l,m combination). A 9s orbital with r,. = 2.34 au
(orbital 10) for electron density mear the proton. The po orbitals 11—17 follow
a similar pattern, but with two 2pc and four 3pg orbitals included3!; the
remaining ¢-orbital pattern is less simple; for 1<C1<C3 two orbitals of the
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minimum n (=1 + 1) and at least one of a higher n for density at the proton
are added. For 4 <1<{G6, there is one orbital with n =14 1 and one with
n=29; for | =7, the highest included, there is only the n =9 orbital. The
n orbitals follow a similar pattern with one less I = 6 orbital.

The n set is a radially flexible as the ¢ set; although there are 31
g-orbitals and only 20 m-orbitals for each m-value, 10 of the ¢-orbitals are
s-orbitals (I = 0). For [ >>1 there are 21 g-orbitals and 20 m-orbitals, and the
orbital of largest rpna. (orbital 44, r,.c = 2.727 au) is a m-orbital.

Two major criticisms can be made: first, it was too costly to energy-opti-
mize the  of the whole 71-STO set; 43 orbitals were first selected and the
energy minimized with respect to the { of these orbitals®; then several unim-
portant orbitals were discarded and orbitals with higher n and 1 added with
exponents chosen to put 7,.x near the proton. The exponents were not reopti-
mized after addition of these orbitals. Since several of the MO’s involve the
high-n basis orbitals heavily (Table V), the role of some ornbitals of the 43-
-orbital set with low exponents (i. e. higher r,,) is now taken by orbitals with
higher n, and the charge distribution would be better approximated by incre-
asing the exponents of some lower-n orbitals to give flexibility in the bonding
region. Adjusting the orbital exponents would require much computer, time,
so reoptimizing the 71-STO set was not undertaken.

Second, the large number of sz orbitals. The bonding in HCI involves ¢
orbitals (in a minimal two-centre basis for HCl no n orbitals are included on
H); it is better to leave the & basis at roughly the size for an accurate calcu-
lation on the Cl” ion and make most of the orbital additions to the ¢ set. To
avoid artificial deviations from spherical symmetry in MO’s describing inmer
electron shells$35 the exponents of, for example, the 2p i basis orbitals must
equal those of the corresponding 2p ¢ set so that small polarization is produced
by differences in the MO coefficients, when there is more than one 2p orbital
of each symmetry. The basis in Table II, has differences of up to 0.1 between
corresponding 2p ¢ and 2pm exponents. A calculation of CI™ in this basis®
produced a charge distribution which deviated significantly from spherical
symmetry.

The bases in this paper® were constructed by adding orbitals with n = 9
and 7Tpax = 2.4087 au to the Gilbert-Wahl (GW) basis for Cl,%3, which was
developed from the basis for Cl of Bagus®. The largest basis used (29 STO’s)
is given in Table III.

4. EVALUATION OF ELECTRONIC INTEGRALS

Techniques evaluating all the integrals which occur in an OCE-SCF cal-
culation are well-known?®, except for the off-centre nuclear attraction inte-
grals’”. The integral routines used were written independently and were
designed to be completely general; there is no limit to the size of the n, 1, m,
or { parameters which the routines can handle except the largest number
which the computer can represent.

It is important that one who writes routines for the evaluation of electronic
integrals prove the accuracy of these routines, since the molecular energy
and MO’s are seriously affected if there are errors in integral evaluation3®. To
this end derivations of the integral formulas are given2® with comparisons
between integrals evaluated by these routines and previously published values.
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TABLE II
The Moccia® OCE basis for HClL. 71 STO’s, 31 o orbitals and 20 n pairs
0 ! | r
o orbitals n | l 1 m t l Tmax (@)
| | |
1 1 g+ B 23.980 0.000
2 1 o | o0 15305 | 0.000
3 1 0 0 10.000 0.000
4 2 0 0 8.502 0.118
5 1 2 0 0 6.297 0.159
6 el -0 0 4.000 0.250
7 Svaelis O 0 1.767 1.132
8 3csal O 0 1.104 1.812
9 3 0 0 0.805 2.484
10 9 0 0 3.419 2.340
11 2es0f 1 | a6 8.885 0.113
12 2 | 1 | o0 5.725 0.175
13 gresk 1| g0 | 4.361 0.459
14 3 1 0 2.004 0.998
15 3 1 0 ‘ 1.222 | 1.637
16 3 1 0o 0.862 | 2.320
17 9 1 0 3.419 , 2.340
18 3 2 0 | 2.224 | 0.899
19 3 2 0 ] 1.492 } 1.340
20 6 2 0o | 2.137 2.340
21 9 2 0 3.419 . 2.340
22 4 3 0o 1.675 , 1.791
23 dorsf 3 0 2.125 1.412
24 9 % 3 0 3.419 | 2.340
25 5:.: 4 0 2.000 2.000
26 9 4 0 3.419 2.340
27 6 | 5 0 2.000 2.341
28 9 | 5 0 3.419 2.340
29 7T | 6 0 2.564 2.340
30 Lo 29 ollien 126 0 3.419 2.340
31 Wy S rg o D 3.419 1 2.340
| | ' !
n orbitals ’ n J l “r m | € Thax (AW)
| |
32 L2 1 1 8.990 0.111
33 2 1 1 5.720 0.175
34 3 1 1 4.330 0.462
35 3 | 1 1 2.340 0.855
36 311 3f =i 1 1.270 1.575
37 R I 1| 2.137 2.340
38 9 1 1| 3.419 2.340
39 3t Ay 147 = | 1.700 ‘ 1.176
40 3 2 1 ‘ 1.100 ‘ 1.818
41 4 2 1| 1.200 ‘ 1.667
42 7 2 1 2.564 ; 2.340
43 4 3 1 \ 1.600 ; 1.875
44 dacinna 3 1 1.100 ‘ 2.727
45 T3 1| 2.564 2.340
46 5 | 4 1 1.500 2.667
47 9 | 4 1 {3 3.419 | 2.340
48 6 | 5 1 2.136 1 2.341
49 9 | 5 1 3.419 ‘ 2.340
50 8 | 6 1 2.990 ‘ 2.341
51 9 7 1 3.419 2.340
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TABLE III

