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An extensive review is given of the author's theory of ion
-transfer processes at electrodes and in solution. The exposition 
concerns only those features which are independent of any as
sumptions about the mechan1sm of the particular process. The 
theory allows extension to many specific cases by adoption of 
simple models. 

My lecture will concern some general aspects of the theory of ion-transfer 
processes in solution including various important homogeneous and hetero
geneous reactions such as acid-base catalysis, hydrogen evolution and disso
lution at electrodes, electrodeposition and dissolution of metals, anodic 
oxidation of metals etc. I like to review briefly some earlier1- 6 and more 
recent1- 10 results of my work in this field. 

An ion-transfer reaction can be written as 

AX++B=A+X+B 

where X' is the ion, A and B are atoms or atomic groups, in particular A 
may be the salvation shell of the ion and B a metal electrode. In this way, 
taking into account the interactions of the ion with the medium we can 
express the potential energy V (x1 , x 2, •• • xi ... ) of the entire system as a 
function of all nuclear coordinates (x1 , x 2 , ••• xi ... ) describing the motions 
of both reacting particles and ,solven:t molecules. A strict adiabatic apprmci
mation, i.e. a complete separation of motions of nuclei and electrons is not 
absolutely necessary for this description7• In general, the potential function 
can be represented as a surface in a many-dimensional space. For the case 
of two dimensions the projection of this surface, V (x1 , x 2), on the plane x1 , x 2 

is represented by drawing several lines of constant energy9- 11• The reaction 
is described in a familiar way11 by the translational motion of a representative 
mass-point from an initial region (R) to a final region (P), corresponding to 
configurations of reactants and products, respectively. 

From the view rpoint of classical mechanics the most probable reaction 
path is usually that along the line of lowest energy**, the so called »reaction 
coordinate« which normaly passes through a »saddle-point« S determining 
the »transition state« of the system. This state is not required to be considered 

: 1 1 1:r ; 
* Based on a lecture presented at the 22nd Meeting of the Int'ernational Society 

of Electrochemistry, Dubrovnik, Yugoslavia, September 1971. 
** A deviation from that line may be caused by centrifugal effects13• 
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in the usual sense as a relatively stable »activated complex«11 • The reaction 
coordinate is in general curvilinear, although, in some cases it may be repre
sented by a straight line to a good approximation. The energy profile along 
that line has a maximum just at the saddle-point (Fig. 1). According to quantum 

Fig. 1. V(r.,) - Energy profile along the reaction coordinate x, ; Ee - classical activation energy; 
~ - heat of reaction at T = O; E' = Ee - I!. E• (see Eq. 2a); VP - parabolic barrier approximation 
m the energy range E > E'; d - half-width of the parabolic barrier Vp; R - reactants region; 

P - products region. 

mechanics transitions by »tunneling« in the energy range below the saddle-point 
are possible which leads to a departure of the most probable path from the 
classical reaction coordinate, when it represents the common case of curve 
line. 

On the basis of a general quantum-statistical treatment10 the rate constant 
of any reaction can be expressed without restrictions by equation 

kT Z* 
V = :K.:X: -h -- e -EcfkT 

Z1Z2 

oo u e- En/kT de 
x = :;(1 S ~ ~ "n n' <E) - e -e/kT __ Z* = ~ ~ e·En/kT 

n -Ee n' n Z* kT (1) 

Here Ee is the »Classical« activation energy, i.e. the height ,of he saddle
point referred to the minimum potential energy of reactant (Fig. 1); Z1 and 
Z2 are the full partit1on functions of reactants; Z* is a sum over all quantum 
states of reactants excluding the motion along the reaction CO'ordinate, E0 and 
g0 being the energy and the statistical weight factor for a particular quantum 
state n, respectively. The factor x is the »tunneling correction« (x :2:: 1) defined 
as a mean value of the transition probability Xnm from an initial state n to a 
final state n' , summation being over all initial and final states consistent with 
the total energy conservation and integration is over the translational energy 
£ along the reacUon coordinate measured relative to the saddle-point energy 
(Ee). The factor x represents the »transmission coefficient« (x = 1 for adiabatic 
reactions and X < 1 for nonadiabatic reactions). 

