CCA-704

539.19:541.57 Note

Localized Orbitals in Hydrogen-Bonded Systems

J. Koller and A. Ažman

Chemical Institute »Boris Kidrič« and Department of Chemistry, University of Ljubljana, 61000 Ljubljana, Slovenia, Yugoslavia

Received September 13, 1971

The localized orbitals in hydrogen bonded systems are described. The localized orbitals of the systems are composed of the localized orbitals of the proton donors and acceptors. The three--center model for the hydrogen bond is found to be inadequate.

In recent years a large number of papers appear which treat the electronic configuration of hydrogen bonded systems using the molecular orbital method¹. The aim of this paper is to deduce the localized orbitals from the molecular ones. With this approach we would like to obtain some new insight into the phenomena of the hydrogen bonding that are more easily inferred from the localized orbitals than from the canonical molecular ones. The studied systems were HF, HF_2^- , HCOOH, (HCOOH)₂, H₂O, and (H₂O)₂. The canonical orbitals were obtained with the CNDO method (parametrization from ref. 2) for the geometries from ref. 3 and ref. 4.

The localized procedure we have used is due to Edmiston and Ruedenberg⁵. The localized orbitals for the HF and H_2O can be compared with the ones calculated from the *ab-initio* procedure⁵. The differences between the coefficients corresponding to the atomic orbitals in the localized molecular orbitals are of the order of 0.08. These small differences are the reason of our confidence that the localized orbitals of all the treated systems are meaningful.

i) HF, $(HF_2)^-$

The localized orbitals of HF consist of the HF bond and three lone pairs on the F atom. For the reason to be stated later we listed in Table I (also in Table II and III) only the changes in the coefficients between hydrogenbonded and unbonded system. The meaning of the term »changes« is as follows:

The localized orbitals of the hydrogen-bonded system consist of the atomic orbitals, with the appropriate coefficients, from the proton donor and the acceptor. In the Tables are listed the differences between the coefficients of the hydrogen-bonded and the unbonded donors and the coefficients of the hydrogen-bonded acceptors. In brackets are listed some values for the orbitals of the unbonded donors. The localized orbitals of (FHF)⁻ are two F—H bonds and the lone pairs on F atoms. The changes on the localized orbitals of the proton donor (HF) are of the same order of magnitude as the values of the coefficients from the proton acceptor (F^-).

TABLE I TABLE I Differences between the Coefficients of the Localized Orbitals of the Hydrogen Bonded and Unbonded System Coefficients (absolute values) of the unbonded system are in brackets. (1 s) _{H1} (2 s) _{P2} (2 p ₂) _{P3} (2 p ₂) _{P3} (2 p ₂) _{P3} (1 s) _{H1} (2 s) _{P2} (2 p ₂) _{P3} (2 p ₂) _{P3} (2 p ₂) _{P3} (1 s) _{H1} (2 s) _{P3} (2 p ₂) _{P3} (1 s) _{H1} (2 s) _{P3} (2 p ₂) _{P3} (1 s) _{H1} (2 s) _{P3} (2 p ₂) _{P3} (1 s) _{H1} (2 s) _{P3} (0 c) (2 p ₂) _{P3} (2 p ₂) _{P3} (2 p ₂) _{P3} (1 s) _{H1} (2 s) _{P3} (3 p ₂) _{P3} 0 (1 s) _{H1} (2 s) _{P3} (3 p ₂) _{P3}		System	8	HF bond		lone pair				
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$		nded	0930 0	alsy,		01	els.			
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$		and Unbo cets.		0~	an an jub	° ~	No Nada 1997			933 9352
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$	iysiomsvo de- cumposed of the (ors. The three- bo inadequate.	<i>n Bonded</i> e in brach	$(2 p_{y})_{F_{3}}$	° 2	gað i a a a Rui	0 2	istid deb deb deb			al or of or silofa
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$		e Hydroge system ar	$(2 p_x)_{F_3}$	0.07150		0.02680				
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$	outin some new maight e much endig inferred enfor mes. The datied. (# 1.2 for the the charted	rbitals of th e unbonded	(2 s) _{F3}	0.01919	en n S (1) (1)	0.00726	- 193 193 193 193 193 196 196			1000 180 1000 1000 1000
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$	L TAB Constant Reader- be constant with the behavior between the	Localized O ralues) of th	$(2 p_z)_{F_2}$	0~	(0 ~)	0 ≥	5 8 97 101 - 1.1-(1 48			ord orq o b mo
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$		cients of the s (absolute v	$(2 p_y)_{F2}$	0 2	(0 ~)	0 ~	ilea Ilea			109 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$Differences bet \ Differences bet \ 0.1220 0.036 0.036 \ 0.1220 1.026 0.036 \ 0.1220 1.026 0.036 \ 0$		n the Coeffic Coefficient		0.12577	(0.80209)	0.28542		<i>.</i>	ilas Sis Zline Sis	e chi an chi abri
ender i sole i sole a sole sole e se e sole e s E sole i sole e sole	sectom consist of the t the protop donor and to we the coefficients and the coefficients of	ences betwee	b bs		(0.24681)	0.036		ц Ц Ц З	oite the toble	oli niti sc
		no sur. Const	(1 s) _{H1}		(0.54391)	11	tors ono pair (1	2	iain 101 1 r	led the the