GW + 9 OCE basis for HCIL. 29 STO’s, 19 o orbitals, 5 & pairs. Basis developed from
Cls basis of Gilbert and Wahl33

o orbitals n 1 r m ) € T max (@1)
1 1 ‘ 0 ‘ 0 l 18.424 0.000
2 2 ‘ 0 0 ‘ 16.187 0.062
3 2 0 0 6.092 0.164
4 3 0 0 2.608 0.767
5 3 0 0 1.597 1.252
6 2 1 0 10.267 0.097
7 2 1 0 3 5.608 0.178
8 3 1 0 2.608 0.767
9 3 1 0 1.463 1.367

10 3 2 0 1.943 1.029
11 9 0 G 3.32129 2.4087
12 9 1 0 3.32129 2.4087
13 9 2 0 3.32129 2.4087
14 9 3 0 3.32129 2.4087
15 9 4 0 3.32129 . 2.4087
16 9 5 0 3.32129 2.4087
17 9 6 0 3.32129 2.4087
18 9 7 0 3.32129 2.4087
19 9 8 0 3.32129 ; 2.4087
20 2 1 0 10.267 f 0.097
21 2 1 1 . 5.608 0.178
22 3 1 1 ( 2.608 0.767
23 3 1 1 1.463 1.367
24 3 2 1 1.943 1.029
|

5. ORGANIZATION OF THE SCF CALCULATION

The computer programme to perform the calculations will be published?”.
Some general problems which arise in performing closed-shell SCF calculations
will be discussed.

a) Orthonormalization of Basis
In Roothaan’s*?
FC = SCE, (11)

with F the Fock matrix, C the coefficient matrix of the MO’s, S the overlap
matrix of the basis set, and E, the diagonal eigenvalue matrix, each iteration
of the SCF process involves one solution, finding C and E given F and S.
If the nxn matrix A has an inverse, (11) can be rewritten ’

FAAC = SAA''CE;

multiplying both sides on the left by A*, the transpose or (if A is complex)
conjugate transpose of A,

(A'FA) (AC) = (A'SA) (A'C) E. (12)

Suppose A has been chosen so that
A'SA =1, (13)



SCF CALCULATIONS ON HCL 253

with I the nxn identity matrix. Then, defining ¥’ = A'FA and C' = A™'C,
(12) becomes

F'C = CE,
or

C*FC' =E. (14)

Since F is symmetric, C' can be found such that E is diagonal and real and
C’ is unitary (i.e. C!' = C"4. Efficient computer routines exist which find
C’ and E in (14)%.

Thus the problem in solving (11) is finding A such that (13) is satistfied,
which is equivalent to transforming the given basis to an orthonormal set.
The method used here is the. Lowdin Orthogonalized Atomic Orbital (OAO)
method***, where

1 1
s ?2=-up ?U, (15)

with U a unitary matrix satistfying

U*SU =D, : (16)

with D diagonal. D7 is a diagonal matrix whose non-zero elements are the
reciprocal square roots of the corresponding elements of D. Substituting on
the left of (13),

1 1

1 1
)’S$ 2 =UD ?* U'SUD

U'=UD 2DD 2U =1

ro |k

_1
(s 2

so (13) is satisfied. The problem with this method is that if the basis is or
is mearly linearly dependent, the diagonalization (16) gives an inaccurate
matrix U. Problems of this kind were not encountered in OCE-SCF work.

b) Initiation of the Iterative Process

Since the elements of the Fock matrix depend on the MO coefficients,
these coefficients must be guessed to start the iterative process. The published
MO coefficients of Moccia® were used to initiate the 71-STO calculations;
calculations in the GW basis?®® were initiated with the MO coefficients of the
Cl” ion in this basis, which itself was initiated by simple guesses of orbital
occupancies in the ion. Calculations in the enlarged GW bases® were initiated
with the coefficient matrices of the previous member of the series.

¢) Convergence Criterion for the Iterative Process

For an SCF calculation one can check changes in the electronic energy

E e
elec 9

=L =X P;(H;+Fy, amn
ij
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with Py;, Hj;, and Fj; elements of the first-order density, one-electron Hamil-
tonian, and Fock matrices respectively, for convergence. The first convergence
criterion used was that the relative change in E... between the i-th and the
i+1-st iterations be less than 0.5X107!2; i.e. that

AE/E = |E, , —E;|/E; <05 X 1072,
This is equivalent to requiring 12 significant figures in the electronic energy.