Eq. (1) is derived10 without making the usual assumption of the activated 
complex theory11 that there exists thermal equilibrium between initial and 
transition states of the system. This equation contains the classical approxi
mation as a limiting case in which x = 1. The conditions at which this appro
ximation is justified may be determined2,7 by introducing a characteristic 
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temperature Tk at which the number of systems passing over the b arrier 
(E > Ee) is just equal to that of the system tunneling through the barrier 
(E < Ee)· Expressions,5,7, 12 

h 1/f* hv* 
T k = 2 it2 k V f:l* = ~ (2) 

for Tk is derived, where f* is the absolute value of curvature of the barrier 
profile along the reaction path just at the saddle point, ~t* is the effective 
mass of the system and v* is the frequency of a h armonic vibration with a 
force constant f* . The magnitude6•10 

hv* 
/J,. E * = k Tk = --

Jt 
(2a) 

represents a char acteristic energy for the system in consideration. At tempe
r atures higher than about T1/2 most of the systems pass through and over 
the barrier in the energy range 

E > E' = E C - /),, E * 

in which the barrier profile along the reaction coordinate may be well appro
ximated by a parabolic function (Fig. 1) 

Then expr ession6
•
7

•
9

•
10

•
12 

% = (3) 
sin [ (it/2) (T / T) J 

represents a good approximation for the tunneling correction if T > (2/3) Tk 
as shown using both one-dimensional2•6•11 and two-dimensional barrier 
models9, 10. In the region of moderate tunneling (i.e. T > T1/ 2) we obtain 
from this formula x.-values between 1 and 7; especially we have x. = 1.57 for 
T = Tk> and x. = 1.1 for T = 2 Tk. In the region of large tunneling (T < Tk/2) 
x. may be much greater than unity6• 

Recent calculations9 with two-dimensional barrier models indicate that 
reactions of the type AX++ B =A+ X+B occur at the ordinary temperatures 
above or only somewhat below Tk/2 if x+ is a proton and A and B are heavy 
atoms or atomic groups as is always the case of proton-transfer processes 
in solution. These calculations also show that the usual one-dimensional 
treatment of the classical reaction path gives only somewhat higher values 
for the tunneling factor % than does the two-dimensional treatment. The 
x-values are of the order of several units. These results justify the use of 
one-dimensional barrier models1-s, 14• 15 for approximate estimates of the tun
neling corrections. Taking into account the interactions between reacting 
particles and solvent molecules leads to an effective potential to be added in 
order to nbtain the tota·l potential energy of the system. On the other li "nd. 
an increase of the effective mass of th.2 system is to be expected because the 
free motion of the reactin~ complex A - H+ - B is strongly restricted in solu
tion. Therefore, it is likely that proton-transfer processes in solution normally 
occur in the region of moderate tunneling. As far as transitions of other 
ions are concerned some minor role of tunneling at ordinary temperatures 
is possible only for light metal ions such as Li+ and Be++. Far below room 
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temperature, however, tunneling may play a significant role in all ion-transfer 
processes. 

There are several ways to discover the role of tunneling by experiment. 
The first one is to investigate the temperature dependence of reaction rate 
at low temperatures. From the basic rate Eq. (1) we obtain the expressions7 

E '= E -k lllnK -k ~lnx 
a a a (1/T) a (1/T) 

(4a) 

K' = x · K · e<E.'-E, ) / kT (4b) 

for the experimental activation energy Ea' and frequency factor K' defined by 

E, =-k lllnv 
a II (l/T) 

K' = veEa'/kT 

in order to represent the reaction r ate constant in the form of Arrhenius 
equation: 

V = K'. e-E,JkT 

In Eq. (4) Ea' is the barrier height including zero-point energies and K is the 
corresponding factor in the rate equation 

v = x · K · e· Ea'/kT (5) 

obtained from the basic expression (1). In the region of moderate tunneling 
(T > T1/2) , using Eqs. (3) and (4a, b) we get5,t4 

Ea' = Ea - kT <1 - ml/2 cot ml/2) 

K' = K x exp [-(1 - mJ/2 cot mJ/2)] 

(6a) 

(6b) 

where u = T1) T, if the slight temperature dependence of K is neglected. 
These expressions predict deviations from the empirical Arrhenius law which 
have been really observed in several proton-transfer pr.ocesses in solution14,15 
thereby giving evidence for a significant role of the tunnel effect. 

