Variational Approach to the Correlation Problem in the Molecules

B. Lukman and A. Ažman

Chemical Institute Boris Kidrič and Department of Chemistry, University of Ljubljana, Ljubljana, Slovenia, Yugoslavia

Received December 21, 1970

The aim of this work is to apply the variational approach as introduced by Da Providencia¹ to the correlation problem. We are interested not only in the calculation of the ground state energy, but, even more, in the excitation transition of the treated systems.

Da Providencia¹ and Čižek² have written the exact wave function in the form:

$$\Psi = (\exp \mathbf{S}) \cdot \Phi$$

where Φ is some appropriate approximation to Ψ and

$$\mathbf{S} = \sum_{mi} c_{mi}^* a_i + \frac{1}{2} \sum_{mnij} c_{mnij}^* a_n^* a_j a_i$$

where C_{mi}, C_{mnij} are determined from

$$\langle \Psi | \mathbf{H} | \Psi \rangle = \text{min.}$$

In our study Φ was taken as a Slater determinant with molecular orbitals determined with the semiempirical SCF-PPP method. The studied systems are

$\text{CO(NH}_2\text{)}_2, \text{CS(NH}_2\text{)}_2, \text{and CSe(NH}_2\text{)}_2.$

The previous calculation³ proved that the single — excited states contributions are negligible ($C_{mi} = 0$). Only C_{mnij} were taken in S and were determined from the inhomogeneous system of equations. The calculated energies of the ground states are in Table I.

In the nonheterogenous atom system the doubly — excited states contribution is the largest one but this is not a priori true for heterogeneous one. This fast explains perhaps why the differences E (variational) — E (HF)

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground State Energies (eV)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$\text{CO(NH}_2\text{)}_2$</td>
</tr>
<tr>
<td>$\text{CS(NH}_2\text{)}_2$</td>
</tr>
<tr>
<td>$\text{CSe(NH}_2\text{)}_2$</td>
</tr>
</tbody>
</table>
are so small. The variational method is very suitable for the calculation of the excitation transitions. With the transformation $H' = e^{-is}He^{is}$ in

$$E = \langle \Phi | e^{-is}H e^{is} | \Phi \rangle$$

we have tried to eliminate the ground state correlation implicit in H. The excitations can be deduced from the transformed Hamiltonian with the time — dependent variational principle. The system of equation is

$$\begin{pmatrix}
A & B \\
B^* & A^*
\end{pmatrix}
\begin{pmatrix}
X \\
Y
\end{pmatrix} = \varepsilon
\begin{pmatrix}
X \\
Y
\end{pmatrix}$$

and corresponds formally to the system of the Random-Phase-Approximation (RPA). The difference between both methods is fundamental. While RPA uses Φ as a ground state wave function, the variational method takes $\langle \exp S \rangle$. The results of both methods are presented in Table II. Both methods give almost identical results. This is another consequence of the fact that doubly — excited states (in part also quadruply excited) are not involved in Ψ to any large extent.

REFERENCES