On the Additivity of the Molecular Second Moments of Charge and Diamagnetic Susceptibility

Z. B. Maksić
Institute »Ruđ̃er Bošković, 41001 Zagreb, Croatia, Yugoslavia

Received February 5, 1973
It was shown that the application of the additivity rules [Chem. Phys. Letters 13 (1972) 571] may be very helpfull for the determination of the sign of the g tensor.

Recently, a large number of experimental molecular quadrupoles, diamagnetic and paramagnetic susceptibilities and second moments of charge became available ${ }^{1}$. This immence pool of experimental data gave strong impetus for the theoretical treatment of these quantities on the semiempirical level ${ }^{2-4}$. The additivity of second moments was put forward first by Flygare et $a l .{ }^{5}$ who have shown that the second moment related to the out of the heavy atoms plane coordinate c is easily obtained by using simple empirical additivity rules. These rules were subsequently rationalised within the framework of the semiempirical CNDO/2 method where $\left\langle\mathrm{c}^{2}\right\rangle$ second moments were calculated in the one-center approximation ${ }^{2}$. Flygare et al. ${ }^{6}$ established recently an empirical scheme based on atomic dipoles which enables highly accurate estimates of second moments. This method takes into account the anisotropy of the electronic charge distribution in the vicinity of nuclei and also employs different parameters for the same atom in different moieties. We have shown ${ }^{7}$ that the molecular second moments of electronic charge can be easily calculated, albeit not so accurate, by an additivity equation which employs only few parameters

$$
<o\left|v^{2}\right| o>=\sum_{\mathrm{n}}^{\mathrm{E}} \mathrm{Z}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}^{2}+\underset{\mathrm{p}}{\mathrm{\Sigma} \mathrm{k}_{\mathrm{p}} \mathrm{n}_{\mathrm{p}} .}
$$

where v denotes coordinates x, y and z of the molecular system of coordinates*, $\mid 0>$ is the ground state Slater determinant, Z_{n} is atomic number of the nucleus n, n_{p} is a number of atoms belonging to the p-th period of the Mendeleev system of elements and k_{p} is a constant characterising p-th period. It is seen from the formula (1) that the atomic contribution to the molecular second moment is not only isotropic but it is also constant for all atoms belonging to the same period. The values k_{p} found earlier ${ }^{7}$ read as follows (in $10^{-16} \mathrm{~cm}^{2}$):