However, a more sensitive indication on tunneling is given by the isotopic 
separation factor for which an expression of the form7 

v x K s = __!!_ = _!!____!!_ e - (EH - Eo)/kT (6) 
VD xDKD 

is obtained, say, for HID separation, where Kn/KD is near to unity. 
Assuming that proton-transfer processes occur in the region of moderate 

tunneling we can estimate the tunneling corrections3- 5 using Eqs. (5) and (6) 
on the basis of experimental data for the kinetic parameters Ea', K' and S. 
Thus the characteristic temperature Tk can be calculated by means of Eqs. (3) 
without knowledge of the potential-energy surface. Inversely, we may estimate 
the dimensions of an effective one-dimensional barrier, which is equivalent to 
the real many-dimensional barrier. Such calculations have been made inde
pendently for several catalytic acid-base reactions14,15 and for the electrolytic 
hydrogen evolution3, 5. In this way, as expected, values for x between 1 and 
7 have been found thereby confirming the rule of a moderate role of tunneling 
in proton-transfer processes in solution. 
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However, it is not excluded that certain reactions of this type may proceed 
near or somewhat below T1/ 2 i. e. they fall already in the temperature region 
of large tunneling. Then, the tunneling factor -x will depend, in general, on 
the heat of reaction Q as shown by analytical calculations1• 2• 5• 6 for simple 
one-dimensional barrier models. Thus, for example, in the simplest case of 
an asymmetrical parabolic b arrier (Fig. 1) one obtains2 : 

ltU/2 u/2 
x = e(u - 2) Bo (Ee - Q) (U < 2), (7a) 

sin (nu/2) 1 - (u/2) ' 
x = 2 6

0 
(Ee - Q) [1 + 1/2 e(u - 2) Bo (Ee - Q) - . . . ], (u ""' 2), (7b) 

u/2 
x = ---- e(u - 2)B0 (Ec -Q) 

(u/2)-1 ' 
(u > 4) (7c) 

where u = Tk/T and 00 = Jt~d V 2 µ E 0 /h E0 ; here 2 d is the width of the barrier 
and E0 its height when Q = 0 (symmetric barrier). 

In electrode reactions we have Q = £ (qr-cp0 ) and Ec-Q = E 0-a£ (cp-cp0 ) 

where cp is the electrode potential (CJlo corresponds to Q = 0) and £ is the 
ion charge (a< 1). Hence, the tunneliing factor -x will generally decrease with 
the increase of cp2•7• If T > (2/3) Tk, (u < 3/2), the second term iri (7a) may 
be neglected so that Eq. (3) is obtained which is now independent on Q (cp). 
It r esults, that the electrolytic separation factor according to Eq. (6) should 
decreas

0

e with the increase of electrode potential when T < (2/3) Tk (u > 3/2) 
and it remains constant when T > (2/3) Tk (u < 3/2). These predictions seem 
to be the unique explanation of the experimentally abserved strong potential 
dependence of the H/T separation factor in acid solutions16 and its potential 
independence in basic solutions17. In the first case because of the attraction 
of the H~o+-ion by the cathode the transfer distance of the proton is certainly 
smaller than in the second case when a proton from the neutral H 20-molecule 
is discharged17• Hence, the effective barrier width for the proton transfer 
in acid solutions will be smaller than in basic solutions, so that it is likely 
that if in the first case the reaction occurs at T ~ T1/2 (u = 2) it may 
proceed in the second case in the region T > (2/3) Tk (u < 3/2)*. 

An other important conclusion7 concerns the relation between experi
mental activation energy Ea.' and reaction heat Q (or electrode potential cp 
in electrode kinetics). According to Polanyi there is a linear dependence 

E '-Q = E '-n'Q a o (8) 

between these quantities for both directions (endothermic and exothermic) 
of reaction, a' and W being the corresponding »transfer coefficients«. However, 
from theoretical point of view these magnitudes are, in general, not constant 
and moreover, the each of them is different and depends on reaictton heat 
in a different manner by quantum-mechanical and classical treatment of reac
tions. 

