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Here we present a new attempt to treat the problem of 
charge transfer on metal electrodes using the new techniques of 
quantum statistical mechanics. Making some of the assumptions 
which are common in chemical kinetics we obtain a simple 
generalization of the linear response theory. When this result is 
applied to the charge transfer, it leads to a current-overpotent1al 
relation differing qualitatively from the prediction of the absolute 
reaction rate theory. A comparison of the two for some standard 
reactions seems to favor our prediction. 

There exist many applications of quantum statistical mechanics to chemical 
kinetics, but to our knowledge a paper of Grafov1 is the <0nly application to 
electrode kinetics. Grafov used essentially the linear response theory and 
therefore was limited to low overpotentials. We have developed a nonlinear 
theory and with its help were able to develop a treatment for the usual range 
of over:potentials. In this paper, after briefly sketching the basic principles 
of this new theory, we will discuss its consequence for heterogeneous charge 
transfer. 

We start from the exact Liouville-von Neumann equation for a N-electron
-system 

dQ (t) 
ih dt = [H, !? (t)] = H*Q (t), (1) 

N 
H = H

0 
+ A (t) = H

0 
+ E (t) ~ eli 

j=l 

where Q stands for the N-electron density matrix, H 0 represents the complete 
Hamiltonian of the interface at the potential of zero current. It depends in a 
parametric way on the coordinates of the ions and solvent molecules. A is · 
the perturbation caused by a static electric field E. The r'is are simply the 
distances of the electrons from the metal surface. Since we are dealing with 
an open system we use a grand canonical ensemble. Thus at equil1brium 

Q (- oo) = z-1 e·f:l (H.-µN) (2) 

where Z is the partition function of the grand canonical ensemble and µ the 
chemical potential. 

* Based on a lecture presented at the 22nd Meeting of the International Society 
of Electrochemistry, Dubrovnik, Yugoslavia, September 1971. 
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'The expcdation value of the current is given by 

< J > = TrJe. (3) 

To compute it we introduce, following Zwanzig2
, projection operators which 

split g into two parts. 
P e = f and (1- P) e = P' e = g. (4) 

f should represent the part of the density matrix responsible for the current, 
so that we have the following relations 

TrJ f = < J > and TrJ g = 0. 

These two formula's are in fact the definitions of P and P'. When we apply 
these two projections operators on the Liouville-von Neumann equation, we 
get two coupled equations for f and g 

df (t) 
ih -- = PH* f(t) + PH* g (t) (5) 

dt 
and 

ih d~~t) = P'H*f (t) + P'H* g (t), 

with the boundary conditions 

and 
g(-oo) = Q(-oo) 

f (-co)= 0. 

(6) 

(7) 

(8) 

As long as the curnmt is not extremely high, f will be very much smaller 
than g 

f (t) « g (t). (9) 

We can therefore neglect the term proportional to f in the second equation. 
Now after the application of the field our system is again in a stationary 
state and we have as a solution of the second equation 

(10) 

Now since A is proportional to the number operator, we know that we must 
renormalize our Hamiltonian. If we assume , that the energy spectrum of 
P'H is the same as that of H 0 , this simply gives the number operator mul
tiplied by a constant. So 

g = z-1 e-P [Ho- (c +µ)NJ. (11) 

The renormalized chemical potential 

11=c+ µ (12) 

is simply the electrochemical potential. Naturally, this approximation is only 
the first step of a detailed self-consistent Hartree-Fock treatment to determine 
the value of c. First attempts in this direction were made by P. Drossbach:i 
and co-workers. 

