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Stability constants of zinc 3-hydroxypropionato and 2-, 3-,
and 4-hydroxybutyrato complexes have been determined by
potentiometric titration. The constants and their standard errors
have been calculated with a digital computer. On the basis of the
results obtained, the stability of these complexes is discussed with
respect to the ligand basicity and the position of the hydroxyl
group within the ligand molecule.

This paper describes results obtained in a study of zinc hydroxymono-
carboxylato complexes, continuing a systematic investigation of metal com-
plexes with these ligands'?2. The present study aims to afford an insight
into the influences exerted by size and electron configuration of the central
metal ions upon the stability of their hydroxymonocarboxylato complexes
at constant ionic strength. Such investigations may also serve to study the
relationship of complex stability and ligand basicity, as well as the relation-
ship between stability and hydroxyl group position within the ligand molecule.
The literature® gives only scant information on zinc complex stabilities;
moreover, stability constants reported in the literature were obtained at
different ionic strengths, in solutions containing »inert« salts, which can
themselves enter into complexes with zinc (e. g. KCI).

EXPERIMENTAL

Potentiometric measurements with buffer solutions containing 2-, 3-, and
4-hydroxybutyrato, as well as n-butyrato zinc complexes, were carried out according
to H. Thun, F. Verbeek, and W. Wanderleen?. The titration vessel consisted of three
compartments. Compartment 1 contained the reference solution, 20.07 mM HCIO:,
adjusted to ionic strength 2 with NaClOs;. Compartment 2 held 5 ml (initial volume)
50 or 100 mM zinc perchlorate, adjusted to the same ionic strength with NaClOs.
A buffer solution, 1 M in both NaL and HL, was simultaneously delivered in
portions to the solutions in compartments 2 and 3, using a precision microburet
(Metrohm E 457, reproducibility 0.001 ml). Contact between compartments was
established by means of a three-branched salt bridge filled with 2 M NaClO.,.
The bridge endings were made of special porous glass. Mixing of solution was
performed by bubbling nitrogen through the liquids. During measurements mixing.
was interrupted, and the gas was allowed to stream over the liquids surfaces.
Potential differences between compartments 1 and 2 (E), and compartments 1
and 3 (E|) were measured with a Prizisions Kurbelkompensator (VEB Messtechnik),
connected to a Lange Multiflex Galvanometer Model MG-3. All measurements were
carried out with a quinhydrone electrode in each compartment, at 25.0 = 0.1°C.
Good agreement between formation curves obtained at different metal ion concen-
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trations suggested the absence of polynuclear complexes from the systems measured
and the absence of interaction between the metal ion and the quinhydrone electrode;
if such interaction took place, it must have been negligible.

Zinc 3-hydroxypropionato complexes were determined by continuous potentio-
metric titration with an E 436 Metrohm potentiograph. 10 ml of a solution (Si)
containing 20 mM NalL, 20 6 mM HL, and enough NaClO4 to obtain an ionic strength
of 2, was placed in to the titration vessel; another solution (Sg), containing 425 mM
NaL, 425 6 mM HL, adjusted to ionic strength 2 with NaClO4, was used as titrant
and delivered continuously from an automatic buret. Potential differences, E,
between the solution in the vessel and a reference solution (20 mM HC1O4, adjusted
to ionic strength 2 with NaClO4) were monitored during the titrant addition. Next,
Se was placed into the titration vessel, and S; was used as the titrant. In another
series, 10 ml of a solution (Ss) containing either 50 or 100 mM zinc perchlorate,
in addition to 20 § mM HL, and NaClO, to give an ionic strength of 2, was conti-
nuously titrated with a solution (Ss) composed of 425 mM Nal, 425 § mM HL, and
NaClO4 up to ionic strength 2, and potential differences (E) against the above
mentioned reference solution monitored during titration. Subsequently, again, the
titration was repeated in reverse order of sample and titrant.

The acid-to-salt (HL to NaL) ratio in one set of buffers was 1:1 (i.e. 6 = 1),
and in another set 3:1 (J = 3). Here, too, good agreement of formation curves
{Fig. 1), recorded with different metal ion concentrations, and different acid-to-salt
ratios, indicated the absence of polynuclear and hydroxo coplexes.

Reproducibility of added volumes in these titrations was 0.01 ml, and that
of potential measurements 0.2 mV. The solutions were mixed either magnetically,
or by bubbling nitrogen.

All chemicals were analytical grade, except the sodium salts of 2-, 3-, and
4-hydroxybutyric and of 3-hydroxypropionic acids. These salts were purified before
use; sodium hydroxybutyrates were recrystallized twice from ethanol, and sodium
3-hydroxypropionate from a mixture of ethanol and methanol. Zinc perchlorate
was prepared from zinc oxide and perchloric acid, and purified by three recrystal-
lizations. Sodium perchlorate was also purified by three recrystalilizations.

