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It is shown that, starting from a set of local hybrid orbitals
®,(i=1,...n) one can construct pairwise nonorthogonal set of
functions y; (i =1,...n) with the following feature

Rij if i and j are bonded orbitals

35 otherwise

<zul|z>=

where Rij is the overlap integral. Pairwise overlapping functions
are determined by the matrix equation

r=US"P

where 3 and ® are the column vectors of the functions y, (i =1,
...n) and @i i=1,...n) respectively. S is the overlap matrix
for the initial hybrid orbitals @;. U is a positive matrix which pos-

n n
sesses the property = Ufj =2 Uizj =1 (@Gj=1,...n). It can be
i=1 j=1

calculated by employing maximum overlap criterion or by maximi-
zing the average distance between the centroids of charge of the
electronic pairs. The use of the pairwise monorthogonal functions
is advantageous in semiempirical methods since it minimizes the
error introduced by the neglect of the many-center electron
repulsion integrals.

INTRODUCTION

The quantum mechanical description of molecules and solids is based
mainly on the independent particle model where one-electron wavefunctions
are expressed as linear combinations of atomic orbitals. This is the most
convenient form of wavefunctions, but sometimes considerable computational
difficulties arise due to the mnonorthogonality of atomic orbitals placed at
different nuclei. The simplest way to circumvent this obstacle is in disregarding
of overlap integrals. In that case the metric matrix, formed by the overlap
integrals of the atomic orbitals, takes the form of a unit matrix. This ap-
proximation is hardly justified and sometimes represents serious oversimpli-
fication which leads to disastrous results. For example, the ionic crystals of
alkali halides break down if the overlap integrals are neglected because the
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repulsive forces become zero!. One could orthogonalize the initial atomic
orbitals by the Schmidt procedure but this method has a serious disadvantage
because the final basis set depends on the choice of the first function and
consequently the atomic orbitals are not treated on the same footing. The most
convenient orthogonalization procedure for a set of linearly independent
functions is that of Lowdin? which mixes all orbitals simultaneously. This is
sc called symetrical orthogonalization which possesses a very interesting and
important property: the orthogonal functions resemble the initial ones as much
as possible in a sense of the least square deviations®. The use of the sym-
metrically orthogonalized basis sets in quantum chemical calculations is
advantageous since most of the polycenter two-electron integrals are then
negligibly small* In fact, the widely used zero-differential overlap approximat-
ion schemes are justified only if the suitable symmetrically orthogonalized
bybrid orbitals basis sets are employed’. The orthogonalized atomic orbitals
are, however, incompatible with the simple intuitive picture of the covalent
bonding. Namely, it is well recognized by now that the formation of a
covalent bond is accompanied by a build up of the electronic charge density
in the region between the bonded nuclei. A good measure of the increased
charge density is provided by the overlap integrals of the relevant hybrid
orbitals®1, Since the overlapping of the neighbouring atomic orbitals is
energetically favourable* it is convenient to wuse the basis sets exhibiting
pairwise monorthogonality. The orbitals participating in a formation of the
localized bond should overlap as much as possible being in the same time
orthogonal to all other members of a basis set. This type of basis set was
discussed first by Lennard-Jones et al.!' in treating the correlation effect of
the two electrons with coupled spins which occupy the same spatial orbital.
The choice of the pairwise nonorthogonal basis set is not unambiguous and it
is a purpose of this work to provide several simple recipes for its construction.

CONSTRUCTION OF THE PAIRWISE NONORTHOGONAL BASIS SET

We shall consider only the valence shell atomic orbitals for the sake of
simplicity. The latter are assumed to be suitably hybridized in order to
describe properly directional properties of covalent bonds. The use of the
hybrid orbitals is of crucial importance for the following reasons. The hybrid
orbitals provide the most natural choice of the atomic basis set functions
because they conform the symmetry of the local potential exerted on an
atom in a molecule**. Further, the hybrid orbitals are strongly polarized in a
certain direction where they have considerable bonding power. Consequently,
their (nonbonding) interactions in all other directions are minimized which
makes them particularly suitable for a description of the localized electron
pair bond. Let us denote a set of linearly independent and normalized hybrid
orbitals as @, ... @,. We shall suppose also that the hybrids placed on the
same atom are mutually orthogonal. In order to form a basis set which is
nonorthogonal only for pairs of bonding hybrids, we shall first symmetrically

* The resonance integrals, which give the most important contribution to the
molecular binding energy, are to a good accuracy proportional to the corresponding
overlap integrals. This type of approximation is employed in most of the current
semiempirical MO theories.

