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An operator technique for the enumeration of the algebraic
structure count (ASC) of non-branched cata-condensed molecules
has been developed. General formulae for the ASC’s of 16 co-
njugated series have been obtained.

In a recent paper! an operator technique has been described for the
calculation of the number K of the Kekulé structures of non-branched cata-
-condensed (NCC) conjugated molecules. In our present study an attempt has
been made to extend this technique to the calculation of the algebraic structure
count (ASC) of the same class of molecules. The topological definitions of cata-
-condensed molecules are given in refs. 1 and 2.

The ASC is an important notion in the theoretical chemistry of conjugated
molecules®™. If K* and K~ (K* + K = K) are the numbers of Kekulé stru-
ctures with even and odd parity respectively,!2

ASC = | K| (1)
where

f{ =K'—K" (1b)

The reason for introducing the quantity K will be discussed later.

In alternant conjugated molecules with N carbon atoms and the graph

adjacency matrix® A,

det A = (—1)* (ASC)? 2)
while the relation between det A and ASC in non-alternants'” is not so
simple513,

Considerations based on eq. (2) show that if ASC = O, the corresponding
molecule should exhibit a biradical behaviour and be therefore extremely
reactive®#+1820, Moreover, the greater the value of ASC, the stabler the
molecule?%1,

No simple and generally valid algorithm for the calculation of ASC is
known. The usual way of determining ASC, i.e. by drawing all the Kekulé
structures of a molecule is both rather tedious and unreliable for complicated
polycyclic systems.

THE ALGORITHM

First we shall consider only the alternant NCC molecules. The extension
of the obtained results to non-alternants will be given at the end of this
section.
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A ring in an alternant NCC compound is either benzenoid (that is of the
size 4m + 2) or non-benzenoid (that is of the size 4m). We will denote these
rings by R, and R, respectively. Further, we say that a ring is annelated in
an even (odd) manner if the number of C—C bonds between the two sites of
annelation is even (odd). We denote these rings by R* and R, respectively.
The terminal rings of a NCC molecule can be marked arbitrarily by R* or
by R 2

Thus we now distinguish four types of rings in alternant NCC molecules

—Ryp , Ry, Rj and R, . An ordered sequence of n symbols can be related
to every n-cyclic NCC system; we denote such a sequence by (R). For example,

the rings in the molecule 1 form a sequence (R,) = Ry R¢ R:{ RS R% Re

I
Let a NCC molecule with n rings possess a ring sequence (R) = R, R,...
R,. Let an operator _Rj correspond to the ring R; (j=1,2,...,n) and an
operator sequence R, R, ... R, to the whole molecule.

We offer the following result. If the operators R are given by

(1100] (11007
+ _lo1o00 e 11000
Ry =lo011 By =loort
0001 0010 ]
3
[(0110] (100 1]
+ _Jo100 — _l1000
Re =[1001 Re =lo0110
000 1] 0010
then K* and K~ can be calculated from the relations
K' = D* + S* : (4a)
K=D+§ (4b)

where the numbers D+, S*, D~ and S~ follow from the equation

(D%, 8, D,8)=(1,0,0,0)R, R,...R, (5)
From eqs. (4) one can calculate both ASC and K and, therefore, eq. (5)
presents a generalization of the algorithm given in ref. 1.

In order to prove eqgs. (4) let us comsider the graph!'® G, of an n-cyclic
NCC molecule.
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The j-th ring is annelated to the (j——1)-th and the (j+1)-th rings through
the bonds x and y, respectively. Let G;_, be obtained by deletion of the rings
j, j+1,...,n from G, and Kj.; and Kf__l be the number of the even and
odd Kekulé structures of G;_,. Dj+_1 and Sf_l denote the number of times the
bond x is double and single, respectively, in the even Kekulé structures of
Gj_,. The quantities Dj_; and S;_;are defined analogously for the odd Kekulé
structures of G;_,. Naturally, Kf_1= D ;L_l + Sf_l and K;—; = Dj; + S;;.

