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The graph spectral theory of conjugated molecules is pre­
sented. It is shown that the number of bonding, non-bonding, and 
antibonding Ruckel molecular orbitals may be obtained directly 
from the topological features of a conjugated molecule. Similarly, 
it is also shown that the total Ruckel n-electron energy and the 
:n:-resonance energy may be approximated rather accurately by the 
corresponding topological expressions. The estimation of the n-elec­
tron energy of infinite conjugated systems is also given. A graphi­
cal classification of conjugated hydrocarbons is proposed and the 
restricted extension of the Coulson-Rushbrooke pairing theorem 
to certain heteroconjugated molecules is discussed. 

INTRODUCTION 

The earliest application of graph theory in chemistry*** (more precisely in 
organic chemistry) goes back to 1857, when Cayley1 enumerated the isomers 
of saturated hydrocarbons CnH2n+ z (with a given n of carbon atoms) using for 
this purpose a class Qf gralphs called trees2• This may be surprising in a way 
because graph theory has been relatively recently founded as a branch of pure 
mathematics3, though it has been discovered the first time4 by Euler in 1736. 
However, there seems to be, hardly any concept in natural sciences which is 
closer to the notion of a gmph than the structural formulae of chemical com­
pounds. In fact, there is no essential difference between a graph and a struc­
tural formula. A graph fa, simply said, a mathematical structure which may 
be used to represent the topology of a given molecule. Therefore, chemists can 
easily grasp the concepts of graph theory. Moreover, chemists actually know 
and use a number •of graph-theoretical theorems without being aware of this 
fact in many cases. A classic example is provided by the concept of alternant 
hydrocarbons introduced by Coulson and Rushbroke5, which is for graph­
theorists the two-colour problem2• However, the language of graph theory is 
very different from that of chemistry. Therefore, a short, glossary is offered 

* Reported den part at the Micro-symposium »Graph Theory in Chemistry« held 
in Miilheim a. d. Ruhr on May 26-28, 1975. 

** Also at the Chemistry Department, Faculty of Science and Mathematics, 
University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia. 

*** Dr. D. R . Rouvray (Johannesburg) has pointed out to us that the first appli­
cation of graph theory to chemistry actually appears to be two papers by Kopp 
published in 1842 (R. Kopp, Ann. Chem. 41 (1842) 79, 169) in which the author 
has studied the additive properties of molecular species. We thank Dr. Rouvray for 
this information. 
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in Table I, which should help the reader to follow more easily the text, 
because we will freely use and interchange the mathematical and chemical 
terminologies throughout this work. 

TABLE I 

The correspondence between the graph-theoreticaL and chemicaL terminoLogy 

Graph-theoretical terminology 

Molecular (chemical) graph 

Vertex 
Rooted vertex 
Edge 
Degree of a vertex 
Tree 
Cycle 
Chain 
Bipartite (bichromatic) graph 
Non-bipartite graph 
Adjacency matrix A 
Eigenvector of A 
Eigenvalue of A 
Characteristic polynomial 

Chemical terminology 

Structural formula 
Atom 
Atom of a specified element 
Covalent chemical bond 
Valency of an atom 

Acyc~ic hidrocarbon 
Ring 
Linear polyene 
Alternant hydrocarbon 
Non-alternant hydrocarbon 
Topological (structural) matrix 
Topological MO 
MO energy level 
Secular equation 

The advantage of using the graph theory in chemical studies lies in the 
possibility to apply directly its mathematic·al apparatus and proof techniques. 
Besides, one may consider a given problem on a higher level of abstraction 
which enables a relatively simple insight into the structural features of the 
molecule. Finally, a graph-theoretical language is much more precise and 
contains numerous terms which have no equivalent in chemistry . 

. Every molecule may be understood as a geometric object; similarly, che­
mical reactions may be considered as movements and rearrangements of geo­
metric objects. This point of view is inherent in the static and dynamic con­
formational theory. Although the prime importance of · conformational geo­
metric data for understanding and predicting chemical facts cannot be denied, 
useful conclusions could be drawn also in a number of cases and predictions 
made without the actual knowledge of molecular geometry. The idea that one 
may sometimes neglect metric characte.ristics (that is to say, bond lengths and 
bond angles) in chemical studies became gradually more and more popular in 
1960's. The term molecular topology is appropriately used to describe the 
non-metric molecular properties. It should be noted that topology, a branch 
of mathematics, investigates the non-metric relationships of geometric (and 
more abstract) structures. We define molecular topology as the totality of 
information contained in the molecular graph. Perhaps here is a good point 
to indicate for the chemical community at large, in order to avoid possible 
misunderstanding of the use and potential of graph theory, that graph-theore-
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tical methods should be expected primarily to be of use as a complementary 
aipproach where the topology and the combinatorial nature play an important 
role, in parallel to the application of the group theory to problems where 
symmetry is an important feature of the system. 

Concepts of topology (and graph theory, though not always recognized 
as such) are nowadays analyzed and applied to a variety of branches of 
chemical science: photochemistry6, stereochemistry7, transition metals chemi­
stry8, boron hydride chemistry9, saturated10 and unsaturated11 hydrocarbon 
chemistry, chemical documentation12 and classifioation13, isomer enumeration14, 
n. m . r .15, stoichiometry16, etc, ... etc, . . . Furthermore, .basic concepts of che­
mistry such as configuration, isomerism, valency, etc. are shown to have a 
topological basis17. Flinally,. it is worthy to be noted that the Woodward-Hoff­
mann approach to the study of concerted reactions18 is 1also based on the topo­
logical properties of reactants and products19. 

In the present article we wish to review mainly the results of our inve­
stigations of the topological properties of conjugated molecules using the 
graph spectral theory. A question could, of course, be asked immediately: 
why go throug!l all this trouble to develop and use the graph spectral theory 
when 1it does not give any information which is not already available from 
Hilckel MO calculations? We feel that there are several good points in favour 
of developing the graph spectral theory of conjugated systems: 

(i) A number of res'lllts could be obtained without the use of computers 
just by using pencil and paper. This is of importance for experimental chemists 
who are sometimes kept away from using current computational theories 
because of the necessity to carry them out on computers, using specialized 
programs. 