From Eq. (4a) we obtain 

* The possibility of large tunneling (T « Tk/2) is to be excluded because it leads 
to abnormal high Tafel slopes (see below). Thus, the potential dependence of x 
according to Eqs. (7a, b) is consiostent with the classical (practically constant) Tafel 
slopes in the corresponding region T 2".: Tk/2 . 
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where 
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ll2 ln x 
B'=~+kT2-

l\Tf>Q 

f>!Inx 
a'= a-kT2--

f>Tf>Q 

()E' 
W= " -fiQ' 

C\ E 
B= --"-, 

C\Q 

a'=- II (E,1'-Q) 

5Q 

C\ (Ea -Q) 

5Q 

so that a' + B' = 1 and a + B = 1. 

(8') 

Evidently, a and B are the »classical« transfer coefficients. In the region 
of moderate tunneling (T > T1/ 2) , where the tunneling correction is almos' 
independent on reaction heat, B' and B (a' and a) practically are equal, h owever 
in the region of large tunneling (T< T1) 2) they may differ largely7 (see below). 
This difference could be detectable also when the temperature is somewhat 
above Tk/2. 

It is important to stress that both B' and B (a' and a) are, in general, 
different from the coefficient Band ; in the Bronstedt relations 

V1 = C1K~H' (9) 

where v1 and v2 are the rate constants for b oth (endothermic and exothermic) 
directions of an acid-base proton-transfer reaction ; K AH and K 8u are the 
electrolytic dissociation constants of the acid (AH) and base (BH), respectively. 
These equations can be derived from Eqs. (5) and (8) using the e:x;pression 
for the equilibrium constant 

K c = K AII/K BI-I = C e - Q/kT 

In this way we find that ~ = B' = B when the reaction occurs in the region 
of the moderate tunneling just at conditions that x is independent on Q, i. e. 

Eq. (3) is valid {T > (2/3) Tk). The difference between~' B' and B when T = T1) 2 
or T < Tk/2 can be demonstrated by one-dimensional calculations7 . Thus 
using the simple asymmetrical parabolic barrier, for which expressions (7) 
for x apply, we find for u = 2 (T = T1J2) 

E _.1' = 1/2 CE. + Q), E = E + _g_ ( 1 + _g__) 
~ a o 2 8 Eo 

and 

B' = 1/2 <B + 1), ff"'" B = 1/2 ( 1 + 
4 
~0 ) _ 

(10) 

If Q/4 E 0 « 1, we have [3 = B = 1/2 and B' = 3/4. For u > 4 (T < T1/4) one 
obtains 

E. = E + _g_ ( 1 + __g_) 
" 0 2 SEO 

and 

B' = 1, - T ( Q ) ~ = 1- Tk 1- 8 Eo (11) 
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If Q/4 E 0 « 1, one gets B = 1/2 and B :::=: 3/4 (T/T" :::::; 1/4). Similar results are 
obtained using more general (one-dimensional) models for the potential 
barrier7• 

The quantum-mechanical transfer coefficients a ' and B' can be determined 
experimentally on the basis of Eqs. (8) independently from the Bri:instedt 

coefficients ; and i3 in Eq. (9). Therefore, a comparison between B' a•nd [3 
(a' and ~ could serve, in principle, as a criterion for determination of the 
role of tunneling in chemical and electrochemical reactions, a possible diffe
rence between them indicating a rather large tunneling degree. As far as to 
my knowledge no experimental data are available for that pur-pose in literature, 
it will be certainly of great interest to do investigation in this direction. 

The transfer coefficients B, B' and B are, in general, not constant but 
depend on reaction heat as seen from Eqs. (10) and (11) for the asymmetrical 
parabolic barrier. For a more general barrier shape the following expressions 
for the classical transfer coefficients have been derived2c 

1 ( y2 Q ) 
u. =2 l - 4E

0 

(12) 

where y is a factor of the order of unity which depends on the barrier shape 
(for a parabolic barrirer y = 1). In general, y is also a slowly varying 
function of Q which remains practically constant when the change of Q is 
not too large. The variations of B (a) between 0 and 1 as predicted by these 
relations have been really observed in many protolytic reactions in solu
tion14·1s which probably occur in the region of moderate tunneling where 

B' = B = (3. However, a possibly detectable difference between B' and B indi
cating some more tunneling should b e also taken into account when inter
preting these experimental results. 

