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In an earlier paper1 the stability constants of Oo(II), Ni(II), Zn(II), Cd(II) 
and Pb(II) formato, acetato, propionato, butyrato, glycolato and chloroacetato 
complexes, determined by potentiometric1, polarographic~ , 3 and spectrophoto­
metric4 methods, were summarfaed. Good agreement between stability con­
stants determined by different methods were obtained, except for the complexes 
specified ~n the title, which were examined spectrophotometrically and polaro­
gra phically. 

In the meantime we published an improved technique and numerical 
treatment in determining stability constants by the spectrophotometric method 
of corresponding solutions5, so we investigate these systems more rigorously. 

The measurements were carried out at 25.0 .± 0.2 °C in buffer solutions 
of constant acid to salt ratio, being 1 : 2 for formate and glycolate, 5 : 1 for 
ace;tate and 6 : 1 for propionate and butyrate. Ionic strength of all solutions 
was kept at a constant value of 2 mol dm-3 by adding sodium perchlorate. 
Measurements of absorption were performed at 760 nm. The change of pH 
between 3 to 5 had no influence on absonption. The stability constants obtained 
under these e~perimental conditions and with the apparatus, which were same 
as previously4, but with the new technique and numerical treatment, are given 
in Table, together with their 95 per cent confidence intervals. 

It must be emphasized, however, that the polarngraphic method is prefered 
over the spectrophotometric one, because the experimental conditions re.quired 
for the former allow very low metal ion concentrations to be used. This is 
advantaigeous when precipitate can be formed. E. g. in the spectrophotometric 
investigation ,of the specified complexes (except for Cu(II) formato complexes), 
the required exiperimental conditions do not allow investigation at ligand 
concentrations higher than 0.1 mol dm-3 due to the preci<pitation ·of a slightly 
soluble Cu(II) complex. 

The present results confirm all conclusions in the earlier papers1-4, but 
are in much better agreement with those obtained by polarogrnphic2•3•6 and 
potentiometric7 method, than the earlier ones4. This was e:x:pected because of 
the imprO'vements in technique and numerical treatment. 
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TABLE 

Stability constants of Cu(II) complex es 

Ligand log 131 log (34 

Formate 1.59 ± 0.08 2.48± 0.11 2.92±0.22 3.58±0.12 

Acetate 1.91 ±0.01 2.46± 0.01 

Propionate 1.94±0.01 2.76±0.08 

Butyrate 1.89 :i: 0.02 4.13±0.02 

Glycolate 2.46±0.04 

REFERENCES 

1. I. Filip o vi c, T . M a tus i n o vi c, B. Mayer, I. Pi l j a c, B. B a ch - D r a­
g u tin o vi c, and A. Bu j a k, Croat. Chem. Acta, 42 (1970) 541. 

2. I. Filipovic, I. Pi l j a c, A. Med v e d, J. S av i c, A. Bu j a k, B. B a ch­
- D rag u tin o vi c, and B. Mayer, Croat. Chem. Acta 40 {1968) 131. 

3. I. Filipovic, A Bu j a k, and V. Vu k i c e vi c, Croat. Chem. Acta, 42 
(1970) 493. 

4. B. Grab a r i c and I. Filipovic, Croat. Chem. Acta, 42 (1970) 479. 
5. B. Grab a r i c, I. Pi l j a c, and I. Filip o vi c, Anal. Chem., 45 (1973) 1932. 
6. B. G r a b a r i c, M. T k a l c e c, I. P i l j a c, I. F i l i p o vi c, and V 1. S i m e o n 

Anal. Chim. Acta 74 (1975) 147. 
7. B. Grab a r i c, B. Mayer, I. Pi l j a c, and I. Filipovic, Electrochim. 

Acta 20 (1975) 799. 

SAZETAK 

Odredivanje konstanti stabilnosti formijato-, acetato-, propionato-, butirato­
glikolato-kompleksa bakra(II) spektrofotometrijskom metodom 

B. Grabaric i I. Filipovic 

Konstante stabilnosti kompleksa navedenih u naslovu odredene su usavrsenom 
spektrofotometrijskom metodom korespondiraju6ih otopina obzirom na tehniku mje­
renja i numericko-statisticku obradu. Dobivene konstante stabilnosti mnogo se bolje 
slazu sa konstantama stabilnosti dobivenim polarografskom i potenciometrijskom 
metodom od ranije navedenih. 

ZA VOD ZA ANORGANSKU KEMIJU 
TEHNOLOSK'I FAKULTET 

SVEUCILISTA U ZAGREBU 
Prispj elo 13. svibnja 1975. 
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An integral formula is derived exhibiting the dependence of 
the n-electron charge density (in the framework of HU.eke! theory) 
on the coefficients of the characteristic polynomial of the molecular 
graph and o.ne of its subgraphs. Several simple consequences of 
this formula are demostrated. 