** The local potential is a set all interactions between the particular atom
and its nearest neighbours.
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orthogonalize the orbitals @, ... &, As Lowdin has shown? the orthogonalized
orbitals are given by

=}

w; = X (877); ¢, @
j=1

where S is the overlap matrix with matrix elements Sj = < @;| @; >. This
is always possible since the functions @, ... @, are linearly independent and
consequently S is a nonsingular matrix. It should be emphasized here that
the orbitals y; (i=1 ... n) are even better localized than the initial ones
@; (i=1...mn). This is very important feature of the symmetrically ortho-
gonalized functions because atomic orbitals remain localized around the their
respective nuclei®. Namely, if the initial orbital @; belongs to an atom A so
does the corresponding function y; given by the expression (1). Our next step
is a deorthogonalization of the functions w; and ; which form the covalent
bond i—j. This is achieved by a transformation:

1= +ay)/ 1+ o)
and . 2
=@+ ap) /1 + o)”? ‘

where ¢ is a mixing parameter which is for the time being unspecified. It is
easily checked that the overlap integral between the functions y; and y; is equal
2a/(1 + a?):

<ZiEXj>:2“/(1+“2) 3)

On the other hand, the pair of overlapping functions y; and y; are orthogonal
to all remaining functions of the basis set obtained in the same fashion due
to the orthogonality of y; 1 =1 ... n). Since the pairwise nonorthogonal basis
functions are mot unequivocally determined by relation (2), one can use this
freedom to impose some simple and plausible conditions which the transforma-
tion (2) should satisfy. Firstly, the mixing parameter ¢ should be small and
positive in order to preserve the local properties of atomic orbitals and to
ensure in the same time favourable overlap of the bonding functions (eqns. (2)
and (3)). Simple analysis shows that it is possible to satisfy both requirements.
For example, the mixing parameter « = 1/3 gives the overlap integral of 0.6,
a value which is characteristic for overlapping of hybrid orbitals describing
C—C bonds in hydrocarbons®®. The content of y; function is 90% of y; orbital
and 10% of v orbital. In other words, the y; function is mainly composed of
w; orbital which is in turn predominantly composed of the initial @; hybrid
orbital. Hence, it is feasible to find 0 <« € 1 which corresponds to localized
7 and y; functions with significant overlap. Next, we shall suppose that the
hybrid orbitals @; (1 = 1 ... n) are optimized in a sense of the simple maximum
overlap criterion®, Then, (condition (a)}, the parameter a;; could be calculated
so that the overlap << @; | ®; > is maintained, i.e.:
<ypilw>= <P | B> =S (4)
Simple algebra yields
o =0—Y1—8%)1sy ®)

1

where the sign of the square root is chosen according to the requirement
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0 << a <1. The parameter «;; (eqn. (5)) can be easily calculated if the overlap
integral S;; is known. However, we can get a rough idea about the shape of
4 orbital if we develop aj; in a Taylor series in terms of Sj;. Terminating the

Taylor expansion of V1 ——Sizj after the second term one obtains a; =
= (Sy/2) + O (S?j ). The nonorthogonal orbital y; takes the following form
up to the order O (Sfj ):

1= 0—Sk 19 b + S/ 9, i

The corresponding orbital y; is easily obtained by a permutation of indices i
and j. Taking again values a = 1/3 and S;; = 0.6 as an example and assuming
equipartition of the mixed term (@; @;/S;)) between the constituent atoms i and
j, one obtains that @&; content of y; orbital is 84.3%.

Condition (b): The mixing parameter « can be chosen so that the functions
7. and y; have the best overlap with &; and @; respectively. Then the fol-
lowing requirement has to be satisfied:

9
: *[<xi|€15i>+<}gjl<ﬁj>]=0 : W)
()aij
Simple calculation shows that oz’ij
a,ij:[<wi[(pj>+ <1,uj]¢i>]/[ <wi‘¢i>+ <1,uj|¢>j>] (€]

meets the condition (7). Here prime indicates that ¢  is determined according
to the maximum overlap criterion. If we employ electrostatic hamiltonian,
than it is equal to its complex conjugate value i.e. it is a real operator. The
best hybrid orbitals are then also real functions!?. Taking into account this fact
and the relationship (1), we obtain <l |P; > = (S"); and ;| @;> =
= < ;| @; > = (5"2);;. Hence, the relation (8) reads as follows:

a,ij =2 (S‘/Z)ij [1(S"?); + (S’/z)jj] (9)

Substitution of «;; into eqns. (2) gives a pair of nonorthogonal functions y;
and y; which have the optimum overlap with the initial hybrid orbitals @,
and @;. It is interesting to mention that in this case y; and y; resemble the
hybrids @; and @; as much as possible in a sense of the least square deviations.
Requirement that the sum of squared deviations is a minimum reads:

[ B+ 25— 2 = min 0o
where || z;— @; | is a norm of the vector y; — ®;. It follows immediately that
(10) takes the form:

4—2[<}5i]¢i>+<}5j]95j>]=m\i:n. (11)
which is equivalent to the condition (7).

