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The electrostatic formula for the calculation of the ESCA
chemical shifts is developed within the framework of the INDO
approximation and by using Taylor expansion of the 1/r operator.
The INDO wavefunctions were employed for the calculation of the
1s electron binding energy changes in some characteristic organic
molecules. It was shown that the electrostatic formula based on the
point charge approximation works quite well and that the inclusion
of the polarized charge cloud does not improve the results to any
significant extent.

Recently discovered! X-ray photoelectron spectroscopy (XPS) or electron
spectroscopy for chemical analysis (ESCA) proved to be a very useful and
powerful tool for studying the electronic structure of molecules. The method
is based on the fact that the energy of the »inert« inner shell electrons
exhibits different shifts in different chemical environments as measured from
the reference molecule. The proper quantum mechanical a priori treatment
includes the relativistic effects**, the change in correlation energy between the
molecule and its ion, the reorganization energy of the ion’s orbitals etc.
Fortunately, many of these effects are small or constant and can be consequ-
ently neglected. For example, the relativistic effects for the first row atoms
have? order of magnitude 1 eV while the change in correlation energy should not
significantly exceed the same amount®% In spite of the fact that the reorgani-
sation energy, caused by the relaxation of molecular orbitals upon core ioni-
sation, is considerable, it is well established by now that the use of Koopman’s
theorem enables one to make fairly reliable estimates of the changes in inner
core binding energies’S. These calculations, however, require an ab initio
approach and therefore they are either too expensive or not permissible for
most molecules of chemical interest. Thus many simple empirical and semi-
empirical methods have been developed which correlate the inner shell
binding energy shifts with the average potential at the nucleus site. The
potential is usually calculated in the point charge approximation

ABE~AV = kq, + Ey + 1 6

where g, is the gross atomic charge residing on the nucleus in question A,
Ey is the Madelung energy arising from the electrostatic interaction between

** The inner shell electrons are close to the nucleus and their velocity is by no
means negligible when compared with the velocity of light.
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an 1s electron and the charges of all other atoms B(B # A): Ey = Zqp/7p.
BFA

Further, k and | are adjustable empirical parameters. The semiempirical
methods mentioned above differ in the definition of the formal atomic charges
g, and the way of their calculation. The electronic charge distribution could
be calculated by using one of the current semiempirical methods like CNDO/27,
IEHT® or perhaps the electronegativity equalization procedure®. The eqn. (1)
can be rationalized by the parallel changes between the average electrostatic
potential at the nucleus* and the ab initio vertical ionisation potentials obtained
within the »sudden« or »frozen orbitals« approximation'. It gives very good
correlation for ESCA chemical shifts for the molecules involving first row
atoms. In this paper we discuss in some detail the quantum mechanical origin of
the empirical eqn.(1). In particular, we shall develop the approximate ele-
ctrostatic potential formula at the INDO' level of sophistication by using
Taylor expansion of the operator 1/r around the nucleus in question. The
ESCA chemical shifts of carbon atoms in some characteristic molecules will
be discussed in terms of the INDO first order density matrix elements and
the various contributions of the terms in the Taylor series 1/7.

OUTLINE OF THE PROCEDURE

The 1s electrons are considered as highly localised and nonpolarised cores
which diminish the respective nuclear charges by two units. The average
electrostatic potential energy of the 1 s. carbon electron placed in the origin
of the coordinate system is of the form (in a.u.):

E (C)=—Z3(Z,—2/r, +(0|1/r]0) @)
AzxC

where Z, is the atomic number of the nucleus A and (0//0) denotes the
average value over the ground state determinant formed by the valence sheil

molecular orbitals v; and C stands for the carbon atom in question. The mole-
cular orbitals are linear combination of atomic orbitals @, :y; = X ¢, @, .The

w
average value of the 1/r operator can be expressed by the charge density-bond

order matrix elements P,, =X 2Xc¢;, ¢, and the integrals over atomic
v
orbitals

MRVAE ®

(0|Ur|0y=22P,, (P
P .
Since the way of the summation is quite arbitrary, the eqn.(3) can be written
in the more convenient form

A
Q5M[1/ri¢u>+ T 2P, <diu yur;d)u )+

C
<0[1/’r|0> =3P
w AfC n

wa
A

22 =P, (D, |Ur|D, ) @)
AFEC p<w

where we, in addition, neglected all integrals involving the product @, @, if

both atomic orbitals are not placed on the same atom, concomitant with the
INDO approximation. The one-center integrals are readily caclulated once

* properly calculated by evaluating all many-center integrals.
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the basis set functions are chosen. Employing Slater type orbitals one obtains
for the first row atoms

(S |Ur| DSy = (Z,—S)/4 ®)

where S is the screening constant. One observes that the one-center integrals
do not depend on the angular part of the atomic orbitals. The two-center
integrals appearing in the eqn.(4) are calculated by using the Taylor expansion
of the 1/r operator around the carbon atom by using transformation of the
coordinates r = r, + r,” (Fig. 1.)