(ii) Sometimes a purely numerical computerized examination hides away 
the importance of a particular structural feature of a molecule which may 
account for some properties of the molecule. 

(iii) The obtained graphical results have a general validity and may be 
formulated as theorems and/or rules which can be then applied to any similar 
group of molecules without any further numerical or conceptual work. 

(iv) Finally, it is not our intention to compete with standard HMO calcu­
lations, but rather to develop a symboHsm that permits chemists to think 
graphically, i. e. to learn as much as possible about the possible chemical 
behaviour of the molecule by examining the properties of its graph. 

But, before we proceed to discuss the graph spectral theory, a brief 
survey of the basic concepts and definitions2,20 of graph theory will be given 
for the benefit of those readers who are not very familiar with the apparatus 
of graph theory. This will be presented in the next section. 

BASIC DEFINITIONS AND CONCEPTS OF GRAPH THEORY 

In this section a condensed survey of the language and formalism of 
graph theory is given. For more detailed and rigorous expositions see2,20 • 

We will consider a finite non-empty set of some elements {} and a binary 
(symmetric and antireflexive) relation R defined on the set {}. An ordered pair 
({}, R) = G is called a graph. Elements of the set {} are ca lled vertices and 
their number is denoted by N. It is customary to depict a graph by means 
of a diagram in which the vertices are drawn as circles (o) and two vertices 
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are connected by a line if they belong to relation R. These lines are called 
edges and their number is denoted by v. Thus, for example, a graph: 

G = ({1,2,3,4}, {(1,2), (2,1), (2,3), (3,2), (3,4), (4,3), (4,1), (1 ,4)}) 

can be drawn as follows: 

2 

3 
G 

(1) 

We call this graph a molecular graph, but we also give it a more specific 
name: Ruckel graph21 , because it represents a :n:-electron network of cyclobu­
tadiene. Note that edges in G d-0 not cross. Such a graph is called a planar 
graph. It can be easily seen that all graphs related to conjugated molecules 
must be planar. Therefore, planarity will be a property of all graphs considered 
in this article. 

Any arbitrary graph G appropriately labelled may be represented by a 
matrix. There are several ways of assigning a matrix to a graph but for our 
purpose only the. (vertex) adjacency matrix of a graph A (G) is important. 
The adjacency matrix A of a labelled graph with N vertices is the N X N 
matrix defined as follows: 

f 1 if, and only if, (p, q) € R 
A = 

pq l 0 if, and only if, (p, q) non € R 
(2) 

As an example, the adjacency matrix ·Of the cyclobutadiene graph G (see (1) 
and the corresponding figure) is given below: 

lo 1 o 11 
1 0 1 0 

A(G)= 
0 1 0 1 

1 0 1 0 

(3) 

Clearly, this matrix reflects the topology o:li cyclobutadiene, and therefore, all 
molecular properties which may be obtained by mathematical handling of 
such a matrix must be topology-dependent. 

If {h c {}- and Ri c R, and if Ri is a binary relation defined on a set {}-ii 
then the graph Gi 

(4) 

is called a subgraph of graph G. Graphs G', and G" are subgraphs of the 
cyclobutadiene graph G: 

l r 
G' G" 



GRAPH SPECTRAL THEORY 511 

A spanning subgraph is a subgraph containing all vertices of a graph. G'" is 
a spanning subgraph of cyclobutadiene graph G. 

1 1 
G'" 

A path in a graph G is an ordered set of edges (e1 , e2 , ••• , en) with a 
property; the edge ei (1 < j ~ n) starts from the edge where ei-i ends. The 
length of such a path is n. The adjacency matrix is related to the number 
of paths in a graph in the following way: 

(Anlpq =number of paths of length n between the vertices p and q (5) 

When graph theory is used in chemical problems, the relation R has to 
be symmetric and antireflexive, i. e.: 

(p, q) E R => (q, p) E R 

(p, q) E R => p ~ q 

(6) 

(7) 

Because of (2), (6), and (7), the adjacency matrix is symmetric and has zero 
diagonal elements: 

A + = A 

APP = 0; p = 1, 2, ..... , N 

(8) 

(9) 

If there is no path between two vertices, they belong to different components 
of a graph. The number of graph components is denoted as c (G) . Thus, 
connected graphs all have c (G) = 1. All molecular graphs necessarily have 
only one component. 

The shortest path between two vertices p and q is called the distance 
between two vertices and is denoted by d (p, q). Several important properties 
of the distance function are summarized below: 

d (p, q) = 0 if, and only if, p = q 

d (p, q) = d (q, p) 

d (p, q) + d (q, r) ;;:;, d (p, r) 

d (p, q) = 1 if, and only if, (p, q) E R 

(10) 

(11) 

(12) 

(13) 

All the vertices among which the distance is unity are called the first neigh­
bours. Second d (p, q) = 2, third d (p, q) = 3, etc., neighours are defined in a 
completely analogous way. The number of first neighbours of a given vertex 
is oalled the degree (valency) of this vertex, D1 <Pl. The sum of degrees of all 
vertices in a graph is related to the number of edges in a 1graph: 

N 

(14) 
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Only vertices of degree 1, 2, and 3 can appear in graphs belonging to conju­
gated hydrocarbons. 

A graph in which every vertex has the same degree is called a regular 
graph. A connected graph which is regular of degree two is called a cycle. 
The cyclobutadiene graph is a regular graph and a cycle. If the distance 
between all vertices is unity, the graph is complete. The degree of all vertices 
in such a graph is given by 

(15) 

and is called the complete graph of degree D 1 <v> . Graph G' is a complete, graph 
of degree 1. These definitions will be necessary later for the introduction of 
the notion of a Sachs graph. 

Graphs, the vertices of which can be coloured in two colours in such a 
way that two vertices of the same colour are never in the relation R, are called 
bipartite (bi-colourable) graphs. A characterization of a bipartite g.raph is given 
by a following theorem: a graph is bicolourable if, and only if, it has no odd­
-membered cycles. Conjugated hydrocarbons which may be depicted by bipar­
tite graphs are called alternant hydrocarbons (AH)22 • Hydrocarbons which can 
be represented by non-bipartite graphs are called non-alternant hydrocarbons 
(NAH). 