The n:-electron charge density is cine of the most important pieces of 
infor:mation about a conjugated molecule which can be obtained from simple 
Ruckel MO calculations2• This quantity was first intrnduced by Coulson3 and 
was later successfully correlated with a number of e:xiperimental findings 
(e . g., reactivity towards electrophilic and nucleophilic reagents in aromatic 
substitution reactions4, proton NMR shifts5, etc.). Besides, there is a close 
relationship between the n:-electron charge distribution and the d i.pole moment 
of a conjugated molecule6• 

A well-known result is a uniform charge distribution in artemant hydro­
carbons regardless any detail in their structure.7 No analog,ous regularity exists 
for non-alternant hydrncarbons. The above results were also quite recently 
obtained using graph-theoretical considerations and proof-1echniques8,9 • 

In this work we would like to present some additional results leading to the 
further understanding of the dependence of n:-electron charge density on 
structural features of the molecule. We use here the formalism of graph theory 
as it was developed in earlier papers of this series10• Thus, in case the molecular 
graph G possesses N vertices, A= A (G), its adjacency matrix will be de­
fined as 

A = { 1 if vertices p and q are adjacent 
pq 0 otherwd.se 

(1) 

The characteristic polynomial of G is 

P (x) = det I x 1 - A I (2) 

Its roots (i.e. graph spectrum) are denoted as x 1 , x 2, ••• , XN· For graphs without 
self-loops, as are the molecular graphs corresponding to conjugated hydro­
carbons, 

N 

~xi= O 
j = l 

(3) 
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Let G, be a subgraph of G obtained after removal of the vertex r and all 
incident edges to it from the graph G. Let further Gh be a graph obtained by 
introducing a self-loop with a weight h on the vertex r of the graph 0 11- 13• The 
weight h is to• be understood as a variable parameter. In matrix notation this 
means that 

A pq (Gh) = A pq (G) 

for all p and q, except for p = q = r, when 

A rr (Gh) = h and A,, (G) = 0 

Therefore, for a graph with a self-loop with weight h, 

Of course., 

N 

L xi= h 
j = l 

Gh = G for h = 0 

(4) 

(5) 

(6) 

(7) 

We denote the characteristic polynomial of G, and G h by P , and Ph, 
respectively. The following relation 

was proved elsewhere12,1a. 

The characteristic polynomial P may be written in the form 

N 
p = p (x) = L an x N-n 

n = O 

This enables us to define another polynomial, H, 

where i = v - 1. Then 

H = H (x ) = (i x)N P (1/ix) 

H = L i" a11 x" 
n 

which can be also presented as 

where 
H=U+iV 

U = U (x) = L (--)" a 2 n x 2
" 

n 

V = V (x) = L (- )" aw+i x2n+1 

n 

In an analogous way we define the. polynomials Hn U ,, V ,, and H1,, U1,, V 1,, 

Hr= (ixt· 1 P, (1/ix) = U, + i V, 

Hh = (ix) N Ph (1/ix) = u,, + i vh 

Because ·of the relation (8), 

and therefore, 
H h =H-ihxH, 

U h =U+h xV, 

Vh= V-hxU, 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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which finally gives 

[ H :, [ = [(U + h X Vr) 2 + (V - h X U,.)2]'/• (20) 

We note that the dependence of the coefficients an on the molecular graiph 
structure is nowadays completely elucidated14- 18• Therefore, the topological pro­
perties of the polynomials H, U, V, etc., are also well understood1. For later 
discussion it will be important that the polynomials U and U r are positive 
for all values of x. This is a consequence of the relation 

(21) 

which holds for an arbitrary graph1• 

A Topological Formula for rt-Electron Charge Density 

In Hiickel theory the rt-electron charge density (Qr) ·on the atom r is 
related to the rt-electron energy19 as follows 

oE" 
Qr = - -

0 a, 
(22) 

where ar is the Coulomb integral2 •4•6 corresponding to the atom (vertex) r, and 
E" is the total rt-electron energy. When the corresponding graph-theoretical 
terminology is used10, the Eq. (22) is given by, 

oE"(G) 
Qr= - --

0 A ,, 
(23) 

The above equation may be further transformed by taking into account Eqs. 
(4), (5), and (7): 

= [ o E" (Gh)] Q, 
oh h = o 

(24) 

In1 it is shown that the following equation is valid for graphs having no 
self-loops (that is, for graphs whose spectra fulfill Eq. (3)): 

+= 
E" (G) = (1/rt) J ln ~~I dx (25) 

Using Eq. (6) the above formula may be easily extended to include graphs 
possessing self-loops. Namely, 

+oo 

E,, (Gh) = h + (1/rt) J ln ~~h I dx (26) 

A detailed analysis shows that 

+= 
a E .. (G,,l = 1 + (l/rc) J a ln [ Hh [ dx 

ah ah x 2 

(27) 

-co 
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which combined with Eq. (20) and substituted iback into Eq. (23) yields a topo­
logical formula for :n:-electron charge density: 

+co 

f 
UV -VU 

Q, = 1 + (1/:rt) r r 
u2 + v2 

dx 
(28) 

x 

E:xipression (28) exhibits the exact analytical form of the dependence of Q, on 
the coefficients of the characteristic polynomials P and P,. Another form of 
Eq. (28) is 

+co 

Q, = 1 + (1/rr.) f P, (ix) dx 
P (ix) 

(29) 

This elegant formula was first obtained by Coulson and Longuet-Higgins19, but 
using a very different way of reasoning. It can be shown that Eqs. (28) and (29) 
are completely equivalent. However, the form of Eq. (28) is more convenient 
for the following discussion. 