Even when this criterion was satisfied, the eigenvalue and coefficients of
the highest occupied MO still changed in the fifth figure. Storing a whole
coefficient matrix from iteration to iteration is costly of computer memory,
so the following procedure was used. The energy criterion of 0.5 X 10712 was
satisfied. Thereafter the relative change in the eigenvalue of the highest
occupied MO was checked until it fell below 0.5°<107¢. Experience has shown
that the MO coefficients are accurate to the same number of decimal places
as the corresponding eigenvalue. The coefficients of the highest occupied MO
tend to be the most mobile from iteration to iteration for the following reason:
the successive iterated Fock matrices are perturbations of the final Fock
matrix; the n-th eigenvector at any iteration can be estimated to first order
from the corresponding converged eigenvector by Rayleigh-Schrédinger per-
turbation theory#4,

=% + = %+ (18)
¥ %R m#n EJ —E2

with xp?l the converged n-th eigenvector of F, and F O, the difference bet-
ween F, at self-consistency and Fp, at a particular iteration. E$ and E g, are
eigenvalues of the converged eigenvectors. For HCl the lowest eigenvalue
is much lower than the next lowest, and successive eigenvalues of occupied
orbitals occur increasingly densely!*!?; thus the occupied eigenvector with the
highest eigenvalue has many small denominators in the summation in (18)
and hence relatively large corrections to q)‘r’l ; the eigenvetor with the lowest
eigenvalue, however, always has relatively large denominators, and relatively
small corrections to its eigenvector.

The first-order density matrix P, with elements
P, =3 NiC,Cp) ©(19)

with the sum over the MO’s vy and Ny the occupation number of vy, is inter-
mediate in accuracy between the electronic energy and the coefficients. It
was observed in comparing preliminary calculations using an energy conver-
gence criterion of 0.5X10™® with Jater ones using 0.5X10712 that the 0.5X107
criterion gave about six significant figures in the density matrix. Roughly, if
9 figures in the energy give 6 in the density matrix, then 12 in the energy
give 8 in the density matrix. This could be tested by using a still smaller
energy criterion, but this was mot done since it might exceed the accuracy
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limits of the integral routines. We estimate that the largest density matrix
elements (=1) have 8 significant figures, and the rest are accurate to the
same number of decimal places.

6. OCE-SCF CALCULATION OF HCI

The Moccia® OCE-SCF MO’s for HCl (Table II) are for R = 2.424 au
(R. = 2.4087 au?*’); the MO coefficients are in Table IV. This calculation was
repeated with the above programme at the same internuclear distance; the
MO’s obtained are in Table V.

TABLE IV

Moccia’s OCE-SCF MO’s for HCI%, R = 2.424 au. Basis orbital numbers refer to
Table II

Eqe. = —467.07130 ay, E,, = — 460.05810 au

o MO coefficients

\
2?;{5 lo 20 l 30 40 50

J |

’ |
1 .09166 | .00189 [ —.00003 ’ —.02578 .00897
2 1.07967 | —.20587 .00098 27135 —.09095
3 —.22474 | —.22100 | .00074 —.24859 .09151
4 11990 11237 | .00017 56940 —.19886
5 —.06529 93843 | —.00566 —1.18487 .38862
6 .01557 .11949 .00130 57420 —.19952
7 —.02284 —.00770 .00050 1.02584 —.24753
8 —.00159 —.00508 —.00005 17500 —.09601
9 .00073 .00233 .00000 —.10227 .06199
10 .00264 .00803 —.00012 —.32499 .20646
11 .00021 .00059 .31653 —.01056 —.04967
12 —.00022 .00249 63172 —.01773 —.19011
13 .00011 .00082 .11804 —.00486 .08679
14 —.00004 .00017 —.02183 12564 54599
15 .00001 —.00024 —.02286 —.00885 61500
16 .00004 .00007 .00622 .00370 —.17441
17 .00001 .00022 .02737 .05752 —.08456
18 .00004 .00423 00371 —.00019 0.6836
19 .00001 —.00717 —.00580 .07935 0.5115
20 —.00002 .00332 .00260 —.05934 .02405
21 .00001 .00081 .00076 .07764 13177
22 .00000 —.00006 .00018 —.04105 —.01571
23 .00000 .00024 | .00070 | .03780 .03370
24 .00000 .00001 | —.00059 | —.06759 11942
25 .00000 00020 | .00023 | —.00107 01311
26 .00000 —.00011 —.00008 : .04053 .09389
27 .00000 —.00004 —.00006 | —.02374 —.03729
28 .00000 .00010 .00015 } .04760 .08541
29 .00000 —.00004 | —.00002 | —.03322 .05715
30 .00000 .00007 | .00008 | .04877 .08771
31 .00000 | 00002 | .00004 | .01113 .02175

\ | |

Eigen- | | |
value [—104.85153 —10.57766 | —8.03915 i —1.12047 —.62171

(au)
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. MO coefficients

basis orb. ‘ ix 27

N | |
32 ‘ .30703 —.07154
33 1 64523 —.19524
34 % 12233 01423
35 —.05300 67714
36 . .06102 | 43384
37 -—.07671 ! .03839
38 1 04082 ‘ —.06366
39 \ —.02731 ! 02735
40 09636 \ —.08101
41 03615 ) 01925
42 : —.01247 ‘ 01127
43 00112 ! 102340
44 —.00010 v —.00454
45 ‘ —.00099 ‘ .00311
48 ‘ —.00003 | .00062
47 \ .00006 .00989
48 \ .00000 ‘ —.00070
49 .00003 .00694
50 .00001 00382
51 .00001 00234

|
Eigenvalue (aw) ‘ —803815 | —48078

The eigenvalues differ by about 0.007 au, with Moccia’s lower; the ele-
ctronic energies differ by about the same amount. In the higher energy MO’s,
such as 5¢ and 2z, there are large differences in the coefficients (e.g. basis
orbital 15 in 5¢, orbital 36 in 2x). The present integral routines were thoroughly
tested; the source of differences is the integral storage length. A test calcu-
lation truncating our integrals to 6 significant figures agreed well with the
Moccia results.