[^0]
table I

Comparison between the Calculated and Experimental Second Moments and

olecule		Calcd.	Exp.	Calcd.	Exp.
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =22.1 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =4.3 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =0 \end{aligned}$	$\begin{array}{lr} \left\langle\mathrm{a}^{2}\right\rangle= & 25.1 \\ \left.<\mathrm{b}^{2}\right\rangle= & 7.3 \\ \left.<\mathrm{c}^{2}\right\rangle= & 3.0 \end{array}$	$\begin{array}{r} 25.2 \\ 6.9 \\ 3.0 \end{array}$	$\begin{aligned} & \chi_{\mathrm{ad}}^{\mathrm{d}}=-43.7 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-49.2 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-137.4 \end{aligned}$	$\begin{aligned} & -42.0 \\ & -119.7 \\ & -136.2 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =19.0 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =2.4 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =0 \end{aligned}$	$\begin{array}{lr} \left\langle\mathrm{a}^{2}\right\rangle= & 22.0 \\ \left\langle\mathrm{~b}^{2}\right\rangle= & 5.4 \\ \left\langle\mathrm{c}^{2}\right\rangle= & 3.0 \end{array}$	$\begin{array}{r} 25.7 \pm 1.2 \\ 5.4 \pm 1.2 \\ 3.2 \pm 1.2 \end{array}$	$\begin{aligned} & \chi_{\mathrm{ad}}^{\mathrm{d}}=-35.6 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-106.1 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-116.2 \end{aligned}$	$\begin{aligned} & -36.8 \pm 2.6 \\ & -122.6 \pm 2.6 \\ & -132.0 \pm 4.6 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}^{2} & =20.9 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}^{2} & =0 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{z}_{\mathrm{n}}^{2} & =10.2 \end{aligned}$	$\begin{array}{lr} \left\langle\mathrm{x}^{2}\right\rangle= & 23.9 \\ \left.<\mathrm{y}^{2}\right\rangle= & 3.0 \\ \left\langle\mathrm{z}^{2}\right\rangle= & 13.2 \end{array}$	$\begin{array}{r} 24.0 \\ 2.6 \\ 13.1 \end{array}$	$\begin{aligned} & \chi_{\mathrm{xx}}^{\mathrm{d}}=-68.7 \\ & \chi_{\mathrm{yy}}^{\mathrm{d}}=-157.4 \\ & \chi_{\mathrm{zz}}^{\mathrm{d}}=-114.1 \end{aligned}$	$\begin{aligned} & -66.7^{11} \\ & -157.4 \\ & -112.6 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}^{2} & =0.8 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}^{2} & =0 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{z}_{\mathrm{n}}^{2} & =11.2 \end{aligned}$	$\begin{array}{lr} \left.<x^{2}\right\rangle= & 4.0 \\ \left.<y^{2}\right\rangle= & 3.2 \\ \left\langle z^{2}\right\rangle= & 14.4 \end{array}$	$\begin{array}{r} 3.8 \\ 3.0 \\ 15.2 \end{array}$	$\begin{aligned} & \chi_{\mathrm{xx}}^{\mathrm{d}}=-74.7 \\ & \chi_{\mathrm{yy}}^{\mathrm{d}}=-78.1 \\ & \chi_{\mathrm{zz}}^{\mathrm{y}}=-30.5 \end{aligned}$	$\begin{aligned} & -77.7^{12} \\ & -80.9 \\ & -\quad 29.2 \end{aligned}$
	$\begin{aligned} & \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}^{2}=0.6 \\ & \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}^{2}=0 \\ & \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{z}_{\mathrm{n}}^{2}=24.4 \end{aligned}$	$\begin{array}{lr} \left\langle\mathrm{x}^{2}\right\rangle= & 3.8 \\ \left\langle\mathrm{y}^{2}\right\rangle= & 3.2 \\ \left\langle\mathrm{z}^{2}\right\rangle= & 27.6 \end{array}$	$\begin{array}{r} 3.6^{b} \\ 3.1 \\ 28.1 \end{array}$	$\begin{aligned} & \chi_{\mathrm{xx}}^{\mathrm{d}}=-130.7 \\ & \chi_{\mathrm{yy}}^{\mathrm{d}}=-133.2 \\ & \chi_{\mathrm{zz}}^{\mathrm{d}}=-29.7 \end{aligned}$	$\begin{aligned} & -132.0^{12} \\ & -134.5 \\ & -28.4 \end{aligned}$

TABLE I (contd.)