Since the rows and columns of the adjacency matrix correspond to an 
arbitrary labelling of the vertices of the graph, it is clear that we shall be 
interested primarily in those properties of the adjacency matrix which are 
invariant under the permutations of the rows and columns. Foremost among 
such properties are the spectral properties of A. The spectrum of a graph 
(the graph spectrum) is the set of numbers wh ich are eigenvalues of A, i. e. 
the set of all solutions of a polynomial: 

P (x) = det I x 1 - A I (16) 

where 1 is the unity matrix. Polynomial P (x) = P (G; x) is called the cha­
racteristic polynomial of a graiph and has the following form: 

N 
P(G;x) = ~anxN·n 

n~ o 

(17) 

where an are the coefficients of P (G; x). P (G; x) is of degree N. The solutions 
of P (G; x) are denoted as Xi (i = 1, 2, . .. , N). xi represent eigenvalues of the 
adjacency matrix: 

(18) 

where Ci are the eigenvectors of A : 

(19) 

Eq. (18) may be also given in a matrix notation: 

CA=XC (20) 
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(10) 

(11) 

(12) 

(13) 

All the vertices among which the distance is unity are called the first neigh­
bours. Second d (p, q) = 2, third d (p , q) = 3, etc., neighours are defined in a 
completely analogous way. The number of first neighbours of a given vertex 
is called the degree (valency) of this vertex, D1 <P>. The sum of degrees of all 
vertices in a graph is related to the number of edges in a ,graph: 

N 

~D/Pl=2v 
p = l 

(14) 
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where 

r c
1 1 cz 

C= 

l ~N J 
(21) 

and 

0 

(22) 

A graph spectrum is an important graph invariant and is a topic of intensive 
studies in mathematics23 • An important property of a graph spectrum is given 
below: 

(23) 

where D max is the maximal degree of a vertex in a graph. Therefore, the whole 
spectrum of the Ruckel graphs lies in the interval24 -3 to +3. However, it 
is interesting to note that only six Ruckel graphs have integral spectra25 (the 
so called integral graphs26), i . e. the whole spectrum consisting of integers (see 
Fig. 1) 

6 D 
{ 2,-1,-1 ~ { 2,0,0,-2} 

0 
{ 2,1.1, -1,-1,-2} { 2,1,0,0.-1,-2} { 2 ' 1 • 1, 0. -1, · · 1,-2 } 

Fig. 1 - Hilckel graphs with integ ral spectra 

The coefficients of the characteristic polynomial of a graph may be 
obtained27 from the Sachs' formula28 : 

an =~ (-)cr•I 2rr•1; 0 ~ n ~ N 
s e Sn 

(24) 
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where the symbols have the following meaning: s denotes a Sachs graph27, 

Sn is a set of all Sachs graphs (with n vertices) of a graph G , c (s) is the total 
number of components of a Sachs graph s, and, finally, r (s) is the number of 
-::yclic components of a Sachs graphs. The summation in (24) is over all elements 
of the set Sn. A Sachs graph21 s is a subgraph of a graph G with only compo­
nents complete graphs of degree one and cycles. Below we list all Sachs graphs 
of the cyclobutadiene graph: 

s1 = 0 

s = 2 

Now, using the Sachs' formula , one may obtain directly a characteristic poly­
nomial associated with the cyclobutadiene graph: 

P (G; x) = x ·1 -4x2 (25) 

with a graph spectrum: {2, 0, 0, -2}. 
It should be noted here that Coulson24 first, and later Spialter12, Ho­

soya1oa, b , 29 have independently developed graphical methods fo r the enumerat­
ion of an; however, it can be shown that these are fully equivalent to the 
method of Sachsao. 

EQUIVALENCE BETWEEN THE HDCKEL THEORY AND THE GRAPH SPECTRAL THEORY 

The Hamiltonian matrix (H) in Rilckel's theory31•32 is given by 

H=al+~A (26) 

where 1 is the unity matrix, A an adjacency (topological) matrix of a Ruckel 
graph, a and fJ are the Coulomb (27) and resonance (28) integrals, respectively, 
of some effective one-electron Hamiltonian operator (Reff). 

<i l Heff Ji> =a . . l /3 if atoms i and j are bonded 
< i I R eff J J > = 

0 otherwise 

(27) 

(28} 

The secular equation of Hilckel's theory is expressed as follows (since the 
basis functions Ii> are orthonormal): 

det I II - E ; 1 1 = O; i = 1, 2, .. .. . , N (29) 

Introducing Eq. (26) in (29) one obta•ins: 

(
E -a) det j 1 /3 1 - A I = 0 (30) 

If we compare the above equation with Eq. (16) it is seen that the numbers 
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E;-a 

fJ 
are actually making up the spectrum of a Hiickel graph, i. e.: 

E; = a + X; (3; i = 1, 2, ..... , N (31)' 

Using f3 as an energy unit and a as the zero-energy point, we have 

(32)' 

or, in other words, the eigenvalues of the adjacency matrix are identical with 
Hiickel orbital energy levels. From Eq. (26) it is seen that H and A commute 
and have, therefore, the same eigenvectors. Since (compare with Eq. (18)): 

C; H =Ei C;; i = 1, 2, .. .. ., N 

and because of the LCAO form of 

or 

ip; = L C ;i I j > 
j 

and from the comparison with Eq. (19) it follows: 

'P; = C; 

(33) 

(34) 

(35) 

(36) 

or, the eigenvectors of the adjacency matrix are identical with the Hilckel 
molecular orbitals. 