It results from Eqs. (28) and (29) that Q, is uniquely determined with (and 
that it can be calculated from) the spectra of graph G and G,. It is interesting 
to compare this conclusion with the original definition of charige density3, which 
is based solely on the coefficients of MO's (i. e. eigenvectors o.f the graph G). 

DISCUSSION 

The form of Eq. (28) indicates that the dependence of Q, on the molecular 
topology is rather complicated. This is inded the cases,9,20 • However, in the 
present discussion we wish to show some properties of the charge distribution 
which follow straightforwardly from our formula and the topological behaviour 
of the polynomials H and H,. 

First, for all alternant systems it is always17,18, 

and therefore it follows from Eq. (13), 

V(x)=V,(x)=O 

This leads, then, to 
Q, = 1 

(30) 

(31) 

(32) 

Thus, the charge distribution in all alternant hydrocarbons (including free 
radicals) is uniform. 

In non-alternants the charge density of a :n:-cerrtre oibviously depends both 
on the hydrocarbon itself and the :n:-centre position in the molecule. This fact 
is well reflected in formula (28). Namely, Eq. (28) may be also written as 

Q, = 1 +A,+ B, (33) 

where 
+ co 

A, = - (1/rr.) f vu, dx 
(34) 

u2 + v2 x 
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+ oo 

J 
UV, dx 

B, = (l/rr.) _ 
u2+v2 x 

(35) 

-00 

Since the polynomials U, U, (and of course, U2 + V2) are positive for all values 
of x, the sigru of the integral A, is determined with V (x) only; that is to say 
solely from the molecular graph G. By analogy, the sign of the term B, depends 
on the graph G, only. Hence, A, may be understood as being the »molecular« 
and B, as being the »positional« contribution tQ the charge density. The actual 
numerical vaiue of the re-electron charge density results from the delicate 
balance of these two contributions. As a simple illustration let us consider a 
non-alternant hydrocarbon molecule having only one odd-membered cycle r, 
while all other structural details are arbitrary. Let the size of r be y. The coef­
ficients a2 n+ 1 of the characteristic polynomial of such graphs have the property 

] 
{ 

O for 2n+l < y sign[(-)" aw+i = 
(-)«r + l)/ 2 for 2n + 1 ;;;,, y 

Therefore, from Eq. (13), 

sign [ V ~x) ] = (-) Cr+ 1)/2 

and finally from Eq. (34), 

sign [A,]=(-) <r-1) /2 = { + 1 if y = 4m + 1 
-1 if y = 4m + 3 

it is seen that the sign of A, is not depending on r . 

(36) 

(37) 

(38) 

Let us now consider an atom r belonging to the cycle r . Graph G, then 
contains no odd cycles and therefore17,ts V, (x) = 0. Consequently, B, = 0, and 
the only contribution to Q, stems from A,. The following rule follows, therefore, 
immediately from Eq. (38). 

Rule 
In a conjugated hydrocarbon containing only one odd-membered cycle all 
atoms belonging to this cycle are negatively charged (Q, > 1) if the size of 
the cycle is 4m + 1 and positively charged (Q, < 1) if the size of the cycle is 
4m + 3. · 

This result is independent of any other detail in the molecular structure. 
The case when the considered re-centre does not belong to r may be 

treated by analogy. However, G, contains now the cycle r and therefore, 

sign [V,~x)] = (-)<r+l)/2 

which combined with Eq. (35) yields, 

sign [B,] = { - 1 if y = 4 m + 1 
+ 1 if y = 4m + 3 

(39) 

(40) 

a result which is expected since the total charge of the neutral hydrocarbon 
is zero. 
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SAZETAK 

Teorija graJ'ova i molekularne orbitale. XVI. 0 raspodjeli it-elektronskog naboja 

I. Gutman i N . Trinajstic 

Izvedena je integralna formula koja ukazuje na vezu izmedu raspodjele n-elek­
tronskog naboja u ko.njugiranom ugljikovodiku i koeficijenata karakteristienog poli­
noma .pripadnog molekularnog grafa i jednog njegovog podgrafa. Prikazano je takoder 
i nekoliko jednostavnih posljedica ove topoloske formule. 
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