Since the differences between the calculations produced important diffe-
rences in the calculated EFG, further discussion of results in the 71-STO
basis® refers to calculations performed in this laboratory with integrals stored
to 16 figures. Calculations in the basis series constructed from the GW CI,
basis?® are also presented.

a) Calculations of HCl at Equilibrium Separation

‘Since the EFG at the Cl nucleus contains a nuclear contribution dependent
cn the internuclear distance, for comparison with experiment the OCE-SCF
wavefunction must be calculated at the experimental equilibrium internuclear
distance, 2.4087 au (corrections for vibrational motion will be discussed later??).
The OCE-SCF wavefunction in the 71-STO basis for R = 2.4087 au is presented
in Table VI: and that in the GW+9 basis (largest of the GW series) of Table
III in Table VII.
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TABLE V

71-STO OCE-SCF MO’s for HCIl, R = 2.424 au, this work. Basis orbital numbers
refer to Table II

E,, = — 460.05261

E,,. = —467.06581 au,
o MO coefficients
B ‘ 0 war 0
basis orb. 1o 20 30
. .091670! 001782 4 —.000030
2 1079626  —.205252 000910
3 —.224687 | —.221808 000722
4 119841 113155 000170
5 —.065240‘ .937814 ‘ —.005461
6 015554 | 119670 001370
7 —.002838 | —.007751 000493
8 | —001574 | —.004874 —.000072
9 .000721‘ 002220 | 000014
10 002628 | .007966 —.000107
11 000204 | 000537 316378
12 J —.000214 ‘ .002290 .631979
13 000105 | 000832 117847
4 —.000035 000151 —.022316
15 —.000036  —.000226 —.020702
6 | .000011 000066 005376
17 .000039 .000219 026378
18 000015 | 004340 003376
19 —.000019 | —.007352 —.005226
20 000013 003489 002400
21 —.000005 000734 000637
22 000000  —.000086 000146
23 —.000004 000238 000727
24 000002 .000037 —.000575
25 —.000002 .000206 000275
26 000001 —.000112 —.000116
A 000001 | —.000042 —.000058
28 —.000001 | .000097 000153
29 | 000001 —.000057 —.000081
30 | —.000001 000092 000142
31 .000000 | 000019 .000039
Eigen- | 104845293 —10571650 |  —8.033174

value (au)

|
I

257

40 50
- —.030236 010533
305130 = —.103061
— 296716 108246
636724 —.223144
| —1.258001 417160
| 608137 = —.212826
1.054873 | . —.236498
| —017368 | —.023937
| —.008657 | .026224
238332 178162
| —010524  —.050023
| —.017689 | —.187287
r —005791  .073906
.137986 685915
| —.046728 | .189244
o922 | 008768
073757 | 074352
007574 062203
. .094545 065196
076911 ‘ 005896
086517 141916
— 042512 —-.018086
.038534 .034955
069397 121588
.000138 | 008866
040025 | .090390
—.025685 | —.040732
049849 ’ .089026
—037179 | —.064425
.052879 .094983
| 011335 | 021975
T |
| —1.109650

|

—.614132
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n MO coefficients

basis orb. 1x f 2%
32 .307736 —.073836
33 643627 —.190227
34 .125505 —.005041
35 —.062738 171225
36 .085110 186711
37 —.103622 .171809
38 .049498 —.010326
39 .019308 .059578
40 —.065216 —.131750
41 .043036 .092976
42 .007474 .026113
43 .001155 .023257
44 —.000103 —.005019
45 —.001021 .003552
46 —.000026 .000685
47 .000060 .009799
48 —.000006 —.000930
49 .000029 .007160
50 .000015 .003831
51 .000010 .002349

Eigen- , ’

value —8.032160 | —.474829

(au) ‘ »

b) Partitioning of the Electronic Energy
The electronic energy (17) can be partitioned
Egec = Ex + E; + E, (20)
with Eyx, E,, and E, representing kinetic, nuclear attraction, and electron

repulsion energy. The first two terms can be directly partitioned into MO
contributions,

1

Ex=2Ey, Eg =— 5 Nj<y;[V3|y;> o
j
and
i : z
En — ?:E:% ,,E i = ——'DG < yﬁ‘ = ;?— EU@ :>a . (22)
o o

a ranging over nuclei and j over MO’s. For closed shell molecules, the electron
repulsion energy can be written4?,

occ  occ

E,= 3 = (J,,—K,) (23)
l m
(23) can be partitioned,
occ occ
E. = 30EL, BY =aiSva@d,, — K 29
1 m
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TABLE VI

71-STO OCE-SCF MO’s for HCIl, R = 2.4087 au (equilibrium distance), this work.
Basis orbital numbers refer to Table II