These general conclusions can be immediately applied to all electrode 
processes in which the discharge is the rnte determining step. We have to 
e:l(jpress only the reaction heat Q in terms of the electrode potential cp : Q = 
= £ (cp - cp0 ), or the overvoltage 11 = cp - cpr : Q = Q r + £11, where cp, and 
Qr are the reversible potential and the corresponding reaction heat. The 
current density is determined by the difference of reaction velocities in two 
opposite directions (discharge and ionization) 

i = e (v-v); 

for each of them Eq. (1) or (5) is to be applied by replacing Ee by 

Ec = Er + lcBeri and Ec - Q = (Er - Q) - AU.Er], 

respectively, where Er is the classical activation energy at the reversible 
potential and A is the fraction of the total potential drop across the double 
layer corresponding to the ion-transfer distance r (A = r/R, C, (R is the double 
layer thickness). In this way we can derive a current potential relationship 
of the general form1,2. 

i = A (cp, T) (ea• e11/kT - e- (1- a•) eii/kT ), 

A (qi, T) = x (cp, T) Ke- E,./kT e (a• - a,*) e QJ,/kT (13) 
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where a* = /..a. It is seen that the preexponential A (cp, T) is, in general, 
potential dependent through the tunneling factor x (cp, T) and through the 
classical transfer coefficient a* = /..a (cp) (a; = /,a r refers to the reversible 
potential). In the case of ion discharge and dissolutiion a* is conveniently 
expressed by the relation2 

a* = a * :x,2y2ErJ 
,. 8 E ,. (14) 

On the basis of Eqs. (13) and (14) the conditions of validity of the 
Tafel equation 

1'J =a+ blgi 

can be det ermined both from standpoint of quantum and classical m echanics. 
An expression of this form is obtained from Eq. (13) when E't]lkT » 1, however, 
a and b will be constant only if x and a are practically independent on 
electrode potential cp (or overvoltage 11). This will be certainly in the region 
of moderate tunneling where Eq. (3) for x applies if the second term in Eq. 
(14) is so small that a* = a; (a = a,. ). Then the Tafel slope b = d11/dlgi 
is given by the classical expression 

kT 
b e! = 2.3 a* E 

r 

In general b > b 01. Using one-dimensional barrier models it has been shown5 

that the ratio (b/bc1) TJ -+ O is an increasing function of the dimensionless 
quantit:' T,,/T (which is a measure for the tunneling degree): 

b/bcl = f <Tk/T> (15) 

For Tk/T « 1 we have f (Tk/T) = 1. The form of function f (T1) T) depends 
on the barrier shape, however, practically 

b/bcl = f (T1)T) > 1 for T < Tk/2 

b/bcl = 1 for T > Ti)2 (15a) 

For the simplest case of an asymmetrical parabolic barrier using Eqs. (7abc) 
we find the simple formula5 

b/bcl = 1/2 (Tk/T) for T < Tk/2 

b/bcl = 1 for T > Tk/2 

It seems that proton-discharge processes at metals and semiconductors 
usually occur in the region of moderate tunneling. Thus, the tunneling factor 
for hydrogen evolution on mercury is estimated5 to be about x = 3.3, hence 
the Tafel slope should have its classical value (b = bc1)*. Moreover, it follows 
from Eq. (14) . that b will be constant over a potential range of 1-2 volts, 
because owing to the large activation energy (E,. = 21.7 kcal/mol) the poten-
tial dependent term is very small so that a* = ~; ± 0.02. These conclusions 
excellently agree with the well known experimental facts19 . 

* It has been shown2,5, however, that in some cases depending on the barrier 
shape relation b/bcl ""' 1 may be valid also in the region of large tunneling (x ""' 300 !) . 