Molecule		Calcd.	Exp.	Calcd.	Exp.
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}^{2} & =4.3 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}^{2} & =2.0 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{z}_{\mathrm{n}}^{2} & =16.8 \end{aligned}$	$\begin{array}{rr} \left\langle\mathrm{x}^{2}\right\rangle= & 7.5 \\ \left.<\mathrm{y}^{2}\right\rangle= & 5.2 \\ \left\langle\mathrm{z}^{2}\right\rangle= & 20.0 \end{array}$		$\begin{aligned} & \chi_{\mathrm{xx}}^{\mathrm{d}}=-106.2 \\ & \chi_{\mathrm{yy}}^{\mathrm{d}}=-115.6 \\ & \chi_{\mathrm{zz}}^{\mathrm{d}}=-53.8 \end{aligned}$	$\begin{aligned} & -110.8^{13} \\ & -122.7 \\ & -56.0 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =40.1 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =15.4 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =3.2 \end{aligned}$	$\begin{aligned} \left.<\mathrm{a}^{2}\right\rangle= & 44.8 \\ \left.<\mathrm{b}^{2}\right\rangle= & 20.1 \\ \left\langle\mathrm{c}^{2}\right\rangle= & 7.9 \end{aligned}$	$\begin{aligned} 45.0 & \pm 0.8 \\ 21.2 & \pm 0.8 \\ 9.0 & \pm 0.8 \end{aligned}$	$\begin{aligned} & \chi_{\mathrm{aa}}^{\mathrm{d}}=-118.8 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-223.6 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-275.3 \end{aligned}$	$\left[\begin{array}{l} -128.1 \pm 1.8^{14} \\ -229.3 \pm 2.2 \\ -280.8 \pm 2.4 \end{array}\right.$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =25.2^{* *} \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =5.5 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =0 \end{aligned}$	$\begin{array}{rr} \left.<\mathrm{a}^{2}\right\rangle= & 28.8 \\ <\mathrm{b}^{2}>= & 9.1 \\ \left.<\mathrm{c}^{2}\right\rangle= & 3.6 \end{array}$	$\begin{aligned} 28.3 & \pm 0.9 \\ 8.4 & \pm 0.9 \\ 4.0 & \pm 0.9 \end{aligned}$	$\begin{aligned} & \chi_{\mathrm{aa}}^{\mathrm{d}}=-53.9 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-137.4 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-160.8 \end{aligned}$	$\begin{aligned} & -52.8 \pm 1.1^{15} \\ & -137.3 \pm 2.9 \\ & -156.0 \pm 3.1 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =32.6 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =31.4 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =0 \end{aligned}$	$\begin{aligned} \left.<\mathrm{a}^{2}\right\rangle= & 38.4 \\ \left.<\mathrm{b}^{2}\right\rangle= & 37.2 \\ \left.<\mathrm{c}^{2}\right\rangle= & 5.8 \end{aligned}$	$\begin{aligned} 37.4 & \pm 0.7^{\mathrm{p}} \\ 37.7 & \pm 0.7 \\ 6.9 & \pm 0.7 \end{aligned}$	$\begin{aligned} & \chi_{\mathrm{aa}}^{\mathrm{d}}=-182.4 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-187.5 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-320.7 \end{aligned}$	$\begin{aligned} & -189.1 \pm 1.8^{16} \\ & -187.7 \pm 1.9 \\ & -318.7 \pm 2.0 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =78.2 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =48.3 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =0 \end{aligned}$	$\begin{aligned} &\left.<\mathrm{a}^{2}\right\rangle=86.5 \\ &\left.<\mathrm{b}^{2}\right\rangle= 48.6 \\ &\left.<\mathrm{c}^{2}\right\rangle= 8.3 \end{aligned}$	$\begin{aligned} 86.5 & \pm 3.4^{\mathrm{g}} \\ 47.9 & \pm 3.4 \\ 9.8 & \pm 3.4 \end{aligned}$	$\begin{aligned} & \chi_{\mathrm{aa}}^{\mathrm{d}}=-241.4 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-402.2 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-573.1 \end{aligned}$	$\begin{aligned} & -244.8 \pm 8.2^{17} \\ & -408.5 \pm 9.5 \\ & -570.5 \pm 10.0 \end{aligned}$
	$\begin{aligned} \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2} & =98.7 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}^{2} & =49.9 \\ \Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2} & =0 \end{aligned}$	$\begin{array}{lr} <\mathrm{a}^{2}>= & 106.5 \\ <\mathrm{b}^{2}>= & 57.7 \\ \left.<\mathrm{c}^{2}\right\rangle= & 7.8 \end{array}$	$\begin{gathered} 105.7^{\mathrm{h}} \\ 57.2 \pm 5.1 \\ 8.7 \end{gathered}$	$\begin{aligned} & \chi_{\mathrm{aa}}^{\mathrm{d}}=-277.9 \\ & \chi_{\mathrm{bb}}^{\mathrm{d}}=-484.9 \\ & \chi_{\mathrm{cc}}^{\mathrm{d}}=-696.6 \end{aligned}$	$\begin{aligned} & -279.5 \pm 10.0^{8} \\ & -485.5 \pm 15.1 \\ & -691.3 \pm 15.1 \end{aligned}$

[^1]| p | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| k_{n} | 0.2 | 1 | 2.5 | 3.5 | 5.5 |