= —467.110343555 au,

E. .=

iot

o MO coefficients

v

— 460.052594562 au

40 [
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basis orb. | 1o ‘, 20 30 | | 50
o L — A : ! Rl
1 091670 001781 | —.000032 | —.030112 [ 010761
2 1079625 |  —.205248 | 000924 304084 | —.105032
3 — 224686 |  —.221809 000701 | —205321 | 110723
4 119841 113158 | 000199 634410 | —.227399
5 — 065240 937791 005490 | —1254730 | 423567
6 015554 119689 001382 606324 | —.216185
7 —.002838 | —.007743 000509 | 1055546 | —.263282
8 —.001574 | —.004874 —.000068 | —019138 | —.028528
9 000721 002220 —.000012 | —008023 | 027585
10 002628 007961 —000118 | —238212 | 178306
1 000203 000537 316378 | —010921 | —.050463
12 —.000214 002284 631975 | —017860 | —.186765
13 000105 | 000831 | 117845 | —006335 |  .072664
14 000035 000161 — 022299 142439 | 91212
15 —.000036 —.000221 —.020691 | —.048699 | 182983
T 000011 000064 005373 019741 008618
o 000039 000211 026363 073848 | 074437
T 000015 004311 003356 | —.009365 | 058740
19 —.000019 | —.007286 —.005162 100752 | 075486
20 .000013 003459 002374 | 081324 | —.003198
21 | —.000005 000723 | 000620 087095 142830
22 000000 | —.000084 000149 | 044176 | _ 020354
23 —.000004 000244 —000739 | 040367 | 038526
24 000002 000031 —.000595 | 069757 | 122019
25 —.000002 000215 000296 001294 | 006872
% 000001 | —.000121 —000135 | 039217 | 088204
i 000001 | —000042 |  —000056 & 026198 | —.041544
%8 | —.000001 000097 | 000152 | 050529 | 089604
5 | —000001 |  —000057 & —.000080 & —.037890 | —.065301
0  —.000001 | 000092 ‘ 000141 | 053697 | 095705
31 000000 | 000020 | 000039 011423 | 021891
Eigen- ‘ | )
value US| ISG | SOSIIST O | danizsy | 18087

(au)

I
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7 MO coefficients

basis orb. ‘ 1n 27
39 307732 | —.073810
33 ‘ 643622 | —.190175
34 125519 | —.005163
35 —.062740 771408
36 085112 186757
37 | 103625 171217
38 049499 | —.009963
30 | 019249 1059531
40 | —.065004 | —.130000
41 042897 1091644
42 1007447 025875
43 1001160 1023808
44 000104 | —.005289
45 001024 1003289
46 —1000027 1000534
47 1000061 - 1009963
48 —000006 | —.001024
49 1000028 1007277
50 1000015 1003848
51 1000010 1002359

Eigen- |

value —8.032113 | —A475190

(au) |

Table VIII gives the partitioning of Ey, E,, and E, into MO contributions for
the wavefunctions of Tables VI and VIIL. E, is resolved into contributions
from the proton and the Cl nucleus.

¢) Virial Theorem; Calculated R.
The exact wavefunction for HCl at R. satisfies the wvirial theorem?8:49
/By = —2, (25)

with E,. the total potential energy and Ey the kinetic energy of the electrons,
assuming stationary nuclei. At R = 2.4087 au, the 71-STO basis gave —2.000526;
the GW + 9 basis gave —2.000126. (25) holds for exact and HF wavefunctions
for nuclei at the calculated equilibrium position. Although R. = 2.4087 au
for HCl experimentally, it is not the R. calculated in the OCE bases, so the
virial theorem is not expected to hold in these bases. for R = 2.4087 au. To
locate the OCE-SCF R. values, calculations were done at R = 2.3887, 2.3987,
2.4087, 2.4187, and 2.4287 au for the 71-STO basis and additionally at R =
= 2.3787 and 2.4387 au for the GW-+9 basis*’; a polynomial was fitted>® to
the total energies and the OCE-SCF R. calculated by differentiating and
setting to zero. This gave R. = 2.4181 au for the 71-STO basis and 2.5098 au
for the GW + 9 basis, which indicates the more accurate R-dependence of
the 71-STO wavefunction?’. Polynomial interpolation of virial ratios in the
71-STO basis gave a ratio of —2.00054 at R = 2.4181 au; no similar calculation
was done for the GW+9 basis since the calculated R, lay outside the range
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TABLE VII

OCE-SCF MO’s for HCI, R = 2.4087 au (the equilibrium distance), in the GW + 9
basis of Table III

E .. = — 467.126687373, E,,, = — 460.068938380
o MO coefficients
basis orb. | 1o | 20 | 30 ! 40 \‘ 50
1 1‘ | " i
1 ‘ —862215 .241176 001031 —.068740 | —.020113
2 —.164576 140574 | .000582  —.050338 | —.015187
3 —.001581 & —1.079872 | —.004792 | 376436 | .112567
4 000243 | —.031849 002367 | —.771859 | —.274708
5 —.000171 025517 | 002162 | —.385324 .018969
6 —.000117 —.000328 | 205165 005950 | —.041974
7 .000070 —.003269 .821186 028664 | —.189712
8 —.000055 —.000961 .023040 | —.050990 423846
9 , .000081 .000752 —.010288 | —.105968 521532
10 | —.000007 —.000678 .000864 | —.052502 .120225
11 .000069 —.011499 001186 | —.026842 0575817
12 —.000049 —.000511 003157 | —.025759 .084182
13 .000005 .000394 | —.000322 | —.057651 .160545
14 .000002 | —.000159 ‘ .000209 ' —.062789 .138888
15 .000001 —.000098 .000167 | —.040680 .084296
16 .000001 | —.000063 000114 | —.026350 .053252
17 .000000 —.000042 000078 | —.017425 .034550
18 .000000 —.000028 000054 = —.011753 |  .022946
19 000000 | —.000017 000037 = —.008023 = .015628
Eigen- | ' 1
z/aa&;,le —104.846577 = —10.571981 —8.041414  —1.115449 = —.621367