THEORY OF ION-TRANSFER PROCESSES 75 

In the case of electrodeposition and dissolution of metals at ordinary 
temperatures the tunneling factor is certainly near unity. However, because 
of the small values of the activation energies (E,. = 5-10 kcal) the classical 
Tafel slopes 

kT 
be!= - - -

2.3 u* E 

according to Eq. (14) are expected to be potential dependent. This is really 
observed20 on silver where the ion discharge is found to be the rate deter
mining step. We note that if the surface diffusion of adsorbed atoms is the 
limiting step, then in Eq. (14) for the transfer coefficient, 'A is to be replaced 
by 1 - 'A which is the corresponding fraction of the total potential difference 
between a kink site and the solution21 • 

Anodic oxidation of the metals is another important case to be indicated 
especially as an example of electrochemistry of nonmetallic surfaces. The 
growth of homogeneous oxide layers on Al, Ta, Nb, Zr etc. is usually inter
preted as a process of ion transitions over a potential barrier located either 
in the interior of the oxide or at the metal-oxide interface. The current flow 
is determined by the electric field in the oxide and can be expressed by 
equation of the form 

i = A e- Ea (t )/kT 

where the activation energy E" is usually taken to be a linear function 

E" = E0-a i: l; 

(16) 

(17) 

of the field strength ~' ·E 0 being the activation energy at zero field (~ = 0) 
and a is the activation distance (i. e. the distance from the point of minimum 
potential anergy to the position of barrier maximum). Eqs. (16) and (17) lead 
to an expression of Tafel type (Tafel-Frenkel equation) however, deviations 
from it have been observed on Ta, Nb and Al by several authors22, 23. 

The general theory of ion-transfer processes can be easily adapted to 
anodic oxidation of metals in order to explain the field dependence of Tafel 
slopes in this case8• Assuming again the tunneling factor to be x = 1, an 
expression for the activation energy 

y 2 a 2 1:2 

E" (l;) = Eo - ao El; + 0 0 1;2 (18) 
4E

0 

has been derived8 where a0 is the activation distance at ~ = 0 and y
0 

is a 
factor of order of unity depending on the barrier shape (for a parabolic 
barrier y 0 = 1). This factor is identical with y in Eqs. (12) and (14) for ~ = 0. 

Expressions (16) and (18) describe very well the experimentally observed 
current-field dependence on different film-forming metals22 ,23. Using these 
equations we can estimate on the ·basis of experimental data tlie barrier 
parameters E0 , a0 and Yo for which reasonable values have been obtained23,'24, 

especially the activation distance a
0 

thus calculated is consistent with the 
lattice constant of the oxide. 
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We have reviewed some general results of the theory of ion-transfer 
processes which are independent on any special assumption about the par
ticular mechanism of the process. In order to reveal the specific features of 
various types of electrochemical reactions, of course, more detailed conside
rations are needed. They concern the nature and location of th e potential 
energy barriers, the role of th e non-equilibr ium solvent reorganization, the 
changes of electronic state during reaction and calculation of th e transmission 
coefficients, the extent of electron localization in adsorption states of metal 
ions and .protons etc. In many cases simplified models may be usefull to 
obtain at least a satisfactory qualitative description of different types of electro
chemical react~ons1 -io , ta , 24 ,25 • ln this respect, however, a further extensive 
work is necessary for a complete understanding of all details of the kinetics 
of various homogeneous and heterogenous ion-transfer processes. 
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IZVOD 

Teorija procesa prijenosa iona na eletrodama u otopini 

S. G. Christov 

Prikazana je autorova kvantno-statisticka teorija prijenosa iona na elektrodama 
i u otopini. Teorija opisuje osnovne procese, homogenog i heterogenog tipa, kao 
sto su acido-bazna kataliza, razvijanje i otapanje vodika na elektrodama, izlucivanje 
i otapanje metala, te procesi anodicke oksidacije metala. U radu su prikazani svi 
opci rezultati teorije ionskog prijenosa, tj . oni koji ne zahtijevaju nikakve posebne 
pretpostavke o mehanizmu procesa. Sve specifienosti razlicitih elektrokemijskih 
procesa, kao sto su lociranje potencijalnih barijera, neravnotezna reorganizacija 
otapala, promjene u elektronskim stanjima u reakciji i proracun koeficijenata 
transmisije, lokalizacija elektrona u procesima adsorpcije metalnih iona ili protona, 
i niz drugih. mogu biti obuhvacene aproksimacijama ili pojednostavljenim modelima. 
Ipak, potrebno je jos mnogo rada na teoriji da bi postala dovoljno razradena za 
razumijevanje kinetike raznih homogenih i heterogenih procesa. 
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