Here we give some more evidence for the additivity of the second moments in the sense of the equation (1) and for the additivity of the closely related diamagnetic susceptibility. We shall discuss in particular the potential use of the eqn. (1) in determining the sign of the g tensor. The earlier approaches used additivity of $<\mathrm{c}^{2}>$ second moments ${ }^{5}$ or semiempirical CNDO/2 method ${ }^{4}$. The second moments obtained by the eqn. (1) and the diagonal elements of the diamagnetic susceptibility tensor

$$
x_{\mathrm{aa}}^{\mathrm{d}}=\left(\mathrm{Le}^{2} / 4 \mathrm{mc}_{0}{ }^{2}\right)<\mathrm{o}\left|\mathrm{~b}^{2}+\mathrm{c}^{2}\right| \mathrm{o}>*
$$

are compared with some $a b$ initio results and the most recent experimental data in the Table I. The agreement with experiment and $a b$ initio calculations is very good, the exception being ozone. This discrepancy indicates that either some special bonding feautres are present in this molecule or perhaps that the experimental results should be reinvestigated. The second moments in 2-fluoropyridine are not unambiguously determined by the experiment due to the indeterminacy in sign of the g values ${ }^{8}$. The set of second moments presented in Table I corresponds to the diagonal g components - $0.088,-0.041$ and 0.023 for $g_{a a}, g_{b b}$ and $g_{c c}$ respectively. The alternative choice of sign in g would lead to the negative $\left\langle\mathrm{c}^{2}\right\rangle=-10.7$ value and could be rejected as physically unacceptable since $\left\langle\mathrm{v}^{2}\right\rangle$ is always positive. Nevertheless the fine agreement obtained for the former set of second moments illustrates the potential capability of the eqn. (1) to make a proper choice of sign, what could be very useful in cases where both sets of second moments are physically acceptable. If the bulk magnetic susceptibility is not known then only the anisotropies in the second moments could be experimentally obtained. The anisotropies for dimethylketene, propynal and $\mathrm{SF}_{ \pm}$are listed in the Table II. The agreement with experiment for propynal and SF_{4} is satisfactory. There are two possible sets of second moments for dimethylketene ${ }^{9}$. The corresponding values are close to each other and it is hard to make a choice. Despite of that it seems that the set $\mathrm{g}<0$ is slightly preferable.

To conclude, one can say that the present results provide further support of the simple additivity formula (1). It gives also a very simple criterion for the choice of the sign of g values. Therefore it is not necessary to perform semiempirical calculation of second moments for this purpose as we recomended earlier ${ }^{4}$ since the straightforward application of the formula (1) will suffice if the two possible sets are not too close to each other. It should be mentioned that the second moments calculated by the eqn. (1) could be easily transformed to the gauge invariant values ${ }^{10}$ simply by transforming the terms $\Sigma Z_{n} \mathrm{v}_{\mathrm{n}}^{2}$ to the center of the positive charge of a molecule.

[^2]table ir
Comparison between the Calculated and Experimental Anisotropies in Second Moments

Molecule		Calcd.	$\mathrm{g}<0$	Exp.	$\mathrm{g}>0$
	$\Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2}=70.3$	$\left.<\mathrm{a}^{2}>-<\mathrm{b}^{2}\right\rangle=33.4$	$33.8 \pm 1.0^{\text {a }}$		31.3 ± 1.2^{9}
	$\Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}^{2}=36.9$	$<\mathrm{b}^{2}>-<\mathrm{c}^{2}>=33.7$	34.4 ± 0.9		34.1 ± 0.9
	$\mathrm{\Sigma} \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2}=3.2$	$\left\langle\mathrm{c}^{9}\right\rangle-\left\langle\mathrm{a}^{2}\right\rangle=-67.1$	-68.2 ± 1.1		-65.9 ± 1.1
	$\mathrm{\Sigma} \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2}=56.9$	$\left.<\mathrm{a}^{2}>-<\mathrm{b}^{2}\right\rangle=51.9$		51.6 ± 0.5^{18}	
	$\mathrm{\Sigma} \mathrm{Z}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}^{2}=5.0$	$<\mathrm{b}^{2}>-<\mathrm{c}^{2}>=5.0$		4.3 ± 0.7	
	$\Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2}=0$	$\left\langle\mathrm{c}^{2}\right\rangle-\left\langle\mathrm{a}^{2}\right\rangle=-56.9$		-55.9 ± 0.4	
	$\Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{2}=48.6$	$\left\langle\mathrm{a}^{2}\right\rangle-\left\langle\mathrm{b}^{2}\right\rangle=22.8$		24.3 ± 0.9^{19}	
	$\Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}^{2}=25.8$	$<\mathrm{b}^{2}>-<\mathrm{c}^{2}>=15.7$		17.0 ± 1.3	
	$\Sigma \mathrm{Z}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{2}=10.1$	$<\mathrm{c}^{2}>-<\mathrm{a}^{2}>=-38.5$		-41.3 ± 1.1	