7 MO coefficients

basis orb. 1x 2n
20 .206048 —.051177
21 .821462 —.228703
22 .018728 .540581
23 —.005187 564570
24 | .000235 .027335
[ B
Eigen- ’ :
values | —8.037564 | —0.0476228
|

(au)



262 J. E. GRABENSTETTER AND M. A. WHITEHEAD

TABLE VIII

OCE-SCF energy partitioning, 71-STO and GW + 9 bases, R = 2.4087 au
(equilibrium distance), this work. E,, E , and E_ defined below equation (20)

A. 7T1-STO (wavefunction of Table VI). Energies in au.

| | |
MO Ek En,tot ‘ En,CI 1 En,H ; Er
; =
1o 274.285943 —563.872979 —563.042652 —.830326 i 39.948475
20 43.560534 —113.479046 —112.648083 | —.830963 | 24.387644
30 41.136374 —109.549221 —108.707555 | —.841666 26.173266
4o 5.599702 —29.245521 —28.218354 |  —1.027167 | 10.711652
50 3.876404 —23.827384 —22.577841 |  —1.249543 | 9.359553
1x 41.248925 —109.682513 —108.857984 —.824529 | 26.184681
2 4.426839 —25.154384 —24.419729 —.734655 9.888583
\ : | | L
Totals | 459.810485 | —1109.647945 = —1101.749911 | —7.898033 | 182.727118
| ‘ O
B. GW + 9 (wavefunction of Table VII). Energies in au.
| : |
MO Ek [ En,tot ‘l En,Cl : En,H Er
1o 274.261578 —b563.848572 —b563.018246 —.830326 39.946920
20 43.421407 —113.311710 —112.480691 —.831018 24.373170
30 41.219572 —109.635223 —108.793710 —.841513 26.166412
40 5.712308 —29.392261 —28.375288 —1.016973 10.724528
50 \ 3.856888 —23.663926 —22.418303 1 —1.245623 | 9.282152
1 ‘ 41.327918 —109.766012 = —108.941503 | —.824509 26.181483
21 4.441651 —25.215903 —24.488405 —.727498 9.910898
Totals 460.010891 | —1109.815522 | —1101.946054 I —17.869467 182.677944

of calculations. The deviation of these ratios from —2 measures the limitations
of the OCE bases; a near HF two-centre calculation of HCI at R = 2.4087 au
gives the ratio —2.00031!3.

d) Cusp Conditions

Since the HF equation for each orbital has the same singularities as
the total Hamiltonian, each HF orbital y; must (if w; (1, = 0) # 0) satisfy (2).
The case v (ri, = 0) = 0, which arises for x MO’s, was treated by Pack and
Brown’l. Any MO can be expanded about nucleus a,

0o 1
Y= = = r flm (To:) Slm (@a’ éa); (26)
=0 m=—1

the exact form of the fi,, (7,) is not important. Pack and Brown showed that
for Hy to remain finite at r, = 0, the relation
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TABLE IX

Test of cusp condition, OCE-SCF MO’s for HCI, R = 2.4087 au (equilibrium distance),
GW + 9 and 71-STO bases, this work.

A. 71-STO (wavefunction of Table VI)

1

' {

MO | 1, (0° [ dfy, M/ 3, cusp ratio®
lo |  —3853566 657.46495 | —17.06121
2 | 1077286 = —18227271 |  —16.91962
3 | —04162 | 70227 | —16.87197
4o —3.00834 47.48094 |  —15.78311
56 | 85974 —13.31622 —15.48871
| 14426209  —2196.50257 —15.22568

27 —37.83658 ‘ 580.29930 1 —15.33699

B. GW + 9 (wavefunction of Table VII)

MO i, 0° dfy,, (M/(An 35—, cusp ratio®
lo —38.46951 652.20231 —16.95375
20 10.76057 —182.20243 —16.93242
30 .04598 —.79021 —17.18585
40 —3.06696 50.45245 —16.45030
50 —.89737 14.67686 —16.35545
1n 151.00611 | —2442.06206 —16.17192
2n —39.62862 | 645.33162 —16.28432

I I

a Defined in equation (27) of text. For ¢ MO's, L =0; for = MO’s, L = 1.
b For exact Hartree-Fock orbitals, the cusp ratio = —17.

(+ 1) @fgy, (/ALY ,,—o = —Z, fim O

must hold, where 1 is the lowest ! in (26) for which f;, (0) # 0. The ratio of
the left side to fi,,(0) is called the cusp ratio here, although the term is strictly
correct only if w(r, = 0)# 0. For OCE-SCF MO’s if o is the expansion
centre the f;, (r) are linear combinations of radial portions (9) of STO’s. Cusp
ratios for the occupied MO’s of HCl in the 71-STO and GW+9 bases at
R = 2.4087 au are presented in Table IX. Note that the cusp ratios of higher
energy MO’s (all cusp ratios = —17 for the HF orbitals) deteriorate in the
71-STO basis, but that fair accuracy is retained in the GW+9 basis.

e) Dipole Moment

For HCl with the proton on the +z-axis, the electronic contribution to
the dipole moment u is
!lelecz—ENk<‘l’klZ]'Pk>y
k
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OCE-SCF dipole moments, 71-STO and GW + 9 wavefunctions for HCI,