RESULTS AND DISCUSSION

Table I shows a typical set of results for different buffer compositions.
Zinc concentration in these buffers was 100 mM, and the acid-to-salt ratio
was 1:1.

Experimental data were treated with an IBM 1130 computer programmed

to calculate average numbers, n, of ligands bound to the central atom, as
well as values of free-ligand concentrations, [L], according to well-known
relationships®. In addition, a numerical treatment was applied to Fronaeus’

N
graphical method’, to give values for the function F, ([L]) =1+ = §; [L]\. By
i=1

solving these polynominals, using a weighted least-squares procedure, the
stability constants and their standard errors were obtained. The weighted
least-squares routine was the same as in a previous work$. Other details
of the numerical treatment and the computer program will be discussed
elsewhere.

Table II shows the stability constants obtained and their standard errors.
Taken together with reported data?®, the results from Table II and Fig. 1
demonstrate that the central atom binds a maximum of three ligands in the
hydroxypropionato, and a maximum of four in the hydroxybutyrato complex
series, provided the same zinc concentration and approximately the same
ligand concentrations are used. This difference is obviously unrelated to the
order of stabilities, since the 2-hydroxybutyrato complexes are considerably
more stable than the 3- and 4-hydroxybutyrato complexes. However, the
latter complexes containing three ligands, ML,", are very unstable (K, values
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Fig. 1. Formation curves of zinc 3-hydroxypropionate, n-butyrate, 2-hydroxybutyrate, 3-hydroxy-
butyrate and 4-hydroxybutyrate complex systems
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TABLE II

Cumulative Stability Constants

> |
@ |

Ligand l B l B2 i I Ba
3-Hydroxypropionate , 7.2 £ 0.1 ! 13+ 1 : 27+ 1 ;
2-Hydroxybutyrate 52 =1 | 1059 £16 | 6974 £ 173 | 17415 = 262
3-Hydroxybutyrate I 9.8 £ 0.1 | 51+ 1 | 31+ 5 | 313t 6
4-Hydroxybutyrate i 9.2 0.1 6+ 1 | 34+ 3 } 239 + 4
n-Butyrate 94Tl 45+ 2 | 54t 9 | 373+ 14

are 0.6 and 0.9, respectively), while type ML,> complexes have much greater

stabilities (K, values: 10 and 7, respectively). The relative stability of ML,*

type complexes is in accordance with the zinc coordination number of 4.
The effects of presence and position of a hydroxy group in the mono-

carboxylate anion, and the effect of the latter’s basicity, upon zinc complex
stabilities can be seen from data presented in Table IIl. This Table shows

TABLE IIT
Stability Constants of Monoligand Complexes at Ionic Strength 2 (NaCiOy)

&

Ligand f1 - PK,
Acetate? 7.0 £ 0.6 474
2-Hydroxyacetate? 52 * 17 3.77
Propionate’ 9.9 + 0.7 4.89
2-Hydroxypropionate® 40.7 3.82
3-Hydroxypropionate 7.2 0.1 456
n-Butyrate 94 + 0.1 4.86
2-Hydroxybutyrate 52 *1 3.80
3-Hydroxybutyrate 9.8 = 0.1 453
4-Hydroxybutyrate 9.2 + 0.1 4.85

* Our measurements.

values of stability constants for monoligand complexes (f;), along with pK,
values for the corresponding monocarboxylic acids, characterizing ligand
basicity. It is clear that a 2-hydroxy group stabilizes the corresponding zinc
monoligand complex quite considerably, despite a low ligand basicity. When,
however, the hydroxyl group occupies positions 3 or 4, it does not influence
complex stability, the hydroxymonocarboxylate ions thus acting as mono-
dentate ligands, and bind the metal ion only via the carboxylic group. Such
circumstances are in good accordance with the well-known property of ring
formation to contribute to complex stability, since a stable ring can be formed
only with the hydroxy group in position 2°. Ring stabilization depends, however,
on the size of the central metal atom? e.g. there is no difference in stability
between cadmium complexes with unsubstituted and substituted monocarboxy-
late anions.
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I1ZVOD

Konstante stabilnosti cinkovih kompleksa s 3-hidroksipropionatom
i 2-, 3- i 4-hidroksibutiratom

1. Filipovié, I. Piljac, B. Bach-Dragutinovié¢, I. Kruhak i B. Grabarié

Odredene su konstante stabilnosti 3-hidroksipropionato i 2-, 3- i 4-hidroksi-
butirato-kompleksa cinka potenciometrijskom titracijom. Konstante stabilnosti i
njihove standardne pogreSke dobivene su pomocu elektroni¢kog ratunala. Na osnovu
rezultata diskutirana je stabilnost kompleksa s obzirom na bazi¢nost liganda i polozaj
hidroksilne skupine u ligandu.
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