Therefore, it is clear that the spectrum of the graph is rather important 
in Hiickel-type calculations. The Hiickel theory is in fact fully equival~t rto the 
grarph spectral problem. This was first emphasized by Giinthard and Primas33 

and later by Schmidtke8• 

Hiickel orbitals corresponding to x > 0, x = 0, and x < 0 are called 
bonding, non-bonding, and antibonding, respectively. Note that the number of 
linearly independent non-bonding molecular orbitals (NBMO) is equal to the 
multiplicity of the number zero in the graph spectrum34• The number of 
bonding, non-bonding, and antibonding MO's is d~oted by N +• N0 , and N_, 
respectively. They are related to the total number of atoms in a conjugated 
molecule (N): 

(37) 

The total Hiickel n:-electron energy of a conjugated molecule in the ground 
state Ls given by: 

or, using Eq. (32): 

N 
E, = L g;E; 

i = l 

N 
E, = L g;x; 

i = l 

(38: . 

(39) 

g; is the orbital occupancy number. In the majority of conjugated systems the 
occupancy number fulfills the equation: 

for X; > 0 
for X ; = 0 
for X; < 0 

(40) 
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Utilizing Eq. (40) we can now put down the working form11lae for E" cal­
culations: 

N / 2 

E" = 2 ~ X;; N = even 
i = l 

(N-1)/ 2 

E, = x(N+l)/2 + 2 ~ X; ; N =odd 
i = l 

TOTAL it-ELECTRON ENERGY 

(41) 

(42) 

The total n-electron energy (E") is a very important property of conjugated 
molecules and it can be in a proper way related to their measurable thermo­
dynamic properties35. Here we wish to show how F," can be estimated by 
considering the topological characteristcs of a conjugated molecule. Several 
authors were engaged in such a research36• The following analysis about the 
relation betwe,en E" and topological properties of conjugated molecules can be 
simply carried out37•38• The total :rr-electron energy (in (3 units) is given by 

N / 2 
E, = 2 ~xi 

i=l 
(43) 

For alternant and a greater part of non-alternants the following formula is 
assumed to hold: 

N 
E, = ~ IX; I (44 

i=l 

The coefficients an of the characteristic polynomial of the graph G corresponding 
to the conjugated molecule may be evaluated by inspection of the molecular 
topology using the Sachs formula (24). Let Sn be defined as 

It is known from the work of Gilnthard and Primas33 and others39 that 

ai =-81 

a2 = _1/2 8 2 

as = _t/s 8 a 

(45) 

(46) 

(47) 

(48) 

Assuming that S1 = 0, which is true in the case of hydrocarbons27 (though in 
the case of heteroconjugated systems it might be S1 ¥- 0)40 •4 \ the following 
relation holds (detailed proof see ref. 38). 

n 
n an + ~ an-i Si = 0 

i = l 

(49) 

! x I can be expanded in a Taylor series and, hence, using Eq. (44), the following 
expression is obtained: 

E,, = g ~ 
n =O 

(50) 
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where g is an arbitrary number, and the condition g ~ 3/ v2 is suf:fiicient for 
the convergence of the infinite summation. 'Of course, Eq. (50) is independent 
of g. The k-th approximation for E,. 

k 

E,/"l = g ~ 
n=O 

(51) 

can be now written in terms of Sn. For 2k ~ N, E"<k) is a function ·Of N, a 2 , 

a4 , ••• ., a2k· E" can be calculated with reasonable accuracy by applying the 
Sachs formula, assuming N being large enough. A tedious, but not complicated 
calculation using the Sachs formula gives 

E"c1J = g [ -~ + _v_·] 
2 g2 

(52) 

E"c2J = g -- + -- +-- V-----~D 2 

[ 
3 N ( 3 1 ) n4 1 ] 
8 2 g 2 4 g• g4 4 g4 

1 (53) 

E" -g --+ --+--· - -- v- --+ - n + ca> _ [ 5 N ( 15 5 1 ) ( 5 3 ) 
15 8 g2 8 g4 8 ga 2 g4 ga 

4 

(54) 

where n4 and n 6 denote the number of 4- and 6-membe.red rings and D1 , D2 , D3 

are the riumber of first, second, third, neighbours of a veritex (these values 
really represent the branching of a carbon skeleton)42. Summation in Eqs. 
(52)-(54) are going over all vertices of the graph. ~ indicates the summation 

0 
only over vertices belonging to a 4-membered ring. These formulae are rather 
clumsy to work with, but we learn from them several •important points con­
cerning the topological origin of the total re-electron energy of a conjugated 
molecule: 

(1) the major part of E" comes from the number of atoms and bonds 
pre5ent in a molecule. Thus, the McClelland formula361 is given by Eq. (52), 
and Hall formula asb by Eq. (53). 

(2) the presence. of 4- and 6-membered rings decreases and increases the 
Y alue of E,., respectively; the effect of 4-membered ring being stronger then 
that of a 6-membered one (this may be easily generalized for all [4m]- and 
[4m + 2]-membered ring systems43,44). 

(3) the branching of the carbon skeleton, that is the ·increase of the number 
of vertices with D1 = 3 will decrease E,,. Particularly, a closed-shell linear 
polyene is always more stable than a branched one42 (almost all conjugated 
polyenes occuring in nature, e.g. carotenoids, are linear45). However, the 
branching of a 4-membered ring will give a small energy gain. This is >in 
good accord with experience in cyclobutadiene chemistry46-49. 
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The above results have stimulated the search for the semiempirical re­
lationships between the total n:-electron energy and the topological parameters 
that characterize. the adjacency matrix. The following parametric 1relationship 
has been foundso: 

(55) 

where the symbols have the same meaning as before and ASC is the algebraic 
structure count51 which is equal to the difference of the Kekule structures 
when their parity52 is taken into account: 

ASC = IW-K-1 (56) 

The precision of the four-parameter expression (55) for E 10 is good, with an 
average error of about 20/o in E10 • Similarly, the topological formula to arppro:xii­
mate the :rr-resonance energy, for example in the Hess-Schaad approach53, is 
derived54 ,55 • A similar but rather qualitative attempt has been made earlier 
by Knop et al.56• 

Here we also mention briefly our efforts to estimate the n:-electron energies 
of infinite conjugated systems57 1in order to indicate where the power of the 
topological method really is displayed. An infinite graph G00 will be understood 
as the limes of a sequence of graphs G0, G 1 , G2, •••• , wheire Gn may be obtained 
from Gn-i according to a given formula. Symbolically, 

