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An algorithm for enumeration of the Kekule structures of 
non-branched cata-condensed conjugated systems is described. Ge
neral formulae for the number of Kekule structures of several con
jugated series are obtained. The Pauling bond orders can be 
easily calculated using the same algorithm. 

The problem of the enumeration of the Kekule structures was solved 
for several important benzenoid systems some twenty years ago2• Recently, 
a general solution for all benzenoid systems is obtained3 . In this paper we 
would like to present another approach to the same problem covering the 
class of all non-branched cata-condensed molecules, both alternant and 
non-alternant. Although in the work of Gordon and Davison2 there is an 
elegant and complete enumeration technique for these latter molecules, we 
thin!;: that the formalism developed here might be of interest also. 

In the recent years there is a renewed interest for simple resonance 
theory4 because of increasing application of ideas of t oIJology in chemistry3, 

esre::ially in the field of unsaturated conjugated moleculesG. Moreover, the 
notions of the resonance theory appear necessarily in the Ruckel molecular
orbital theory (for details and exhaustive references see 1 and 7). Our investi
gations are timely alsQ because several researchers are currently working 
on the enumeration of the E:ekule structuress-u and related topics 12 • 

An additional interesting fact is that a problem completely analogous 
to the enumeration of Kekule structures, called »th e dimer problem«, appears 
in statistical mechanics of liquid and solid state13 . For review see14

• 

We will use graph-theoretical terminology adopted in our previous 
workt,6,7, 15. Thus, a graph corresponding to a cata-condensed (CC) molecule 
has the following properties16 : 

(i) no vertex is common to three rings 

(ii) two rings are either disjoint or possess just one common edge (and 
then they are adjacent) . 

We call the graphs having the properties (i) and (ii) »cata condensed«. 
In general, we need not distinguish between a conjugated molecule and a 
molecular graph. For example, molecules 1, 2 and 3 are cata-condensed, 
but 4 is not. 
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3 

The »ring graph« is constructed 16 as follows: a vertex corresponds to a 
ring and a pair of such vertices are adjacent if, and only if the corresponding 
two rings are adjacent. Thus, the ring graphs of the molecules 1- 4 are: 

1' 2' 3' 4' 

It can be shown that the ring graph s of CC molecules are trees, (i.e. they 
are acyclic) . Therefore, CC systems can be understood as »trees of rings«. 
A CC molecule 1s non-branched if the corresponding ring graph is non
branched. For example, 1 is a non-branched and 2 and 3 are branched CC 
molecules. 

THE ALGORITHM 

For reasons which will be clear later, we consider only alternant 
molecules here. Let A be a graph of an arbitrary conjugated molecule having 

) ) 
5 6 

K (A) Kekule structures. These structures can be either of the type 5 or 6. 
Let the numbers of these two types be K (5) and K (6) , respectively. Of course 

K(A) = K(5) + K(6) (1) 

Let between the vertices p and q a double bond occur D (A) times and a 
single bond S (A) times in the Kekule structures of A. One can see immediately 
that D (A) = K (5) and S (A) = K (6) . 

Let the graph B be obtained from A by annelation of a new ring (of 
even size) to the vertices p and q. Three types of Kekule structures 7-9 can 
arise, their numbers are K (7) , K (8) and K (9) , respectively, and 

B 7 8 9 
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It is easy to see that 
K(B) = K(7) + K(S) + K(9) 

K(7) = K(S) = K(5) 

K(9) = K(6) 

17 

(2) 

(3a) 

(3b) 

We will distinguish two kinds of edges in the considered ring of B and label 
them successively with two symbols, say + and - : 

~
~·· 

10 

This labelling is possible because the ring is of even size. Now let in the 
Kekule structures of B on an edge labelled by + a double bond occur n+ 
times and a single bond s+ times. n- and s- are the same quantities for the 
edge labelled with - . Of course 

v+ + s• =D- + s = K(B) 

From the formulae 7-9 follows 

v• = K(8) 

D - = K(7) + K(9) 

and substituting this bacik into eqs. (1)-(4), one obtains : 

v • = D(A) 

s• = D(A) + S(A) 

v- = D(A) + S(A) 

s- = D(A) 

The equations (6) can be written in an operator form : 

[ ~: ] = o• [ ~ ] 

[ ~~ ] = o- [ ~ ] 

(4) 

.(5a) 

(5b) 

(6a) 

(6b) 

(6c) 

(6d) 

(7a) 

