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A method is given to obtain all NBMO's for both alternant 
and nonalternant aromatic hydrocarbons. In addition few theorems 
are derived which can be used to deduce some (or all) of the 
NBMO's directly from the graph of the molecule. 

INTRODUCTION 

Ruckel molecular theory is one of the simplest semiempirical approaches 
to the study of electronic structure of large organic molecules. However, even 
this theory becomes more and more cumbersome when applied to large 
systems. If the number of carbon atoms exceeds 5, and there is no symmetry 
which would reduce the Ruckel matrix, one can practically not avoid the use 
of a computer. On the other hand, we are always interested in the solution 
of the Ruckel problem as a whole. The stability of the molecule, charge 
densities, reactivities, dipole moments etc. are usualy quantities which we 
would like to infer from those solutions. From this point of view, n on-bonding 
molecular orbitals (NBMO's) are of particular interest. In even alternant 
hydrocarbons the existence of such an orbital implies a triplet ground state 
and instability of the molecule. Moreover, within the theo;y given by Fukui 
et al.,1•2 electrons occupying NBMO's are responsible for chemical reactivity. 

The aim of this paper is to describe a general method to obtain all 
NBMO's for both, altemant and nonalternant hydrocarbons. 

Basic Algoritm for Evaluation of the NBMO's 
Each carbon atom in an aromatic hydrocarbon can be linked either tO 

one, two or three neighbouring carbon atoms (Fig. la, lb and le, respectively). 
These three possibilities correspond to three types of conditions imposed by 
that atom to the NBMO coefficients. From the Ruckel equation one can easily 
infer the following rules: 

1) If the atom 1 is linked solely to the atom 2, then the NBMO coefficient 
at the atom 2 vanishes, i. e. c2 = 0 (Fig. la). We will say that atom 1 is in an 
a-position. 

2) If the atom 1 is linked to two atoms 2 and 3 (Fig. lb), the sum of 
NBMO coefficients at these atoms vanishes, i. e. c2 + c3 = 0. Such a position 
we will define as b-positiom.. 

3) If the atom 1 is linked to three atoms then the sum of NBMO coef
ficients at these atoms vanishes, i.e. c2 + c3 + c4 = 0 (Fig. le) . We call such 
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a position a c-position. We notice that the above rules are generalizations of 
analogous rules for alternant hydrocarbons3- 5 . 

Now, each carbon atom gives rise to one condition of the above type. We 
end up with n conditions for n NBMO coefficients. Each condition is repre
sented by a homogeneous equation in one, two or three unknowns. These 
equations have either only trivial solution, which means that there is no 
NBMO, or they have non-trivial solutions, each corresponding to ooe NBMO. 
However, it is not necessary to write down these equations in order to obtain 
the NBMO's. The whole calculation can be performed using the graph of 
the molecule. The following example (Fig. 2.) illustrates this procedure. 
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We look e.g. for all NBMO's (if any) of m-xylylene (Fig. 2a). Conditions 
imposed by atoms 1 and 7, which occupy a-positions, give NBMO coefficients 
at atoms 2 and 6 to be equal to zero. Atoms 3 and 5 (b-position) give the value 
of the NBMO coefficients at atom 4 equal to zero (since C4 = - c2 = 0 by 3, 
and c4 = - c0 = 0 by 5). At . the same time condition 8 is fulfilled (c2 + Ce = 0 
condition 8). In order to indicate that all these conditions have been taken 
into account we mark correspondimg atoms with dots (Fig. 2b). 
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Now we arbitrarily put the value of the NBMO coefficient at atom 1 to 
be a and at atom 3 to be b. By 4 we have c5 = - b, 2 implies c8 = - (a + b) 
and 6 implies c7 = a + 2 b. All conditions are . now fulfilled, and since there 
are two independent parameters left, a and b, ' two NBMO's do exist (Fig. 2c) 
The first we can choose by putting b = 0, and the second by putting a = 0 
(Fig. 2d and 2e). Normalisation conditions yield in the first case a = lh/3 and 
in the second b = 1/v7. The two NBMO's are not orthogonal, but can easily 
be made to be so. 