Acknowledgment. I would like to thank to Dr. W. Hüttner for critical reading of the manuscript and useful comments.

REFERENCES

1. W. H. Flygare and R. C. Benson, Mol. Phys. 20 (1971) 225, and the references cited therein.
2. J. E. Bloor and Z. B. Maksić, Mol. Phys. 22 (1971) 351 ; Z. B. Maksié and J. E. Bloor, Croat. Chem. Acta 44 (1972) 435.
3. J. R. Rabinowitz and R. Rein, Int. J. Quant. Chem. 6 (1972) 669; R. Rein, G. R. Pack and J. R. Rabinowitz, J. Magn. Res. 6 (1972) 360.
4. J. E. Bloor and Z. B. Maksić, J. Chem. Phys. 57 (1972) 3572.
5. R. P. Blickensderfer, Y. H. S. Wang, and W. H. Flygare, J. Chem. Phys. 51 (1971) 3196.
6. T. D. Gierke, H. L. Tigelaar, and W. H. Flygare, J. Am. Chem. Soc. 94 (1972) 331.
7. Z. B. Maksić and J. E. Bloor, Chem. Phys. Lett. 13 (1972) 571; Z. B. Maksić and J. E. Bloor, J. Phys. Chem. (in press).
8. D. Sutter, Z. Naturf. 26a (1971) 1644.
9. D. Sutter, L. Charpentier, and H. Dreizler, Z. Naturf. 27a (1972) 597.
10. L. Weisenthal and A. M. de Graf, Phys. Rev. Lett. 27 (1971) 470.
11. Ab initio results: C. Petrongolo, E. Scrocco, and J. Tomasi, J. Chem. Phys. 48 (1969) 407.
12. Ab initio results: R. Bonacconsi, C. Petrongolo, E Scrocco, and J. Tomasi, J. Chem. Phys. 48 (1968) 1500.
13. Ab initio results: E. A. Laws, R. M. Stevens, and W. N. Lipscomb, J. Am. Chem. Soc. 94 (1972) 4461.
14. E. Hamer, D. H. Sutter, and H. Dreizler, Z. Naturf, 27a (1972) 1159.
15. H. L. Tigelaar and W. H. Flygare, J. Am. Chem. Soc. 94 (1972) 343.
16. B. Bak, E. Hamer, D. H. Sutter, and H. Dreizler, Z. Naturf. 27a (1972) 705.
17. W. Czieslik, D. Sutter, H. Dreizler, C. L. Norris, S. L. Rock, and W. H. Flygare, Z. Naturf, 27a (1972) 1691.
18. R. C. Benson, R. S. Scott, and W. H. Flygare, J. Phys. Chem. 73 (1969) 4359.
19. R. G. Stone, H. L. Tigelaar, and W. H. Flygare, J. Chem. Phys. 53 (1970) 3947.

IZVOD

O aditivnosti drugih momenata elektronskog naboja molekula i dijamagnetske susceptibilnosti

Z. B. Maksić

Pokazano je da primjena pravila aditivnosti [Chem. Phys. Letters 13 (1972) 571] može pomoći kod određivanja predznaka g-tenzora.

```
INSTITUT }>\mathrm{ RUĐER BOSKOVIC<<
```


[^0]: * v refers frequently to the principal inertial axes coordinates a, b and c .

[^1]: * The experimental data are taken from the ref. (1) if it is not stated otherwise; ** A planar structure of formamide was assumed.

[^2]: * The remaining two expressions are easily obtained by the cyclic permutation of the coordinates while the constants have their usual meaning.