TABLE X

R = 2.4087 au (equilibrium distance), this work

Uelee (A1)
MO
71-STO (Table VI) ‘ GW+9 (Table VII)
lo —.000016 —.000017
20 —.003564 —.003956
30 .002420 .002988
40 —.772231 —-.784781
50 -—.838568 —.910279
In —.000335 —.000076
2 .135995 —.088381
Total (au) —1.884619 —1.872958
Total (D) —4.789910 —4.760273
e (1) 2.408700 2.408700
w,. (D) 6.121904 6.121904
o, (@) 524081 535742
iy, (D) 1.331994 1.361631
I

Experimentals® ., = 1.1085 D.

with the sum over MO’s. Table X gives the MO analysis of pe. for the GW+9
and 71-STO OCE-SCF calculations at R. = 2.4087 au, as well as . in debyes
(D) and au. The total dipole moment is also listed,

W= elec + Unye:

The nuclear contribution is the proton charge times its distance from the
Cl nucleus. The conversion factor 1 au = 2.45158D'8 was used. The 71-STO
and GW+9 contributions to uce are similar, the result in the 71-STO basis
being slightly closer to the experimental value (1.1085D5%). Both OCE bases
underestimate the magnitude of pee, because they place too little electron
density near the proton. This is expected, since STO’s centered on Cl are
unable to produce a sharp peak in the electron density at the proton. The
OCE calculated w’s differ from experiment by about 20%.

1) Molecular Quadrupole Moment

The molecular quadrupole moment in au is defined by

6= 2 zgpl — 3 <z2>4 <> @9
2

2

< 22> and <72>> are expectation values of the indicated one- electron ope-
rators (28) transforms under a change of origin,

O = O —2uA,
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with p defined above and 4 the distance of the origin shift along the mole-
cular axis!® For comparison with experiment, the origin must coincide with
the molecular centre of mass, which lies 0.06753 au from the Cl nucleus!s.
On the basis of several experimental measurements, the recommended expe-
rimental value’® for © of HCIl is 3.8X1072¢ esu-cm? At R = 2.4087 au the
71-STO basis gives 3.95 X 10726 esu-cm?, the GW + 9 3.80 X 1072%. Both agree
well with experiment, the GW+9 particularly well, even though <z2>
and <r2> depend strongly on regions of space far from the Cl nucleus.
However @ is a measure of the deviation of the charge distribution from
spherical symmetry; it is shown later” that the GW+9 basis reproduces these
deviations extremely well. Calculations of ® in the two bases are summarized
in Table XI.

TABLE XI

Molecular quadrupole moment and related quantities, 71-STO and GW + 9
OCE-SCF wavefunctions, R = 2.4087 au (equilibrium distance), this work

MO < z2> (au) - <7r2> (au)
71-STO* ‘ GW+-9" 71-STO* GW-+9°
lo .007467 ’ .007468 .022400 .022405
20 154533 | 154452 462924 462971
30 246423 | 245301 410569 408828
40 2.744387 l 2.831999 6.253550 6.348369
50 6.361377 ‘ 6.695791 9.378785 9.754053
1 .081895 | 0.81425 409296 407124
271 1.798804 ‘ 1.663878 8.425603 8.313055

l
Total 13.275585 | 13.425616 | 34.198027 34.436985
|

le<z2>—<r>),. =2814364 au (71-STO)
2
= 2919932 au (GW + 9)

lae<e>—_<r>ye

nue
2

= 5.801836 au

Molecular quadrupole moment (esu-cm?)® = 3.9471 X 10726 (71-STO)
= 3.7966 X 1072 (GW + 9)

Recommended experimental value’ :3.8 X 1026 esu-cm?

& Table VI.

b Table VII.. i

¢ Contribution from a proton 2.4087 au from the coordinate center on the -Fz—axis.

4 In molecular center-of-mass coordinates. Conversion factor is 1 au = 1.3449 X 10726 esu-cm?2.

Experimental dipole moments2,
g) Electrostatic Force on the Cl Nucleus

At the equilibrium internuclear distance there is no net force on either
nucleus in HCI. Since the experimental R, does not coincide with the OCE-SCF
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TABLE XII
Hellman-Feynman force on the Cl nucleus, 71-STO and GW + 9 OCE-SCF
wavefunctions, R = 2.4087 au (equilibrium distance), this work
< z[r3> (au)
MO
71-STO*® GW+9°
lo .014937 .015939
20 1024491 .027064
30 —.018271 151849
40 152157 —.020608
50 —.063156 —.054857
1n .002362 .000280
2r .017936 .018085
Total 150754 156117
| |
<zfr3> ¢ =.172359
Hellman-Feynman force on Cl! = — 367289 au (71-STO)
= — 276114 au (GW + 9)
8 Table VI.
b Table VII.

¢ Due to proton 2.4087 au from coordinate center on -+z-axis.
4 Equal to — 17 (< 2/18 > pue— < /13 > ¢1e) The Hellmann-Feynman force for the exact wave-
function is zero.