NBMO's for some Special Classes of Molecules 
The above procedure can be applied to each Hiickel type molecule and 

it automatically yields all NBMO's. However, some special classes of molecules 
might be of particular interest. First we will give two examples, linear and 
cyclic polyenes, where the number of NBMO's is already well known. 

1) Linear polyenes (chain, Fig. 3a). If the linear polyene has an even 
number of atoms, there is no NBMO, if the number of atoms is odd, there is 
one and only one NBMO. Condition 1 implies c2 = 0, this implies c4 = 0 etc. 
Now assume the NBMO coefficient at atom 1 to be a. This implies c3 = - a, 
hence c5 = a etc. If the number of atoms is even, we end with cn-i = ± a and 
hence (condition n) a= 0, i.e. there is no NBMO. If the number is odd we 
have cn = ± a, all conditions being fulfilled and there is one NBMO (Fig. 3a). 
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2) Cyclic polyenes (ring, Fig. 3b). If the number of atoms in a cyclic 
polyene is 4m + 4, there are two NBMO's, otherwise there is no NBMO. 
We start by putting c1 = a, hence c3 = - a, c5 = a, . .. If the number of atoms 
is odd, we end up with c2 = ±a. Now we go on in the same direction, i.e. c4 = 
= + a, c6 = ± a and finally we hawe c3 = a, which implies a = 0. There is 
no NBMO. Assume now the number of atoms to be even. The same procedure 
yields c3 = - a, c5 = a, . . . and finally c1 = ± a, the sign of a being positive 
if there are 4m + 4 atoms in the ring and negative if there are 4m + 2 atoms. 
The latter case means a = 0. Similarly we can put c2 = b which implies 
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c4 = - b, c6 = b, . . . , c2 = ± b. Hence if there are 4m + 4 atoms in the r ing 
there are two NBMO's, and all other oases there is no NBMO (Fig. 3b). 

3) Bicyclic systems (Fig. 3c). Bicyclic systems have either three, one or 
no NBMO. We shall notice first that a bicyclic system consists of three rings, 
the number of atoms in these rings being n1 , n 2 and n3 , respectively. One can 
formulate the necessary and sufficient conditions for a bicyclic system to 
have NBMO's in terms of these numbers. Let us define four types of rings, 
type 1 consisting of 4m + 1, type 2 of 4m + 2, type 3 of 4m + 3 and type 
4 of 4m + 4 atoms in a ring (here m = 0, 1, 2, . .. ). We give now, without proof 
which can be derived on the base of rules 1-3 (Fig. 1.), the following 
conclusions: In order that a bicyclic system has NBMO, there must be at least 
one ring of the type 4. 
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a) There are three NBMO's if and only if all three rings are of the type 4. 
b) There is one NBMO if one ring is of the type 4 and the other two are 

either of the same type (different from the type 4), or of the types 1 and 3 
(3 and 1), respectively. 

c) In all other cases no NBMO exists. 
Some examples of bicyclic systems having NBMO's are shown on Fig. 3c. 

Once the number of NBMO's is known, the construction of these orbitals, 
applying rules 1-3, presents no difficulty. 

Along the same lines one can obtain NBMO's for some other classes of 
molecules. One can show, e. g., that all classes given on Fig. 3d. have no 
NBMO. The NBMO coefficients for some classes .of odd alternant hydrocarbons 
(which are known to have at least one NBM06) are given on Fig. 3e. and 
Fig. 3f. 