(57) 

For example, 

Go 

For infin.ite graphs E10 is .1infinite, and besides 

lim Nn = lim 1'n = oo (58) 

but 
<D> 00 =lim<D>n~3 (59) 

< D > is the mean vertex degree. It may be shown36f,ss that the following 
inequality is valid for (finite) molecular graphs: 

2 [2 v - N(det A)21N] ~ 2 Nv - E./ ~ (N - 2) [2 v - N(det A) 2iN] (60) 

This expression may be transformed by use of Eq. (14) into 

(2/N) [ < D > - (det A) 2iN] ~ < D :> - e ~ [(N - 2)/N] [ < D > - (det A) 21N] (61) 

\vhere. e = E10/N is the total n:-efoctron energy per electron. e Has also a finite 
value for infinite conjugated systems. Therefore, lim(det A)2iN = D must be 
finite, and hence, 

lim {(2/N) •[< D > ~ (det A) 2iN]} = O (62) 

Finally, 
(63) 
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and 
(64) 

The applicability of the approximate equation (64) is illustrated for several 
infinite conjugated systems ~n Ta:ble II. 

TABLE II 

Approximate :re-electron energies of infinite conjugated systems 

< D >oo 
eoo 

Molecule' D 
Eq. (64) I Literature 

(1) I 2 1 1.207 1.273° 
(2) 2 1 1.207 1.216d 
(3) 14/6 1.260 1.394 -
(4) 10/4 1 1.291 1.403" 
(5) 10/4 1.272b 1.427 1.437" 
(6) 26/10 1.246 1.429 1.461 e 

Graphite 3 1.297 1.515 l ·.576. 

• Presented in Fig. 2. 
h Since K n = (1/V5) { [(1 + v'5}/2] n+2 - [(1- v'5)/2] n+2 r. it is D = v'(i + v'5)/2 (note that I det A I = K ' ). 
c o . E . Po 1 ans k y, Monat. Chem. 91 (1960) 916. 
• I. Gutman, N. Trina j st i c, and T . Ziv k o vi c, Croat. Chem. Acta 44 (1972) 501. 
• C . A. Co u 1 son and G. S . Rush bro o k e , Proc. Roy. Soc. (Edinburgh) A62 (1948) 350. 

( 1) 

0-0-0---
( 3) 

~ 
~-""--

( 5) 

( 4) 

( 6) 

Fig. 2 - Some infinite conjugated systems 
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Finally, we wish to mention briefly that there are possible non-identical 
graphs with the same total n:-electron energy. However, this is not an accidental 
identity. The inspection of their spectra shows that these are identical. Such 
molecules are called isospectral molecules39 (in the mathematical literature2 

two non-isomorphic graphs are called cospectral if they have the same eigen­
val:ues). Recently several reports were published59,60 on the properties of iso­
spectral molecules. An isospectral pair of molecules is, for example, 1,4-divinyl­
-benzene (I) and 2-phenyl-butadiene (II): 

(I) 

{2.214, 1.675, 1.0, 1.0, 0.539, 
-- 0.539, -1.0, -1.0, - 1.657, - 2.214}61 

E" = 12.857 /3 

(II) 

{2.214, 1.675, 1.0, 1.0, 0.539, 
- 0.539, - 1.0, -1.0, - 1.675, - 2.214}61 

E" = 12.857 /3 

Note that the preliminary PPP SCF MO calculations on {I) and (II) predicted 
their theoretical u. v. spectra to be similar; the difference in the first transition 
energies being only 0.1 eV62 • 

NON-BONDING MOLECULAR ORBITALS 

It is of importance to establish the presence of non-bonding molecular 
orbitals (NBMO) in conjugated stTuctures because their existence leads to the 
prediction63 that such molecules should have open-shell ground states and be 
very reactive Although ii.n reality the situation is much more complicated 
(for example because of, Jahn-Teller effects in the case of triplet ground 
states 64) it is an established fact that the structures possessing NBMO's are 
rarely encountered in the chemistry of conjugated hydrocarbons65 (or, at the 
very least, these are obtained only under the somewhat drastic conditions of 
rigid-glass chemistry66). 

In mathematical and chemical liteTature there are a number of studies of 
the occurence of what we are here calling NBMO's27,34 ,5i ,a3,a7 • These approaches 
are considerably diverse in their application, some of them being particularly 
impractical for larger molecules, and others being limited to one class of 
molecules only. Here we will outline a simple method for the determination of 
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NBMO's. Since we know that the number of NBMO's is identical with the 
number of zeros in the graph spectrum, and since 

N 
det A= II xi 

j = l 

(65) 

the determinant of A will be zero if, and only if, there exists at least one zero 
in the graph spectrum. Hence, the problem of determining the number of zeros 
in the graph spectrum is closely related to the problem of evaluating the 
determinant of the adjacency matrix of the graph in question. 

In this connection a very interesting and important Telation between the 
elementary MO theory and resonance theory arises: the determinant A may 
be evaluated from the knowledge of the number of Kekule structures as­
sociated with the graph having adjacency matrix A. We denote, in accordance 
with Dewar and Longuet-Higgins67a, the number of Kekule structures as K 
and consequently the number of Kekule structures of even and odd parity as 
K + and K -, respectively. There is some diffiiculty in determinig the parity of 
Kekule structures by use of the Dewar-Longuet-Higgins method. Wilcox51 tried 
to overcome this difficulty by giving a set of rules which, however, cover only 
special types of molecules. Accordingly we have endeavoured to estiablish 
simple rules for determining the mutual parity of two Kekule structures68• For 
an arbi trary conjugated system (subjected to the limitation68 that it should not 
contain only odd-membered rings if it is a three-or many-cyclic system) the 
following rule is appropriate for determining the parity of two Kekule struc­
tures: if the Sachs graph obtained by superposition of two Kekule graphs 
contains an even (odd) number of [4m]-membered rings, the Kekule structures 
in question have the same (opposite) parity. Kekule graphs correspond to 
Kekule structures69 • K + and K- are related to the adjacency matrix in the 
following way70 : 

det A = (-)Nl2 (K+ - K -)2 + (-)N ~ (-)c(s) 2r(s) (66) 
S€SnOO 

where S11°0 is the set of Sachs graphs which are simultaneously spanning sub­
graphs of a graph and which contain at least one odd cycle. For AH's which 
do not contain odd-membered rings (S .. 00 = cf; ), the above equation reduces to 
the Dewar-Longuet-Higgins formula: 

det A = (-)N/2 (K+ - K-)2 

Furthermore, for AH's when K = 0, because K+ = K- = 0, Eq. (67) gives 

det A= 0 

(67) 