Although it seems at first sight that conditions (a¢) and (b) give widely
different results it can be shown that a; and «;; have practically the same
values. Namely, if we neglect all overlap integrals Sj; between hybrids @; and
&; which are not directly bonded, it follows that y; = @; and y; = @;. In that
case ¢ is exactly equal to « (¢ = o) because both conditions (a) and (b) are
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satisfied in the same time i.e. <y | D> = <<y | @5 >=1and <y |y > =
= < @;| @;>>. Since the overlap integrals between the nonbonded hybrids
are an order of magnitude smaller than the overlaps between the bonded
ones, it is plausible that the approximate relation a = o’ holds. The use of
maximum overlap hybrids is of crucial importance here because the polarization
of the hybrid in one direction diminishes its overlapping power in all other
directions. Therefore, the application of the simple maximum overlap criterion
enables the construction of a pairwise nonorthogonal basis set in a con-
sistent way.
CONCLUSION
We have shown that, starting from a set of local hybrid orbitals @;
(i=1...n), it is possible to construct a basis set y; i =1 ... n) exhibiting
pairwise monorthogonality:
B e . .
<Zi!Zj > = {le if i and j are nearest neighbours
5 otherwise
where R;; is the overlap integral. If we denote the column vectors of the final
and initial basis functions as y and ® then

y=US"o (12)

where 8 is overlap matrix of the initial hybrids &; and U is a positive matrix*
which is in turn a product of V (ij) matrices:

U=1IV @i (13)

(ij)
where indices ij correspond to neighbouring orbitals forming a covalent bond
ij. Matrices V (ij) are defined by the equation (2) and explicitly read as follows:

[ j
1< ] 1
Srecq 0 E 0 i 0
: 0 . !
i - -]/“__’:"Lij) ———————— o(ij/ﬁT.LU J————
b N 0 '
Viij) = 0 E AN : 0
| 0 S |
[ [
jy - uL.J{(M )———————-1/(14“) ——————
I AN 0
I N
0 } 0 M
n
|
I

o

* A matrix U is called positive if its elements satisfy the condition Uij =0
iL,j=1,...n).
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where the off diagonal elements apart to ij ones are equal zero. It is easily
checked that the elements of V (ij) matrix satisfy the relation

n n

VL =32V =1 (15)

1=1 k=1
and that the same holds for the matrix U, i.e. rows and columns of ithe
matrices V and U are mormalized. The parameter «; in the matrix V (ij),
formula (13), is given either by the equation (5) or by equation (9). The use of
the 3 i=1 ... n) basis set functions in semiempirical methods should be
advantageous. Namely, the basis sets related by a unitary transformations are
equivalent in ab initio approach, where all matrix elements of the Hartree-
-Fock matrix are rigorously calculated. Hovewer, if some integrals are neglected
and the others are estimated from the experimental data, the requirement
of the wumitary invariance is too severe a restriction. For a particular semi-
empirical scheme some basis sets are more suitable than the others. Intuitively,
it is obvious that the use of pairwise nonorthogonal functions will minimize
the errors introduced by the neglect of the many-centre electron repulsion
integrals. On the other hand, the overlap between the neighbouring functions
yi and y; ensures the adequate estimate of the resonance integrals. Thus the
basis set has the properties which are compatible with common approximations
employed in current samiempirical methods. The use of the pairwise nonortho-
gonal localized orbitals may be helpful in order to circumvent convergency
difficulties in ab initio SCF calculations which occur if the guessed starting
wave functions are far from the minimum energy solutions. It is well do-
cumented that the problems of this kind are overcomed by the use of localized
orbitals'®. Finally, this type of basis set might be useful in simulated ab initio
molecular orbital technique where the Hartree-Fock matrix elements in a
large molecule are transferred from the calculations on similar small molecules
known as »pattern molecules«. The source of this transferability is the use of
hybrid orbitals'4.

In this paper we discussed in some detail the construction of the pairwise
overlapping functions employing simple maximum overlap criterion. However,
the mixing parameter a;; (eqn. (2)) can be determined in such a manner that
the pairs of nonorthogonal functions give the best description of a system or
a property under consideration. For example, one can maximize the average
distance of the centroids of charge for lone pairs and bonding pairs. It is possible
to combine the above mentioned criteria in order to find the best recipe, which
of course can be found only in practice. Such an endavour is in progress.
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SAZETAK
O problemu neortogonalnosti parova (valnih funkcija) u kvantnoj kemiji
T. Zivkovié i Z. B. Maksié

Pokazano je da se koriStenjem osnovnog skupa lokalnih hibridnih orbitala
®, (i =1,...n) moZe konstruirati skup parno neortogonalnih funkcija y; i =1,...n)
koje imaju slijede¢e svojstvo: < y; [ 7> = R;;, gdje se oznake i, j odnose na susjedne
vezne orbitale dok je < y; | 7; > = 0; kada y; 1 7; nisu susjedne vezne orbitale. R;; je
integral prekrivanja. Ovakav skup funkcija je pogodan za razne semiempirijske
sheme, jer priblizne formule (posebno u ZDO aproksimaciji) za jedno- i dvo-elektron-
ske integrale postaju njegovom uporabom mnogo opravdanije i toénije.
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