Some Theorems Concerning the Number of NBMO's 
Some general conclusions can be inferred from the rules 1-3 given above 

(Fig. 1.). 
Theorem 1: Let A be a molecule having NBMO and let NBMO coefficients 

at atoms x, y, z, u, v ... (which occupy b-positions) vanish. Each composed 
molecule A'= A+ B + C + ... which can be obtained by joining molecule 
A at some (or all) of the atoms x, y, z, u, v ... with molecules B, C, ... (or by 
joining these atoms inbetween) has at least one NBMO (Fig. 4a) . 
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Fig. 4a 

In order to obtain this NBMO we simply assume all NBMO coefficients at 
atoms of the molecules B, C, ... to be equal to zero, retaining the old NBMO 
at the molecule A. Such NBMO automatically satisfies rules 1-3 above. Some 
examples are given on Fig. 4b. 

a O -a 

• • • - :};-: 
oCJo 

0 
Antropyl 

-a 

- ;eta 
0 

Cyclobutadiene -1, 3-bimethyl 

a Vv a _ A Bis-methylencyclopropyl 

C' 0 a a 

Fig. 4b 



NON-BONDING MOLECULAR ORBITALS 357 

If two or more component molecules possess NBMO's, one can infer the 
existence of more than one NBMO (Fig. 4c). 
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Some further specifications can be made when a component molecule is 
an odd alternant hydrocarbon. It is well known that such molecules have at 
least one NBMO with vanishing coefficients at nonstarred atoms.6 Hence, and 
from theorem 1 we obtain: 

Theorem 2a: If there is a component molecule which is an odd alternant 
hydrocarbon, and if this molecule is joined to the rest of the molecule at 
nonstarred b-positions only, then the composed molecule has at least one 
NBMO. This NBMO is the same as the NBMO of the component molecule. 

Let us illustrate this on m-xylylene (Fig. 2.). One can immediately recognize 
two odd alternant hydrocarbon components of this molecule joined to the rest 
of the molecule at nonstarred b-positions only (Fig. 5a). Hence there are at 
least two NBMO's. We actually know that there are exactly two (Fig. 2d and 
2e). In fact there are two more odd alternant hydrocarbon components which 
give rise to NBMO's (Fig. 5b). However, each of those components contains 
starred atoms still covered by one or the other of the components on Fig. 5a. 
Hence the corresponding NBMO's of Fig. 5b are linear combinations of NBMO's 
associated with Fig. 5a. 

Some other examples of the application of theorem 2a are shown on Fig. 
5c-5j. The structure which is a linear combination of the others is given in 
brackets. 

One can derive a similar theorem for the case of even alternant hydro
carbon components. As shown by Coulson and Longuet-Higgins,6 if two MO's 
of an even alternant hydrocarbon form a pair, they are given by 

0 

'f1; = I C; r Zr + I C; 8 Z8 
r s 

0 

'Pi = L ci r Zr - ~ cis Zs 
r s 

where r refers to starred and s to nonstarred atoms, cp; being the first and~ 
cpi the second MO. Now, if two NBMO's form a pair they can be chosen in_ 
the form 
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i.e. NBMO qi~ has vanishing amplitudes at all nonstarred atoms, and NBMO 
qi~ at all starred. If we join such a molecule to other molecules at nonstarred 
b-positions only, there is a NBMO qi~ having vanishing amplitudes at all such 
positions and according to theorem 1 the composed molecule has at least one 
NBMO. The same holds for starred positions. Hence: 

Theorem 2b: If there is a component molecule which is an even alternant 
hydrocarbon having at least one NBMO, and if this component molecule is 
joined to the rest of the molecule at nonstar red (starred) b-positions only, 
t hen the composed molecule has at least one NBMO. This NBMO is the same 
as the NBMO of the component molecule. 

Some examples of the application of theorem 2b are given on Fig. 6. 
Theorems 2a and 2b give sufficient conditions that a composed molecule 

has NBMO. However, these conditions are not necessary, i. e. there are mole·
cules having NBMO and which have no component alternant hydrocarbon 
of the type specified in theorems 2a and 2b (see Fig. 7.). 

