Preparation and Properties of Carrier Bound Hyaluronidase

O. Šcedrov

Laboratory of Biochemistry, Faculty of Technology University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia

Prepn. and properties of carrier bound hyaluronidase (hyaluronate glycanohydrolase, EC 3.2.1.35) have been described. Two lyophilized hyaluronidase samples were used: one from bull testis (activity 500 I. U./mg), and the other from ram testis (activity 767 I. U./mg). Aminocholoro-s-triazinyl derivs. of DEAE-cellulose and Sephadex G-200 (both prepd. in the Laboratory of Biochemistry), Enzacryl AA (Koch-Light product), and the copolymers consisting of acrylamide, N,N'-methylene-bis-acrylamide and maleic acid (Boehringer product), cyclized and noncyclized, were used as carriers. The hyaluronidase activity was detd. by turbidimetric method according to Dorfman with minor modifications.

The spectrofluorometric method for assaying hyaluronidase activity described by Guilbault et al. [Anal. Biochem. 18 (1967) 241] was found to be unreliable. The conditions used in the prepn. of carrier bound enzyme were as follows: enzyme-carrier weight ratio 1:5, attachment time 16 hours, temperature 4—6° C, 0.20 M phosphate or citric acid-phosphate buffers with varying pH.

The noncyclized Boehringer carrier was found to be the most favorable for hyaluronidase attachment. It was ascertained that the amnt. of the carrier bound enzyme depends on the pH of the buffer used as well as on the enzyme purity. By changing the pH of the buffer in any direction from the optimum value, a decreasing amnt. of bound enzyme could be noticed. Under optimum conditions 32% of the enzyme could be bound corresponding to 49 I.U./mg carrier.

The properties of carrier bound hyaluronidase were compared with that of sol. hyaluronidase. The expts. showed that the carrier bound hyaluronidase retained 13.9% of its initial activity in the soln. after 36 days at room temp. and that the activity was reduced to 45% after 10 minutes heating at 80° C. Thus the bound hyaluronidase was more stable than the soluble one. Dodecyl sulfate in concn. of 10^{-3} M inhibits the soluble enzyme completely, but does not affect the bound hyaluronidase. The pH dependence of the bound hyaluronidase activity was also examd. The optimum was found at a pH of 6.2. Kinetic measurements showed that substrate decompn. was faster with the bound hyaluronidase than with the soluble one. The bound enzyme can be used many times as a catalyst.

Examiners: Prof. P. Mildner, Prof. M. Proštenik, and Prof. A. Režek.

Dissertation deposited at the University Library, Zagreb and Faculty of Technology, University of Zagreb.

(127 pages, 9 tables, 8 figures, 127 references, original in Croatian)

O. ŠCEDROV
DCC-33
1. Preparation and Properties of Carrier Bound Hyaluronidase
I. Sćedrov O.
II. Laboratory of Biochemistry, Faculty of Technology, University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia

Enzymes, carrier bound
Hyaluronate glucanohydrolase, carrier bound
Hyaluronidase, carrier bound from bull testes from ram testes
The Interaction of EDTA with Some Radionuclides in Sea Water and Sodium Chloride Solutions

Lj. Marazović-Musani

Laboratory for Electrophoresis, Center for Marine Research, "Ruder Bošković" Institute, 41000 Zagreb, Croatia, Yugoslavia

The chelation of some radionuclides in sea water and in NaCl soln. with EDTA was investigated by high voltage paper electrophoresis. In order to compare the behaviour of investigated radionuclides in sea water-EDTA systems with their behaviour in NaCl-EDTA systems 0.55 M sodium chloride soln. was used as supporting electrolyte. EDTA concn. was varied from 10^{-4} to 10^{-2} M, pH being adjusted to 8.0. The behaviour of radionuclides was followed by measuring the dependence of their electrophoretic mobilities on the EDTA concn. in the systems and on the aging of the systems from 0–10 days.

From the data obtained it is evident that, depending on the EDTA concn., the investigated radionuclides behave in three characteristic ways. In sea water and in NaCl soln. without EDTA as well as at low EDTA concns. some of the investigated radionuclides behave as cations: 45Ca, 54Cr (in NaCl soln.), 54Mn, 54Co, 65Zn, 88Sr, 88Y (in NaCl soln.), 90Sr and 106Cd, with different electrophoretic mobilities, and the other do not move in the electric field: 51Cr (in sea water), 55Fe and 88Y (in sea water). At very high EDTA concns. all the radionuclides are found to be complexed with EDTA. In an intermediate range between low and high EDTA concns. the electrophoretic mobilities of the investigated radionuclides show either continuous change (fast interaction with EDTA): 45Ca, 54Mn, 65Zn, 88Sr, 88Y (in NaCl solns.), 90Sr and 106Cd, or their complexed forms can be separated from uncomplexed ones (slow interaction with EDTA): 54Cr, 55Fe, 54Co and 88Y (in sea water). Special case represents 52P behaving as anion in both systems.