HYDROGEN-BONDED SYSTEMS

ii) HCOOH, (HCOOH)₂

In Table II only a few interesting changes in the localized orbitals are listed. Again, as in the previous system i), the same conclusion can be inferred from Table II. From Table II one can conclude that the changes in localized orbitals are not greater on the bonds or the lone pairs directly affected by the hydrogen bond. The changes are almost the same on the O 4 H 5 bond or O 3 lone pair as well as on the $C 1O3 \sigma$ bond or $C 1O3 \pi$ bond. This consequence is in accordance with the conclusion⁶ that the three-center model can not adequately represent the hydrogen bond.

TABLE II

Differences (× 10⁻⁵) between the Coefficients of the Localized Orbitals of the Hydrogen-Bonded and Unbonded System

Coefficients (absolute values) of the unbonded system are in brackets

(2 s) _{C1}	(2 p _x) _{C1}	(2 p _y) _{C1}	$(2 p_z)_{C1}$	(1 s) _{H2}	(2 s) ₀₃		
	$3681 \\3887 \\(0.069521) \\6371$	4991 3787 (0.00897) - 2414	0 0 (0) 5	$\begin{array}{r} 2660 \\3312 \\ (0.04725) \\ 6406 \end{array}$	$ \begin{array}{c} 1243 \\274 \\ (0.00689) \\ 2334 \end{array} $		
(0 -)	(2	() () () () () () () () () () () () () ((2 -)	(9	(0)		
$(2 p_x)_{03}$	(2 p _y) ₀₃	$(2 p_z)_{03}$	(2 s) ₀₄	$(2 p_x)_{04}$	$(2 p_y)_{04}$		
	5927 1350 (0.02656) — 869	~ 0 0 (0) ~ 0	3542 3704 (0.17907) 878	$\begin{array}{c} 2251 \\ 1571 \\ (0.70942) \\ 6665 \end{array}$	$128 \\4022 \\ (0.22644) \\ 333$		
$(2 p_z)_{04}$	(1 s) _{H5}	(2 s) ₀₆	(2 p _x) ₀₆	(2 p _y) ₀₆	(2 p _z) ₀₆		
0 6 (0) 6	$\begin{array}{c} 2257 \\2892 \\ (0.63670) \\ 1036 \end{array}$	195 1009 35	902 1860 3835	517 2328 775	0 404 1045		
(2 s) _{C7}	(2 p _x) _{C7}	(2 p _y) _{C7}	(2 p _z) _{C7}	(1 s) _{H8}	(2 s) ₀₉		
881 2396 975	560 543 4188	538 1563 1607	0 159 409	~ 0 1224 4160	860 2471 3073		
(2 p _x) ₀₉	(2 p _y) ₀₉	(2 p _z) _{O9}	(1 s) _{H10}		aced by it.		
2198; 1982 356	1456; 537 1203	0 8 5	3461 3984 767	O3 lone pair O4 H5 bond C1 O4 σ bond			

285

iii) H_2O , $(H_2O)_2$

The results of the calculations carried out for these systems are summarized in Table III. From the listed values similar conclusions can be drawn as for the above mentioned systems.