(7b) 

where o+ = [ i ~] and o- = [ i ~] . Therefore, the D and S values (and, 

hence, ·the number of Kekule structures) of a n-cyclic CC molecule can be 
evaluated from the same quati1ties of an (n-1)-cyclic system for the bond 
where the annelation is performed.· In other words, the 0-operator can 
be applied to every ·ring of a non-branched CC-graph, since such a graph 
can be obtained by successive application of the transformations A-+ B , 

beginning w1th a graph 0--0 for which we have: [ ~: ] = [ . ~ ] 

Thus 

(8) 
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where OCiJ is either o + or o - (i = i , 2, . .. , n), depending on the topology of 
the i-th ring. Namely, if the i-th ring is of the form 11, QCiJ = o + if the 

~ 
~ 

11 

drstances between p and p ' and between q and q' are even and o<iJ = o 
if the same two distances are odd. It is unimportant whether 0< 1> and 0 <11 > are 
o+ 'Or o-. 

For an n-cyclic system eq. (8) gives finally 

[~:] = o <n) o <n-1) . .. 0 (2) o <t) [ ~ ] (9) 

K=D +S n n (10) 

The ordered n-tuple of operators o<n> o<n-lJ .. . 0<2> Q(IJ we call an »0-sequence«. 
An 0-sequence, as indica,ted above, uniquely corresponds to a non-branched 
CC molecule. For example, the same 0 -sequence Q+ o - Q+ O+ o - o + corres
ponds to molecules 12, 13 and 14, showing that they all have the same K 
value. Thus 

12 13 

O=CCrO 
14 

o+ o- o + o + o - o + [ ~ ] = o + o - o + o + o - [ i ] = o + o - o • o • [ ~ ] 

= o + o- o + [ i ] = o + o - [ ~ ] = o + [ ~ ] = [ ~ ] => K = 16. 

This example illustrates the fact that a variety of different non-branched 
CC molecules may have equal number of Kelmle struotures. Particularly, for 
an arbitrary (alternant n-cyclic non-branched CC molecule an n-cyclic poly
acene can be found having the same 0-sequence and thus the same K value. 

GENERAL FORMULAE FOR THE NUMBER OF KEKULE STRUCTURES 

In this ·chapter we present general formulae for K of the CC molecules 
having the 0-sequence of the form a) o + o + . . . O+, b) o - o - .. . o - and c) 
Q+ o- O+ . .. o- O+, which will be doneted by P m Q

11 
and R ,., respectively, the 

index n indicating the number of rrngs. Molecules 15-21 are examples of 
0-sequences P n> Qn and Rn-
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P4 P5 

15 16 

&sD @ II 0 ~ 

61 s Q5 Q3 

17 18 19 

O=O=O=O cco 
R1 RJ 

20 21 

a) It can be easily proved (e . g. by induction) that 

and therefore 
K(Pn) = n + 1 

what is the well known formula for linear polyacenes. 
b) The equalities 

lead properly to the recursion relation2•9 

K(Qn) = K(Qn - ,} + K(Qn- 2) 

(11) 

(12) 

(13) 

(14) 

In the Appendix it is proved that K(Qn) = <p1 x 1n + <p2 x 2n where x 1 and x 2 are 
the roots of x 2 = x + 1. Therefore : 

K(Q,.) = qil e +2 .t5r + qJ2 ( _!_ 2 v ~ r 
and because K(Q1 ) = 2 and K(Q2) = 3 

K(Qn)= :5[(1+2"5r+2 _(1 /~r+2J 
K(Rn) = 2 K(R

11 
_ 2 ) + K(Rn- 4 ) 

c) A similar consideration as for the case of Qn gives for Rn 
and 

1 - -
K(R ) = ---= [(l + Y 2) (n+3)/2 - (1 - Y 2) (n+3)/2] 

" 2 -v2 

(15) 

(H!) 

(17) 

(18) 
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Note that only 1he case of odd n is of interest here. 
General formulae for the number of Kekule structures of other series 

of CC molecules could be, if desired, obtained in an analogous manner. As 
to the authors' knowledge eqs. (16) and (18) as well as eq. (19) have not yet 
been obtained, despite of the simple algebraic demands required for their 
derivation. 

EXTENSION TO NON-ALTERNANT MOLECULES 

The algorithm derived in the previous chapter for alternant CC-molecules 
can be extended to non-alternants as in the following manner2• In non-alter
nant CC systems there exist necessarily bonds which are single bonds in all 
the Kekule structures (that is, they have a zero Pauling bond order). Obviously, 
the deletion of such bonds from the molecule cannot change the K-value. 
It can be shown easily that when all bonds with zero Pauling bond order are 
deleted from a non aliernant CC molecule an alternant CC molecule is ohtained. 