The following two theorems give necessary and sufficient conditions for 
obtaining the number of NBMO's and NBMO coefficients of the composed 
molecule, once the number of NBMO's and NBMO coefficients of the component 
molecule are known. 
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Theorem 3a: Let A' = A + B be a composed molecule and let B be joined 
to A at atom x which assumes either a- or b-position. If Bis an even numbered 
chain or a 4m + 2 ring (m = 1, 2,3, ... ) then the numbers of NBMO's in A' and 
A are equal. Each NBMO of A' is an extension of the corresponding NBMO 
in A (Fig. Sa and Sb). 

Theorem 3b: Let again A'= A+ B be a composed molecule and let B be 
joined to A at atom x (in either a- or b-position) . Let further A* be a molecule 
which we obtain by removing atom x from a molecule A. If B is an 
odd numbered chain then the numbers of NBMO's in A' and A* are equal, 
each NBMO of A' being an extension of the corresponding NBMO in A*. If B 
is a 4m + 4 type ring, then the number of NBMO's in A ' is by one higher 
then the number of NBMO's in A*. The extra orbital corresponds to the ring, 
while other orbitals in A' are extensions of the corresponding orbitals in A* 
(Fig. Sc and Sd). 

We notice that in both cases (theorem 3a and 3b), component B 
is allowed to be joined to the molecule A at any position (a- and b-positions 
cover all possible cases of such a composition), while the nature of the molecule 
A (alternant or nonalternant) is not specified. (On Fig. S. is given only the 
case when atom x occupies b-position in the molecule A. The case when x 
occupies a-position is analogous). 

Both theorems can be proved by inspection. E. g . let us take the case 
of an even chain joined to the molecule A at b-position (Fig. Sa). Assume first 
molecule A to have an NBMO. There is an NBMO coefficient a at atom x and 
NBMO coefficients b and - b on neighbouring atoms (rule 2, Fig. lb). If we 
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now join an even chain at the atom: x and retain old NBMO coefficients at all 
atoms of the molecule A, we have (rule 3, Fig. le) NBMO coefficient zero at 
the first atom of the chain, NBMO coefficient - a at the second atom etc. 
We end with the last atom in the chain where the NBMO coefficient assumes 
the value (-)012 a , n being the number of atoms in the chain. Conditions 
imposed by all atoms in A' are now satisfied and hence each NBMO of A 
induces an associated NBMO of A' which is an extension of the first one. 
Conversely, let the molecule A' = A + B have NBMO. The NBMO coefficients 
at the (n -1)-th atom of the chain vanishes by virtue of the condition 
imposed by the last atom in the chain. Similarly the NBMO coefficients at the 
(n - 3)-th atom vanishes etc. We end with the first atom in the chain where 
the NBMO coefficient vanishes as well. Now, assume the NBMO coefficient 
at atom x to have the value a. The NBMO coefficients at the two atoms 
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neighbouring to the atom x in the molecule A are b and - b (since the NBMO 
coefficients at the first atom of the chain vanishes, Fig. le). If we now remove 
the chain from the molecule A, retaining all the NBMO coefficients at this 
molecule, we see that there is no violation of the conditions imposed by all 
atoms of A to the NBMO coefficients. Hence to each NBMO of A' = A + B 
there corresponds a NBMO of A. 

The above constitutes the proof for the case of an even numbered chain B 
joined to the molecule A. Other cases can be proved along the same lines. 

As an example let us consider 2-azulenylmethyl (Fig. 9a). Applying twice 
theorem 3b (each time we remove a part of a molecule which is represented 
by dotted lines) we obtain the odd numbered chain which is known to have 
one NBMO. Hence 2-azulenylmethyl has one NBMO as well. One can easily 
write down NBMO coefficients of this NBMO starting from the NBMO coef
ficients of the last structure in Fig. 9a and going backwards (Fig. 9b). 
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Another example is shown on Fig. 9c. The final structure consists of two 
separate atoms, and to each atom (which is an odd numbered chain having 
only one atom) corresponds one NBMO. Hence cyclobutadiene-1,3-bimethyl has 
two NBMO's. The number of NBMO's in vinylcyclobutadiene (Fig. 9d) can be 
obtained by two alternant ways. We can apply theorem 3a and remove an 
even chain (upper part of Fig. 9d). The final structure is a 4m + 4 ring which 
is known to have two NBMO's. Alternatively we can (by theorem 3b) remove 
a 4m + 4 ring and the atom by which this ring is connected to the rest of 
the molecule (lower part of Fig. 9d). The final structure consists of an 



NON-BONDING MOLECULAR ORBITALS 363 

atom, which yields one NBMO while the removed 4m + 4 ring gives 
another NBMO. Obviously, the number of NBMO's obtained by two alternant 
ways must be the same. 