TABLE III

Differences (\times 10⁻⁵) between the Coefficients of the Localized Orbitals of the Hydrogen-Bonded and Unbonded System

Coefficients (absolute values) of the unbonded system are in brackets

$(2 \text{ s})_{01}$	$(2 p_x)_{01}$	$(2 p_y)_{01}$	$(2 p_z)_{01}$	(1 s) _{H2}	$(1 s)_{H3}$	
102	218	ad (11)	~ 0	206	206	Li Geren
982	2673	36	~ 0	2244	2283	
153	480	0	0	356	349	
0	120	116	0	0	-153	5 1 ³ C
59	76	83	~ 0	35	127	
139	- 100	134	0	112	- 87	
(1 s) _{H4}	(2 s) ₀₅	$(2 p_x)_{05}$	(2 p _y) ₀₅	$(2 p_z)_{05}$	(1 s) _{H6}	
275		257	185	~ 0	204	O 5 H 6 bond
89	648	69	99	~ 0	293	O5H4 bond
(0.67892)	(0.14370)	(0.71783)	(0.03505)	(0)	(0.04393)	
0	274	838	-507	~ 0	0	O 5 lone pair
230	424	1842	354	0	0	O1 lone pair
1290	201	854	149	0	35	O1 H2 bond
1306	196	785	182	~ 0	~ 0	O1H3 bond
	H2、	<u>_</u>	[4O5 /	/ H6	y 1	
) O1 H	[4O5 /			
	H3 $^{\prime}$					
					x	

CONCLUSIONS

The localized orbitals of the hydrogen bonded systems can be described, to a very good approximation, as composed of the localized orbitals of the proton donors and acceptors. This includes the statement that there is not any trace of a localized bond between the two constituents. The changes of the localized orbitals on proton donor increase with the hydrogen bond strength.

The influence of the hydrogen bond spreads over the whole complex and therefore the three-center model⁷ can not reproduce the changes introduced by it.

Acknowledgement. The authors are grateful to the Boris Kidrič Fund for financial assistance.

REFERENCES

- 1. G. F. H. Diercksen, Theoret. Chim. Acta (Berlin) 21 (1971) 335 and references therein.
- 2. J. M. Sichel and M. A. Whitehead, Theoret. Chim. Acta (Berlin) 11 (1968) 220.

- 3. Interatomic Distances Supplement, The Chemical Society, Special Publication 18, London 1964.
- 4. P. A. Kollman and L. C. Allen, J. Chem. Phys. 51 (1969) 3289.
- 5. S. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35 (1963) 457.
- 6. M. Žaucer, E. Zakrajšek, J. Koller, D. Hadži, and A. Ažman, Mol. Phys. 21 (1971) 461.
- 7. S. Bratož, Electronic Theories of Hydrogen Bonding in Advances Quantum Chemistry, Editor P. O. Löwdin, Academic Press, New York, 1967, Vol. 3, p. 209.

IZVLEČEK

Lokalizirane orbitale sistemov z vodikovo vezjo

J. Koller in A. Ažman

Izračunane so lokalizirane orbitale sistemov z vodikovo vezjo. Iz velikosti sprememb lokaliziranih orbital s tvorbo vodikove vezi, lahko sklepamo, da trocentrični model ni primeren za popis teh vezi.

KEMIČNI INŠTITUT »BORIS KIDRIČ«

IN ODDELEK ZA KEMIJO UNIVERZA V LJUBLJANI 61000 LJUBLJANA

Primljeno 13. rujna 1971.