4

Ve, x| =Ury— Qi) xS+ @215 [x,/ v/ X, ¥y + 2,2,/ 2,2, +
+yy 20 Y, 2] — (U275 [(x,) R —3x5) + W, ) 0 —
—3113\) +(2,)? (ri —322A )} s higher terms (6)
By using formulae (5) and (6) one obtains

E, (c) =(Z,—S) P,/4 - i {cq ATA— 0V 3 (Z, —S)13)Zay Poa A
a

o 2
A —33a} Pya A+ (1262, —

—6/(Z, — S 2Ty [rh = PoA
a

SO 1a) Ty By Pypd o } ™
a<B

A
where Py, =XP,, , gy is the formal charge on the atom A:qy = Z,—

n

Py, —2 and greek letters ¢ and § run over the coordinates x, y and z. The
first two terms of the eqn.(7) form the electrostatic formula (1) based on the
point charges. It is interesting to examine whether the additional terms give
better agreement with experiment. The calculations are performed in the
local coordinate systems which are by convention parallel with the frame
of the molecular coordinate axes. Since the orientation of axes in space is arbi-
trary, the expression (7) has to be invariant to the rotation of the coordinate
system. One can easily find out that eqn.(7) meets this requirement. Let us

for example consider the term X a, P A=gx,P, A, A+ y,P,AopA +
e A Pot ot 2" 2y

A
25 2p o

+ z, P, A 2p2 . We have to recall first that the elements of the charge den-
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sity-bond order matrix P, are formed by the coefficinets of the molecular
orbitals which in turn are vectors in the Hilbert subspace spanned by the
basis set of atomic orbitals. The P,, elements transform contravariant while
the atomic orbitals transform covariant upon the rotation of the coordinate
system. Secondly, we observe that the coordinates a, (¢ = x,y and 2) have
the same angular dependence as p orbitals. Thus, in the new coordinate system
the relevant quantities, denoted here with double prime, are of the form

P )" =20, 1P L0 @) =20y 7

where O is the matrix which relates the coordinates of the rotated and initial
coordinate system. Now we can straightforwardly check the rotational inva-
riance of the term

Zay Py ,)A (SayPyp, A) =E3Z0 4P
a

2p? Ouy YA
o By

=23X9,,
B

YA P25A 2p?

= ? ﬂA/ stA 37’? q.e.d.
The invariance of the other terms in the formula (7) is easily checked along
the same lines.

RESULTS AND DISCUSSION

The INDO calculations are performed on a series of organic molecules.
The experimental shifts in 1s energies of the carbon atoms are correlated
with the average electrostatic energy calculated at various levels of approx-
imation:

ABE(QC) =kE, +1 ®

where n =1, 2, 3. The results are presented in Table I. The first formula
E, includes only the effect of the point charges.

TABLE I

Comparison between the experimental ESCA chemical shifts and those calculated
by wvarious levels of approximation of the electroctrostatic formula for carbon atoms*.

! |
Molecule Exp. ’ E{/eV ’ Es/eV Ep/eV
CgHg | —0.40 1.97 +2.05 1.35
C3Hg —0.23 0.67 0.69 0.15
CoHg —0.20 —0.15 —0.18 —1.07
CHy 0,00 0.60 0.55 —0.48
CoHe 0.04 4.63 4.55 4.25
CHgOH 1.90 144 1.45 0.69
CH;sF 2.80 2.46 2.46 1.80
HCOOH 4.99 4.09 4.19
CcO 5.40 7.18 7.22 7.08
COq 6.84 7.54 7.41 < BT
CHF3 ‘ 8.30 6.08 6.10 6,27
CFy l 11.00 J 7.87 7.95 8.53

* Ej = (Zy — SN) Pan/4; E: = E1 + [10/V 3 (Zy — Sal Toy Pagh ZpA and E, is given by the formula
(7), see text.
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The next expression E, involves the anisotropy of the atomic charge
distribution called usually the hybridisation term PZSAQD%L . E, stands for the

full expression given by the eqn.(7). The quality of the correlations is reflected
in the standard deviations 2.00, 1.97 and 1.88 eV for E,, E, and E, respectively.
We notice slight improvement by including more terms in the Taylor expansion.
This improvement is however not decisive since the standard deviation of
E, is still high and the agreement with experiment is more qualitative than
quantitative. It is hard to say whether the only moderate agreement with
experiment should be ascribed to the inadequacy of the electrostatic approach
or to the failure of the INDO method to give more reliable charge distribution
in molecules. However, in view of good correlations obtained with the ele-
ctrostatic formula by using wave functions calculated by other methods even
for atoms involving lone pairs® it seems that INDO still leaves much to be
desired. Finally, we conclude that the point charge formula (1) works good
enough and that the inclusion of terms involving polarisation of atomic charge
density does not improve significantly the agreement with experiment.
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SAZETAK
O elektrostatskom izracunavanju ESCA-kemijskih pomaka
Z. B. Maksi¢, K. Kovacevi¢ i H. Mefiu

Koristeéi Taylorov razvoj potencijala 1/r dobivena je priblizna formula za
elektrostatsko izracunavanje ESCA-kemijskih pomaka. Formula je konsistentna s
aproksimacijama koje sadrZava semiempirijska metoda molekularnih orbitala —
INDO. Uzimaju¢i u obzir samo prva dva ¢lana Taylorova razvoja dobiva se formula
koja odgovara aproksimaciji to¢kastih naboja atoma u molekuli. Izvedeni su INDO-
-ratuni na nizu karakteristi¢nih ugljikovodika i pokazano je da ukljué¢ivanje pro-
storne raspodjele elektronskog naboja kao i njegove polarizacije ne doprinosi znatno
boljem slaganju s ESCA-kemijskim pomacima dobivenima eksperimentalnim putem.
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