Some further examples how to ·obtain NBMO's are given on Fig. 10. In 
the case of 2- and 4-acenaphthylenylmethyl (Fig. lOa) the final structure is 
a bicyclic system having no ring of the type 4 and thus no NBMO (the numbers 
of atoms in three rings are 5, 6, and 9 i. e. types 1, 2 and 1, respectively) . In 
the case of 1- and 3-fluoranthylmethyl (Fig. lOd) the final structure is a 
tricyclic system which (as can be shown applying rules 1-3) has no NBMO. 
Other cases are trivial. 

If we are interested in NBMO coefficients we can write down these 
coefficients for the last structure and then go backwards (as in the case of 
2-azulenylmethyl Fig. 9b), doing it for each NBMO separately. However, in 
most cases one can apply either theorem 2a or theorem 2b and then write down 
NBMO coefficients. For alternant hydrocarbons this presents no difficulty. 

&-2o-cD=0,) K '= 1 

&=&>~&, K = 0 

&:l= &~ B- ~ ci~O-~, 
O?=O?~&-i K = 0 

1 _ 3_, 4_and5- .Acenaphthylenytmethyl 
I . ( Q) 

eta A, ,--(0 ..,__~ 

I K = 0 
~ ,' '> ~ <. l 

\..._ _ _,i -- ..I 

( b) 1, 2- Oiphenylcyclopropenyl 
' 

d:o eta 0 r-~ I ' K = 0 
~ ~ --< . ) 

'..:...J' 

( c) Dibenz - fulvene 

Fig. l Oa-lOc 



364 T. :ZIVKOVIC. 

K= 0 

B:o~s:o~S:o ~P--c~P 

.So ~-So~ S::o K= 0 

,J., >--, <, f9jl ~ 8' ,r--. ~ <~ . --~_)<=> , ~ 0 

¢:::}~:~~--(-~ 8· ~C> ,........ - < 
• .f : - \,, __ 

1-
1 

2-
1 
3-

1 
7-and 8-; F luoranthylmethyl 

Fie:. lOd 

K:1 

K=1 

· Acknowledgement. The autor wishes to thank Dr. L. Klasinc for continuous help 
during the preparation of this paper. 

REFERENCES 

1. K. Fukui, T. Yon e z aw a, and Shi n g u, J. Chem. Phys. 20 (1952) 722. 
2. K. Fukui, T. Yon e z aw a, C. Nagata, and H. Shin g u, J. Chem. Phys. 

22 (1954) 1433. 
3. H. C. Long u et - Higgins, J. Chem. Phys. 18 (1950) 265. 
4. M. J. S. Dewar, J. Am. Chem. Soc. 74 (1952) 3345. 
5. E. He i 1 bro n n er and H. Bock, Das HMO-Modell und seine Anwendung, 

Verlag Chemie, Weinheim 1968. 
6. C. A. Co u 1 s o n and H. C. L on g u et - Higgins, Proc. Roy. Soc. A 192 

(1947) 16. 

IZVOD 

Izracunavanje ne-veznih molekularnih orbitala u Hiickelovoj teoriji 

T. Zivkovic 

Razvijena je metoda pomocu koje se mogu dobiti koeficijenti ne-veznih moleku
larnih orbitala za alternantne i nealternantne ugljikovodike. Takoder je predlofono 
nekoliko teorema koji se mogu upotrijebiti za odredivanje koeficijenata ne-veznih 
molekularnih orbitala direktno promatranjem grafa molekule. 
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