We shall consider, for example, the case when the j-th ring is of R, type,
let us say it is an 8-membered ring.

o PR oPore

Let us determine the quantities D;*, S;*, D;7 and S; for the bond y of
the graph G;. If x is double in G;_, (case A), two possibilities (cases A,
and A,) exist in Gj. If x is single in G;_; (case B), only one possibility (case
B,) exists in Gj. It should be noted that the parity of the Kekulé structures
A, is the same as the parity of A, while the structures A, have a parity
which is the opposite of A. Similarly, B, and B have the same parity. The-
refore,
D,-+ =K' (4) +K'(B) =Dj_ + s;F_l

o mriA N — P—
Sj =K (Az) = D]-_1
Dy =K (A)+K (B)=Dj_; +S7,
— _ g _nt
Sy =K (A) =D,
or in matrix mnotation,

+ ot p— o—_ (pt + — —
®f ,s; .D; .87 ) =), .8 ,.D; . S7y)

(6)

OO
o= oo
- o o
oo o
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from which the form of the operator R, is evident. The matrix repre-
sentation of the operators Ry , Ry and Ry can be deduced using an ana-
logous reasoning.

Since the graph G, has only one Kekulé structure, which is even by
definition, D(T =1 and SJF =D, =S, = 0. This, on the other hand, implies
the validity of eq. (5), where D' = D;: , St = S;f , etc. Egs. (4) follow now
straightforwardly.

The applicability of our algorithm will be illustrated on the molecule I:

1,0,0,0 R} Ry RS RS Ry RS =100 Ry RS Ry R} =

c c c c
20,0, )RS BRI Ry RS =@201nR; Ry BRI =
0,42, )Ry RS =14,032R =@3,445)
Hence, K*=3+4=7 K =4+5=9 and finally K = 16, I~{=-——2 and

ASC = 2.

Extension to Non-Alternants

As has been discussed in detail in ref. 1, in non-alternant NCC molecules
there exist C—C bonds with the zero Pauling bond oredr (the so called
z-bonds). These z-bonds can be therefore erased without changing the values
of K or ASC. After the elimination of all z-bonds an alternant NCC system
will be obtained, and the previously described algorithm can be applied
without difficulty. Note however that in a general case eq. (2) is no longer
valid for non-alternant NCC systems13,

For example, we will calculate the ASC value of compound II. Neglecting
the z-bonds one obtains a ring sequence (R),; = R. Ry" R, and since (1,0, 0, 0)

II
R+ Ry* RS = (1, 1,0, 2), we have finally, ASC = \ 1+1—2 \ = 0. Thus the com-
pound II should be highly unstable.

GENERAL FORMULAE AND RECURSION RELATIONS FOR ASC

In this section the general formulae or recursion relations for the ASC
of 16 classes of NCC molecules will be presented, the corresponding ring
sequences of which are (R); — (R)y,.

(R), =Ry Ry RS Ry ... (R, =R RS R} R{
(R),=Ry Ry R{ Ry ... (®R),,=R; Ry RI Ry ...
(®),=Ry R} Ry RS ... ®,=R; R} Rl R{

(R), =Ry Ry Ry Ry ... ®..=RS RT RY RT ...
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(R), =Ry Ry Ry R} ... (R),,=R; Ry Ry R}
(R, =Ry Rj Ry Ry ... (R),,=R; Ry Rg Ry ...
(®), =Ry RS Ry RY ... ®),, =Ry R} Ry R{
(R, =Ry Ry Ry Ry (®R),, =Ry Ry Ry Rg ...

The number of cycles in these molecules is n. For the sake of simplicity we

will express our results in terms of K instead of ASC (see equations (1)).
Let us first consider the sequence (R),. One can easily see that
@, a,a,0) RY )" = (@, na, + a,a,,na, + a,) (7

Therefore K;LF =Mm+1a +a,K, =(n+1a, +a, and ﬁn =mn+1) (a; —
— a,) + a,— a,. According to eq. (5) a; = 1 and a, = a;, = a, = 0, which finally
yields for (R),:

K,=n+1 ®)

As another example we will consider sequence (R);, in a greater detail.
It can be proved by mathematical induction that

@, a,a,0) R = (o, 0, +a, + ja,, a, ja, + ja, + a,)

()]
(@, a,a,a) R ¥ = (@, G+ e, +a,+jo, 0, +Da, + jo, + a)
Therefore one obtains for (R);:
~ 1 if n is even
K,= (10)
0 if » is odd

A detailed but elementary analysis, analogous to the derivation of egs.
(8) and (10), gives tre following results.

pind Kn——l + I}n—-s if n is even
For (R),: K, = 1)
K, ,+K,, if n is odd
ifn=4j+1
For (R),: K,={1 if n=4j,4j + 2 12)
0 ifn=4j+3
e 1 if m is even
For (R),: K, = . ' (13)
(n + 3)/2 if n is odd
et %71—1 + I}n_g if n is even
For (R),: K, = (14)
K, , tK,_, if n is odd
For (R),: K,=K,,+K,, (15)