Moreover, a simple recipe exists to decide whether a bond is of zero bond 
order. Now, if, and only if there are odd numbers of odd-membered rings 
from both sides of such a bond, its Pauling bond order is zero .. 

In examples 22-24 such bonds are indicated by Z. The procedure which 
we would like to propose is now evident : first delete all Z-bonds and then 

22 = 3 23 24 

apply the 0-sequence algorithm. For instance, K(22) = 4, K(23) = 3 and 
K(24) = 2. 

As another example we give general formulae for K of 2n-cyclic mole
cules 25,26 and 27. 

~ ... :rfj ~--·~ 
25 26 

27 

After the deletion of the Z-bonds it can easily be seen that P n> Q,. and P ,, 
sequences, respectively, are obtained. Hence 

K(25) = K(P ,.) 

K(26) = K(Q,.) 

K(27) = K(P ,.) 

(19a) 

(19b) 

(19c) 
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CALCULATION OF THE PAULING BOND ORDERS 

As an additional application we would like to. show how the Pauling 
bond orders17 can be calculated using the same technique. If among the K 
Kekule structures of the molecule there are Dpq ones having · a double bond 
between the vertices p and q, the corresponding Pauling bond order is 
Dp/K. The Dpq-value is, in fact, the number of Kekule structures of the 
molecule obtained after the · deletion of the vevtices p and q. Therefore, 
Dpq can be obtained using the above described algorithm. We illustrate this 
on the examples of bonds 1,2 and 3,4 in 28. 

~ 
~ 

1 

·. ~ 28 

o,,(CO:OQ))=K ( ~

=K(oon=:o)=K(cx:n) x K( CO)= 
= 4x 3 = 12 

DJLl2Bl K(~) = 

=K(~)=K(co) =3 

Hence, the corresponding bond orders are 12/24 and 3/24, respectively. Here 
we have used the relations2,D: 

K(~) = K(?--<) !20l 

K ( ~) = K ( ~) (21l 

K(~)= K(AlxK(Bl !22l 



22 D . CVETKOVIC AND I. GUTMAN 

CONCLUSIONS 

The presented a1gorithm can be briefly summadzed as follows: 

step 1 : . if the molecule is non:..alternant, delete all Z-bonds; 

step 2: write .down the corresponding 0-sequence; 

step 3: calculaite 0 [ 0
1 ] and thus the number of Kekule structures; 

st~p 4: determine, if desired, the Pauling bond orders performing steps 
1-3 on the appropriately obtained structures. Eqs. (20)-(22) are 
to be used for simplification of the calculations. 

, . 

We note that the whole algorithm could be put in a form convenient for 
computer calculations. Particularly, step 3 contains n matrix multiplications. 

As it is us1).al in resonance theory17 the pa rity of the Kekule structures7
>
8 

i!s not taken into account. However, although a number of additional difficul
ties arise when the parity of KeklJ,le structures is considered, there seems to 
be a possibility to apply a modification of the O~sequnce algorithm for this 
case also. Work in this direction is in progress. 

or 

APPENDIX" 

Given a recursion relation 

F n = fl F n - 1 + f 2 F n - 2 + · · · + f t F n - t 

t 
l: f . F . = 0 

J n ·J 
j =O 

where f.
0 

= 1, we are looking for the solutions in the form 

Fn'. = cp <I>" 

Substituting (A-3) back into (A-2) one obtains for cp >'6 0 and <I> >'6 0: 

; , :· t 
l: fj <1>t-l = 0 

j = O 

(A-1) 

(A-2) 

(A-3) 

(A- 4) 

which is an equation of degree t and let its roots be <I> 1 , <I> 2, .• • , <I>t· Arbitrary 
linear combinations of <I>k (k = 1, 2, ... , t) : 

t 

Fn" = l: cpk <l>k" 
k = l 

are solutions of (A-2) because of 

t t t t 

l; fj (l: cpk <l>k n-l) = l; cpk <l>k n-t (l: f j <l>k t-l) = 0 
j = O k = l k = l j = O 

(A-5) 

The coefficients <pu cp 2, • •• , Cflt are to be determined fmm the knowledge of 
Fo, F i , ... ' Ft -1· 
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SAZETAK 

Kekuleove strukture i topologija. II. Kata-kondensirani sistemi 

Dragos Cvetkovic i Ivan Gutman 

Opisan je algoritam za numeriranje Kekuleoviih struktura nerazgranatih kata
-kondensiranih konjugiranih sistema i dobivene su opce formule za broj Kekuleovih 
struktura za nekoliko konjugiranih nizova. Paulingov red veze moze se lagano 
izracunati uporabom opisanog algoritma. 
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