(68) 

This result, which represents one of the most important cases of the con­
gruency between the resonance theory and molecular orbital theory, has also 
been verified experimentally; all systematic attempts to prepare stable AH's 
with no single Kekule structure have so far failed65• 

Formulae (66) and (67), together with the rule for enumeration of K + and 
K-, give. the organic chemists a very simple, but powerful method for evaluating 
det A. This is illustrated for pyracyclene (III). 
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(III) 

·we first give all Kekule structures of pyracyclene: 

0 ~~~ 0~1 
~ h ~ ~ 

- -

'The reader may easily verify that K 1 , K 2 , and K 3 are Kekule structures of 
.even parity (K+ = 3) and K 4 is a Kekule structure of odd parity (K- = 1) . 
Since pyracyclene belongs to the class of NAH's, we must also determine Sn°0, 

w hich is in this case given below: 

Soo 
10 

Putting all this into formula (66), we finally obtain det A = 0 for pyracyclene. 
Therefore, pyracyclene must have at least one NBMO in its spectrum. The 
chemistry of pyracyclene appears to be in accord with this graphical prediction; 
pyracyclene is a very unstable molecule and it could not be isolated from 
solution71 ,12. Some other theoretical studies (based on the PPP SCF MO 
formalism)73 also indicated a low stability of pyracyclene74• 
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Therefore, the problem whether a conjugated moleoule has or has not 
NBMO's can be solved; another problem, however, is how to enumerate 
graphically NBMO's. 

The number of zeros in the graph spectrum may be obtained in the fol­
lowing way. If C = (C1 , C2 , • ••• , CN) is a NBMO (not necessarily normalized), 
the following equation h-0lds: 

CA=O 

This equation may be also given in scalar form: 

~ CP = O; q = 1, 2, . .. , N 
p->q 

(69) 

(70) 

The summation is over all vertices p joined to the vertex q. This equation 
has been first used by Longuet-Higgins63• The number of NBMO's is denoted 
by 'YJ· It should be a1'so noted670 that the number of independent parameters in 
unormalised NBMO is equal to 'YJ · Thus, the elucidati-0n of 'Y] is reduced to a 
determination of the number of independent parameters which satisfy the 
requirements (70). Application of this method is illustrated for pyracyclene 
below: 

a b 

In ·Order that Eq. (70) be fulfilled for the last (unmarked) vertex of pyracyclene, 
the following relation must hold: a + b = 0. Thus, only one parameter (b = 

= - a) is independent, and consequently, Y\ (III) = 1. The NBMO of III the­
refore looks like 

with a = 0.29. 

The whole procedure may, in fact, be simplified by applying some graph 
transformations under which the value of 'Y] does not change, but which make 
this graphical approach much easier to apply. These transformations are 
detailed in67f,75,76• 

ANTIBONDING MOLECULAR ORBITALS 

We have already emphasized several times the importance of knowing 
the number of bonding (N +), non-bonding {N 0), and antibonding (N _) MO's. 
For instance, when N_ > N +' the corresponding molecule is electron-excessive 
and forms relatively stable cations75•77- 79• Since N +, N0, and N_ are just 
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numbers of positive, zero, and negative elements in the spectr um of the mo­
lecular graph (see discussion earlier) , their determination is a pure graph­
-theoretical problem. In this section we wish to show how the number of 
antibonding MO's can be determined. 

We will use the following symbolism: {}1 , {}2 , .. . • , {}N are the vertices of 
G. G-{} denotes a graph obtained after the deletion of the vertex {} (and the 
edges incident to it) from G. D = D N is a sequence of graphs : GN, GN_1 , . ... , 

Gi, G 0 , where GN-1 = GN - {}N, GN- 2 = GN- 1 - {} N- 1 , •• . , G1 = G2 - {} 2 = 
the ver tex {}1' G 0 = G1 - {}1 = the empty graph. It is evident that Gn has 
exactly n vertices. The numbers of positive, zero, and negative elements in 
the spectrum of Gn will be denoted by N + (n), N 0 (n) , and N_ (n) , respectively. 
We call D »the decomposition« of the graph G. In this way the sequence 
Dn = (Gm G n-1' .. . . , G1 , G 0 ) is the decomposition of G n (n = 1, 2, . .. . , N) . 
The adj acency matrix of G n is denoted by A n and det A n = Dn (n = 1, 2, .. .. , 
N). Besides, by deJiinition, D 0 = 1. The sequence of numbers (D no Dn_1 , •••• , D 10 

D0) will be written [Dn]. 

In Ref.80 the following three s tatements h ave been proved, 

L e mm a 1 

D N= D N-1 = · · • = D N-N
0

+ l = O 

for all D. 

Lemma 2 

There exists such a D that 

Th e orem 

The eq uation 

(71) 

(72) 

(73) 

(Ch denotes the n umber of s ign changes in the corresponding sequence of 
numbers), or in another notation, 

Ch [D] =N_ (74) 

holdsfor every D which fulfills the conditions (72) and (75) : 

(Di_
1

) 2 + (Di) 2 ¢ 0 j = 1, 2, .. . , N-N0 (75) 

There is an obvious analogy between Eqs. (71)-(73) and the folloving rela t ions 
between N 0 , N + • and P (G; x)77 : 

a N = a N-1 = · · · = a N- N
0 

+ 1 = 0 

a N -N
0 

¢ 0 

Ch (aN, aN_1, . . . , a1 , a 0 ) = N + 

(76) 

(77) 

(78) 

From the practical point of view, however, Eqs. (71)-(73) are much more 
convenient sine~ the values of Dn may be determined relatively easily by the 
graph-theoretical techniques developed for the calculation of the determinant 
of a graph adjacency matrix. 
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The application of the above procedure will be illustrated on pentalene (IV). 