In the recursion relations for (R),, (R), and (R),, K, =1, K, =2 and K, = 3.
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2 ifn=8j+1
if n=28j,8j +2
For (R),: K, = 0 ifn=28j+38+7 (16)
—1 ifn=28+4,8 +6
—2 ifn=8+5
~ K, ,—K,., if n is even
For (R),: K,= an
K, ,+K,, ifnisodd
K,=1L, K =2
~ (—1)"? if m is even
For (R), and (R);:K, = (18)
0 if n is odd
1 if n=285,8j +6,8) + 7
For (R),,: I~{n = 0 ifn=28+1,8 +5 (19)
—1 ifn=8j+28j+3,8 +4
~ 0 ifn=4j+1
For (R),,: K,= (20)
1 if n=44,4j + 2,45 + 3
~ 1 if n is even
For (R),,: K, = (21)
0 if n is odd
~ IN{n_l + I}n_z if n is even
For (R),,: K, = (22)
K, —K, , if nisodd
K0 =1, K1 =0
+1 if n =6j,65 +5
For (R),,: K,={ 0 if n=6j+2 6j+3 @3)
—1 ifn=6j+1,6j+4

The K, values of the 16 studied classes of NCC molecules for n < 10
are given in the Table.

We would like to note the following facts. Firstly, by inspection of the
Table one can see that most frequently (e.g. (R),, (R)s, (R);;) the annelation
of a benzenoid ring causes stabilization (increases ASC) while the annelation
of a mon-benzenoid ring causes destabilization. However, there are exceptions
to this rule, for example, molecules III and IV.

This interesting topological phenomenon has been discussed in a greater
detail in ref. 20.

Secondly, according to the author’s knowledge, egs. (16), (19) and (23)

are the first regularities of modulo 8 and modulo 6 in the topological theory
of conjugated molecules.
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TABLE

K wvalues of n-cyclic ring sequence (R)1 — (R)g

n 1| 2 | 3| 4 f 5 6 | 7| s ! 9 | 10
(R)y 2| 3 4 5 6 7] 8| 9] 10 11
(R)» 2 3 5 7 | 12 17 | 29 | &1 | 170 99
(R)s 2 1 0 1 2 1 6 | 3|2 1
(R)4 2 1 3 1 4 1 5 1 bz 46 1
B | 2| 3 4 7 | 10 17 | 24 | 41 58 99
(Bg: Jr2 | .3 5 8 | 13 | 21 | 34 | 55 89 | 144
R | 2| 1 0 |—1 |[—2 |—1 ]| o 1 2 1
Rs | 2 1 3| 2| 5 3 8 5 | 13 8
Ry | 0| —1 0 1 0 —1 0 1 0 | —1
®w | 0| —1 |—1 |—1 0 1 1 11 0o | =
Ry | O 10 1 0o 1 0 1| o 1
(R)12 0 1| 1 1| 0| 1 1] 1 o 1
R)13 ‘ o 1 o0 1] 0 ‘ 1 0 1| o 1
(R)14 0 Lt i 2 | 1 3 | 2 5 3 8
(R)15 r 0o —1 0 1 0 }—1 |0 1 0 | —1
®w | 0| —1 | —1 0 1] 1 ’ 0 |—1 | —1 0

ASC =1 ASC =0

111 v

Thirdly, since all the Kekulé structures of fully benzenoid molecules are
of the same parity®4, for (R),, (R),, (R); and (R); we have ASC = K and hence
egs. (8), (11), (14) and (15) present, in fact recursion relations also for the
number of Kekulé structures. Besides this, egs. (11) and (14) are generalizations
of the analogous results in refs. 1 and 21.
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SAZETAK

Metoda za izracunavanje algebarskog zbroja struktura za nerazgranate
kata-kondenzirane molekule

Ivan Gutman

Razvijena je operatorska tehnika za raCunanje algebarskog zbroja struktura
(algebraic structure count, ASC) nerazgranatih kata-kondenziranih konjugiranih
spojeva. Metoda je izravno poopcenje jedne ranije operatorske tehnike za odredi-
vanje broja Kekuléovih struktura za istu klasu molekula (Croat. Chem. Acta 46
(1974) 15), i sastoji se u pridruzivanju po jedne kvadratne matrice reda 4 svakom
prstenu u molekuli. Postoje 4 razli¢ite vrste takovih matrica-operatora, a ASC se
dobiva njihovim mnoZenjem za sve prstenove.

Dobivene su opc¢e formule za ASC 16 nizova konjugiranih spojeva.
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