Now since f is small, we can further neglect the term PA* f in the first 
equation and solve it formally. After some standard manipulations we get 

* H 
1 00 0 ~ 

f = i h z-1 [exp (- i -h- t) PA* exp [- ~ (H
0 

- µ N)] dt (13) 
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We use this result and a formula of Kubo 

- - f:\ [A, e- f:\ (Ho - µN)] = - ih Ee -f:\ (Ho - µN) J J (-ill.A) dA (14) 
0 

to compute the expectation value of the current. We then get the following 
result 

f3 ~ 00 < J > = -z-1 ETr s J ('t) d't'Pe-f3 (Ho-µN) s J (-ihl..) di.. (15) 
0 0 

We now turn back to the interface and consider the passage of electrons 
from ions in the OHP to the metal or vice-versa. We take the case in which 

¢ 

only those electrons can pass whose energy is higher than a certain limit E 4 

Then P becomes a product of two operators 

P=TP (16) 
-
P is defined as before and T as follows 

¢ 

T I i > = 0 if Ei < E 

(17) 

if 

So T is the prvj ecti,on on the orthonormal set of the £irst m eigenstates 
which do not fulfill the second condition. With this definition of P we can 
further evaluate our formula. We also make the one-electron approximation 
and by this neglect all possible collective effects. So we get 

00 - f:\ 00 < J > = -E ~ (ef:\<•1-11> + lf1 < i IS J <- iM) di.. SJ ('t) d't Ii> (18) 
i=m o · o 

The i's design again the eigenstates of our system. We further assume that 

(19) 

-
and we insert for ~L5 

(20) 

in the notation of Delahays' book. a is an average quantity and absorbs in 
the usual global way a large part of the double-layer theory. Also we put 

T] 
E=-, 

x 
(21) 

where we assume that in the space between metal surface and OHP the ideal 
condenser approximation holds. Inserting this we obtain finally for the current 

T] {:l (µ: + ae ('1'2 - qi ~ ) 

< J> = --e 
- f:\ae11 oo -11•1 

e ~ e 
x i=m 

f:\ 00 

< i I I J <- ill.I..) dA. I d't'J ('t) I i > c22) 
0 0 
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If we combine all the 'Y] independent factors into a constant a, this becomes 
aeTJ 

i='lj<Je kT 
(23) 

This result differs markedly from the result of absolute reaotion rate like 
treatments, the Butler-Volmer equation. The difference arises from the 
different treatment of external driving forces in the ab~olute reaction rate 
theory, which does not seem to be valid in this case. We have Iooked at 
several experimental results, some examples of which are shown in the 
figures. In Fig. 1 we compare the two best fittings in the usual logarithmic 
plot. However, in order to show the validity of (23) it is more natural to plot 
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Fig. 1. Comparison of the prediction of the present theory (bold line) with Tafel's law (broken 
line) for the h. e. r. on Ni in alkaline solution (0.005 N NaOH at 30 C) . Experimental points' 

110 

100 

90 

80 

70 

60 

-O. I 0 0.1 0.2 0.3 0.4 0.5 0.6 logf [t ] 
Cl2 + 2e- - 2c1· on Pt in 2.2N HCI04 + 0.037N HCI at 25°C 

Fig. 2. Ch -ionization on Pt-Pt in 2.2 N H CIO, + 0.037 N HCl at 25' C7 • 
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Fig. 3. H. e. r. on Zn in 6 N KOH at 2• C' . 
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Fig. 4. H . e. r . on Cd in 6 N KOH, at 2° C8 • 
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log - - 'YJ · This should give a straight line, if (23) holds. Obviously the 
'Y} 

agreement is very satisfactory but the difference could only be shown in a 
conclusive way by very precise measurements which we think are strongly 
needed. However, the present a.pproach has the advantage of starting from 
completely rigourous first principle equations. All the assumptions made in 
the derivation of the final r esult are explicitely stated. So they can be criticized 
and improved very easily. We have menUoned some examples. 
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IZVOD 

Kvantno-statisticki aspekti prijenosa naboja na elektrodama 

E. Bergmann 

Primjenom metodologije kvantne statistike ucinjen je na novi nacm pokusaj 
tumacenja problema prijenosa naboja na elektrodama. Kod toga treba izvrsiti samo 
one pretpostavke, koje su uobieajene u kemijskoj kinetici, da se dobiju jednostavne 
linearne generalizacije. Krivulje struja - napon dobivene primjenom ovih kvantno 
statistickih relacija razlikuju se kvalitativno od onih predskazanih teorijom o apso
lutnim brzinama reakcije. Usporedba obiju teorija zahtijeva vrlo precizne eksperi
mentalne podatke. 
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