(IV) 

We consider the following decomposition of the pentalene molecular graph 
G" (n = 8): 

G6 Gs 

0 

G0 = EMPTY GRAPH 

[DJ = (0, - 2, -1, 2, 1, 0, -1, 0, 1) and N_ = Ch (D] = 3. Therefore, N0 = 1 and 
N + = 4. Since N + - N_ > 0, pentalene should be a reactive electron-deficient 
molecule; this prediction agrees with experimental findings72• In addition, 
the pentalene dianion is relatively stable81 • 

Fortunately, a complete calculation of the above type is hardly ever 
necessary. Because of the identity 

Ch (DN, .. . , D
11

, D
11

_
1

, •• • , D
0 ) = Ch (DN, .. . , D

11
) + Ch (D

11
, D

11
_ 1' .• , D

0 ) (79) 

one obtains from (74): 

N_ =Ch (DN, .•• , D
11

) + N_ (n) (80) 

If we know N_ (n), it is sufficient to calculate (DN, . .. , D11) . Moreover, if 
D11 ~ 0 and G 11 is a bipartite graph N_ (n) = n/2, as a consequence of the 
pairing theorem. The application of this consideration to the pentalene graph 
gives 

Gs Gs 

(D8 , D 1 , D6 ) = (0, -2, -1) and N_ =Ch (0, -2, -1) + N_(6) = 0 + 6/2 = 3. 
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A GRAPH-THEORETICAL CLASSIFICATION OF CONJUGATED HYDROCARBONS BASED ON 
THEIR SPECTRAL CHARACTERISTICS 

This proposal for the graph-theoretical classification of conjugated hydro­
carbons is based on their n-molecular orbital energy level distribution and the 
relationship between the N + -N_ (a graph signature) and N 0 • We define82 a 

-+ 
vector n as 

--+ --+ 
n=n(G) = (N+-N_,N0 ) (81] 

which determfaes a point with integer coordinates in the upper half-plane 
--+ 

of a two-dimensional coordinate system. The set of all n (G) generate a network 
shown in Fig. 3. 

Note that 

Fig. 3 

--+ --+ 
n=O (82) 

is a necessary condition for a n-electron system to be stable. There are also 
other reasons for chemical stability, hence Eq. (82) alone is not a sufficient 
condition for a n-electron system to be stable. Similarly, all conclusions are 
valid only if the planarity of the studied molecules is assumed. 

If Eq. (82) holds, then N+=N_=N/2 and all bonding MO's are doubly 
occupied in the ground state, which implies a singlet .n-electron configuration 
and chemical stability. In the case of N + > N_, there are unocoupied bonding 
MO's, while for N+ < N_ there are occupied antibonding (or non-bonding) 
MO's, both causing high reactivity and/or instability of the n-electron system77• 

Besides, •systems with N + > N _ may be classified as electron-deficient mole­
cules because they tend to accept electrons from a suitable donor in their 
empty MO bonding levels72• Systems with N + < N_ are electron-excessive 
molecules and show a tendency to generate cations72 • Finally, if N+ = N_ and 
N0 > 0, a polyradical ground state is expected63 and such structures are extre-

--+ 
mely reactive. Therefore, conjugated molecules haV'ing In I> 0 are of very 
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low chemical stability. The overwhelming majority of chemically relevant 
--> 

graphs have In I ~ 2, although some exceptions are known83• 

This discussion enables us to propose a graph-theoretical classification of 
--> 

conjugated hydrocarbons according to n . Thus, four classes of conjugated mole­
cules are possible : (A) stable, (B) polyradical, (C), electron-deficient and (D) 
electron-ex cessive molecules as indicated on Fig. 3 by areas A, B, C, and D, 
respectively. 

Because of the pairing theorem, bipartite graphs belong either to classes 
A or B. The existence of a (4 m - 1)-membered ring in the molecular graph 
is a necessary topological condition for a corresponding molecule to belong 
to the class C and similarly, (4 m + 1)-membered rings are required for class D. 

EXTENSION S TO HETEROCONJUGATED SYSTEMS 

In the previous sections of this article we have seen that conjugated hydro­
carbons may conveniently be studied by means of a graphical formalism. In 
the present section, we attempt to go some way towards extending this appro­
ach to a consideration of conjugated systems containing heteroatoms·. However, 
it is firnt of all 'necessary to define graphs which correspond to such heteroco­
njugated molecules. Conjugated systems containing heteroatoms may be 
depicted graphically by use of what is known as a rooted graph representat­
ions4,ss. A rooted gra:ph* is a graph which has one {or more) of its vertices 
distinguished in some way from the others; such a vertex (or vertices) which 
has been thus singled out being called a »root« . Hence, in the molecular 
graphs which we use to represent heteroconjugated molecules, we shall indicate 
carbon atoms in the usual way (0), whereas heteroatoms will be distinguish 
by means of different »kinds« of vertices (•)86• We shall find convenient to 
represent this difference by means of the addition of a loop with weight h 
to the vertex (or vertices) in question. An example of such a graph is given 
below: 

0 
I 
H 

3 p-<{4 
2°'eP5 

1 

The molecular graph representing pyrrole is described as a rooted cycle (since 
this graph has circuit rank ;;::: 1)2• 

Just as the graph representing a conjugated hydrocarbon system may be de­
scribed by its associated adjacency matrix, so the rooted graphs appropriate 
to heteroconjugated molecules may be Tepresented by »adjacency matrices«, 
but of a particular type8•12• For example, the following matrix, assigned to the 
rooted graph corresponding to pyrrole, may be considered as »adjacency matrix« 
of such a graph: 

* Professor O. E. Polansky (Miilhiem a. d. Ruhr) has suggested another term for 
rooted graph: the vertex-weighted graph, because the adjective rooted was originally 
used only for graphs called trees, the so-called rooted trees84 We thank Professor 
Polansky for helpful discussions concerning the properties of this type of graphs. 
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h 1 0 0 