TABLE XIII

<r'>and <r2> 71-STO and GW + 9 OCE-SCF wavefunctions, R = 2.4087 au
(equilibrium distance) this work. No experimental values available

MO <rt> (aw <r*> (aw
71-STO* GW+¢* | T71-STO* GW+9

lo 33.120156 33.118720 1106.373872 1105.520522
20 6.626358 6.616511 90.299100 90.060466
30 6.394562 6.399630 28.327213 28.508806
40 1.659903 1.669135 7.850022 8.050258
50 1.328108 1.318724 2.323223 2.354455
1n 6.403411 6.408324 28.414347 28.577817
2n - 1.436455 1.440494 2.286048 2.300540

Total 64.808818 64.820356 1296.574218 1296.251221

s Table VI,

b Table VII.
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TABLE XIV

Comparison of properties calculated from the 71-STO and GW 4 9 OCE-SCF
wavefunctions for HCl with the two-center results of McLean and Yoshimine'® and
Cade and Huo!2. All wavefunctions for R = 2.4087 au (equilibrium distance). Except
as noted,all two-center properties from the compilation of McLean and Yoshiminel?

|

f i
Property |McL-Yosh!3 | Cade-Huo* | GW+9° 71-STO*
Electronic energy (au) —467.1696 | —467.1680 | —467.1267 | —467.1103
Total energy (au) J —460.1119 | —460.1103 | —460.0689 | —460.0526
Potential energy (au) —920.2110 | —920.2049 | —920.0798 | —919.8631
Kinetic energy (au) ’ 460.0991 460.0946 460.0109 459.8105
Virial ratio (E,./E.,) | —2.00003  —2.00003 —2.00013] —2.00053
Orbital eigenvalues (au) ‘ | | :
1o —104.8479 | —104.8485 | —104.8466 | —104.8450
20 —10.5732 { —10.5741 —10.5720 10.5716
30 ‘ —8.0405 —8.0420 —8.0414 —8.0332
40 g —1.1164 —1.1168 —1.1154 —1.1113
50 | —.6254 —.6262 —.6214 —.6159
1In i —8.0387 —8.0394 —38.0376 —8.0321
27 | —.4763 —.4762 —.4762 —.4752
< r1>° (au) 64.8218 | 64.8209 64.8204 64.8088
< r2>° (au) | 34.2597 34.2639 34.4370 34.1980
< z>° (au) i 1.9307 1.937947 1.8730 1.8846
< 22 >° (au) 13.3887 13.3622 13.4256 13.2756
Dipole moment (D) | 1.215 1.1974 1.362 1.332
l
Molecular quadrupole | ‘ ‘
moment (x1072¢ esu-cm?) } 3.714 | 3.80 3.80 | 3.95
Force on Cl nucleus ‘ '
(Hellman-Feynman (au) | —.0682 | —.1821 ‘ —.2761 | —.3673
!
a Table VI.
b Table VII.

¢ Measured from Cl nucleus.

calculated R., the OCE-SCF wavefunctions at the experimental R. give a
non-zero force on both nuclei. The difference of this quantity from zero indi-
cates the deviation of the approximate wavefunction from the exact wave-
function, for which forces on the nuclei are equal to the average electrostatic
forces (Hellman-Feynman theorem?®!); the operator for the electrostatic force
in the z-direction on nucleus o is Z, (z./7,®), with Z, the atomic number and
z, the distance along the z-axis from nucleus ¢. Calculations of this quantity
with o the Cl nucleus for the OCE-SCF wavefunctions in the 71-STO and
GW+9 bases are summarized in Table XII. The GW+9 basis gives a smaller
force than the 71-STO basis although the 71-STO calculated R, is much closer
to the experimental value than that in the GW+9 basis. This illustrates the
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approximate nature of the Hellman-Feynman theorem when applied to ap-
proximate wavefunctions®.

h) Expectation Values of r' and r2

Expectation values of these operators are given in Table XIII. <1r1>
is compared with values from near HF two-centre calculations in the next
section. No comparison is available for <Cr2>. Note that for <r !> the
71-STO and GW+9 values are identical through the third figure, and for
<72 > through the fourth.

7. COMPARISON WITH EXTENSIVE TWO-CENTRE AB-INITIO CALCULATIONS OF HCI

There are two near-HF two-centre SCF (TCE-SCF) calculations of HCI
at R = 2.4087 au: one by Cade and Huo'? in a 32-STO basis, and one by
McLean and Yoshimine™ in a 49-STO basis. McLean and Yoshimine!? published
a number of one-electron properties calculated from both these wavefunctions;
a number are compared with the corresponding quantities in the 71-STO and
GW+9 bases in Table XIV. It is with these TCE-SCF properties that the
OCE-SCF values should be compared for judging the suitability of the basis,
since these TCE-SCF wavefunctions approximate closely the best possible
single-determinant molecular wavefunction. Note that for expectation values
of properties depending on regions far from the Cl nucleus (e.g. <z2>>,
< 12>, the 71-STO basis is closer to the TCE-SCF results; for those depen-
dent on regions closer to the Cl nucleus (e.g. <11 >, <z/r3>>), the GW+9
basis gives better agreement. Reasons for this are examined in the next paper.
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SAZETAK
SCF racuni jednog centra na klorovediku. I. Dio
J. E. Grabenstetter i M. A. Whitehead

Koristenjem dvaju razli¢itih skupova osnovnih funkcija izvrSeni su ab initio
SCF ratuni jednog centra na klorovodiku. Valjanost dobivenih molekularnih orbitala
provjerena je pomoc¢u virijalnog teorema, uvjeta vrSka i Hellman- Feynmanovog
teorema. Izratunana svojstva ove molekule (dipolni moment, kvadrupolni moment
i srednje vrijednosti za operatore r! i r2) za oba skupa osnovnih funkcija dobro se
slazu s postoje¢im eksperimentalnim vrijednostima i rezultatima masivnih prora¢una
ab initio koji se malaze blizu Hartree-Fockove granice.
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