: 1 1 0 1 0 

0 1 0 

: j 
(83) 

0 0 1 0 

1 0 0 1 

h is .identified with the usual Ruckel parameter32 featuring, in the expression : 

(84) 

It should be noted that, in the above adjacency matrix, the symbol h is inserted 
in a position corresponding to a »root« (that is to say, a loop with weight h) 
in the given graph, with vertices labelled accordingly. The matrix (83) is, of 
course, what we conventionally identify as the Ruckel Hamiltonian matrix 
when adjustment for heteroatoms (to the Coulomb integral) has been accomo­
dated. Therefore, h, reflects the difference (in units of /Jee, the »Standard« 
carbon-carbon resonance integral) between the Coulomb integral (ac) of a 
carbon atom in benzene and that (ax) thought to be appropriate, in Ruckel 
theory, for a given type of heteroatom X . It is important to note that the 
variation of resonance integrals from the »Standard« (benzene) value is not 
attempted yet in the graph-theoretical manner, though some work in this 
direction is in pnogress87 resulting thus far in oomplicated expressions. 

The structure of a rooted graph may be related to the various coefficients 
appearing in the characteristic polynomial of the vertex adjacency matrix of 
such a graph using the modified Sachs formula40,41,ss: 

a,,_= ~ (- )C(s) 2r(s) h!(s) 

SE Sn 

(85) 

where the symbols have meaning as before and l is the number of loops in 
a particular Sach graph s. Self-loops do not contribute to r. It is evident that 
some of the Sachs graphs belonging to a rooted graph will also contain a 
»root« (since the Sachs graphs are, in reality, subgraphs of the graph in ques­
tion); such subgraphs are called rooted Sachs graphs40• A rooted Sachs graph 
is defined as a subgraph of a rooted graph which has no components other 
than complete graphs of degree one, cycles, and/or loops. The use of the 
modified Sachs formula 1is illustrated for amino-ethylene-like systems on 
Chart 1. 

The actual value chosen for h in any specific case is not relevant for our 
purpose here; if, however, as a check of the result in Chart 1, we choose arbi­
trarily the value h = 1.00, then the following graph spectrum is obtained: 
{l.80194, 0.44504, -1.24698}. These values are, of course, identical with those 
reported by Coulson and Streitwieser62 , which are obtained from direct Ruckel 
MO calculations. Here we also point out that our expression (85) embraces the 
results of Bochvar and Stankevich89, when it is applied to compounds depicted 
by graphs shown below: 

0 



GRAPH SPECTRAL THEORY 

Chart 1 

The use of modified Sachs formula for amino-ethylene-like systems 

= 0 

1 2 3 

e-o-o 
G 

a2 = 2 (-)1 2.o h o = - 2 

a3 = (-)2 20 hi = h 

P(G;x) = x 3 -hx2 -2x + h 

529 

A class of compounds corresponding to these graphs is, for example, the class 
of borazines. 

Finally, we wish to present a somewhat restricted extension of the pairing 
theorem to certain rnoted graphs. Let x 1 ~ x 2 ~ ••• ~ x 11 be the n eigenvalues 
of P (G; x). The spectral characterization of bipartite graphs may be then 
stated as follows: a graph is a bipartite if, and only if, Xi + Xn+i-i = 0 for 
1 :::;:;; i:::;:;; n. This was derived in the context of the present formalism by Sachs, 
other graph-theoretical discussions of it being due to Collatz and Sinogowitz90, 
Cvetkovic23 , Graovac et al. 27, and Mallion and Rouvray67a,91 . The characteri­
zation was first proved in 1940 in the chemical literature (where <it is konwn 
as the Pairing Theorem); the general proof was due to Coulson and Rush­
brooke5, although the result was observed empirically by Hiickel eight years 
earlier92. 

The derivation of a restricted extension of the Coulson-Rushbrooke Pairing 
Theorem to rooted graphs proceeds via the use of the modified Sachs for­
mula40,41 and it can be formulated as follows: if G is a bipartite graph with 
the same number of vertices in each set, and exactly those vertices in the 
first set are rooted, then Xi + X n+i- i = h for 1 :::;:;; i :::;:;; n. For example, if G 
represents 1,3-diazacyclobutadiene (i.e. a cycle with alternate vertices rooted): 

D 
We apply Eq. (85) to :find that P (G; x) = y (y - 4) with y = x2 - hx, has for 
y = 0 the pair of solutions x = h and x = 0 and similarly for y = 4 two 
paired solutions: x = {h + (h2 + 16)''•}/2 and x = {h - (h2 + 16)'''}/2. 
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CONCLUSIONS 

In the present work we have reviewed some results of the graph spectra[ 
theory of conjugated compounds. This theory belongs to a more general theory 
called topological theory of chemistry which is nowadays a very intensively 
developing branch of theoretical chemistry. The topological theory of conju­
gated hydrocarbons is certainly not completed or closed; many new deve­
lopments are still expected to appear. 

However, even at the present stage of its development it has a considerable 
predictive power and when properly applied it can be a very useful and 
powerful tool in the hands of an experimental organic chemist. 
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SAZETAK 

Spektralna teorija grafova konjugiranih molekula 

I. Gutman i N. Trinajstic 

Prikazana je spektralna teorija grafova konjugiranih molekula. Pokazano je 
kako se broj veznih, ne-veznih i antiveznih Huckelovih molekularnih orbitala moze 
dobiti izravno iz topoloskih znacajki pojedine konjugirane molekule. Takoder je 
pokazano kako se totalna n-elektronska energija i n-rezonancijska energija molekule 
moze aproksimirati pomocu pogodnih topoloskih izraza. Izveden je izr'az za izra­
eunavanje n-elektronskih energija beskonaenih konjugiranih molekula. Konjugirane 
molelmle klasificirane su na temelju topoloskih znacajki. Takoder je navedeno i pro­
sirenje teorema parova Coulsona i Rushbrooke-a na neke heterociklicke molekule. 
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