From exp. results apparent stability consts. of the metal-EDTA complexes were calcd. for the two types of interaction with EDTA (slow and fast processes).

Part of thesis was published and reported: Rapp. Comm. int. Mer Médit. 20 (1972) 781.

Examiners: Dr Z. Pučar, Prof. P. Strohal, and Prof. M. Mirnik.
Degree conferred: October 31, 1972.
Thesis deposited at University Library, Zagreb and Institute "Ruder Bošković", Zagreb and Rovinj.

(243 pages, 35 figures, 19 tables, 237 references, original in Croatian)

LJ. MARAZOVIC-MUSANI
DCC-34

1. The Interaction of EDTA with Some Radionuclides in Sea Water and Sodium Chloride Solutions

I. Marazović-Musanj Lj.
II. Laboratory for Electrophoresis, Center for Marine Research, "Ruder Bošković Institute, Zagreb, Croatia, Yugoslavia

- Cadmium-109
- Calcium-45
- Cobalt-58
- Chromium-51
- EDTA complexes with radionuclides
- Electrophoresis, high voltage paper
- Iron-55 (59)
- Manganese-54
- Phosphorus-32
- Sea water complexes of radionuclides in
- Stability constants
- of some radionuclides with EDTA
- Strontium-89
- Yttrium-88 (90)
- Zinc-65
Comparative Studies of Cholinesterases in their Reaction with Inhibitors and Substrates

V. Simeon

Biochemical Laboratory, Institute for Medical Research, Yugoslav Academy of Sciences and Arts, 41000 Zagreb, Croatia, Yugoslavia

The interaction of acetylcholinesterase (EC 3.1.1.7) and cholinesterase (EC 3.1.1.8) with inhibitors and substrates was studied. Two organophosphates [di-(2-chloroethyl)-3-chloromethylcoumarin-7-yl phosphate and methylsulphate of diethyl-3-trimethyl-ammonium-phenyl-phosphate] and two carbamates (3-isopropylphenyl-N-methylcarbamate and bromide of 3-trimethylammonium-N,N-dimethylcarbamate) were used as inhibitors. Acetyltiocholine, acetylcholine, benzoylcholine, acetylt-3-methylcholine, butyrylcholine, o-nitrophenylbutyrate and tricaine served as substrates.

The effect of temp. on the reaction of enzymes with inhibitors and substrates was measured. Further, the influence of substrate on the degree of reversible inhibition was studied.

The kinetics of progressive inhibition of both enzymes by carbamic acid esters show that these compds. do not form a measurable amt. of the Michaelis complex between enzyme and inhibitor. The same is found for the interaction of serum cholinesterase with the two organophosphates. However, the kinetics of interaction of acetylcholinesterase with organophosphates show the existence of a reversible complex between enzyme and inhibitor. From the influence of substrates on the degree of reversible inhibition it has been concluded that the reversible inhibition occurs outside the active site of acetylcholinesterase.

The rate consts. of inhibition for acetylcholinesterase and human serum cholinesterase increase with increasing temp. obeying the Arrhenius equation. The rate consts. of inhibition of horse serum cholinesterase with all the four inhibitors increase from 10—30 °C, but decrease from 30—40 °C. This is attributed to a conformational change in the enzyme.

The Michaelis consts. for acetylcholinesterase and cholinesterase do not change with temp. from 10—40 °C, while the K_m value for horse serum cholinesterase and acetyltiocholine is constant from 10—30 °C and increases from 30—40 °C. This is an evident analogy between the reaction of serum cholinesterase with inhibitors and substrates.

The thesis was partly published in Biochem. J. 130 (1972) 515.

Examiners: Dr. E. Reiner, Prof. P. Mildner, and Prof. Dj. Deželić

Degree conferred: January 26, 1972.

(105 pages, 29 tables, 19 figures, 73 references, original in Croatian)
1. Comparative studies of Cholinesterases in their Reaction with Inhibitors and Substrates

I. Simeon V.

II. Institute for Medical Research, Yugoslav Academy of Sciences and Arts, 41000 Zagreb, Croatia, Yugoslavia

Acetylcholine acetylhydrolase
Acetylcholinesterase
Acylcholine acylhydrolase
Carbamic acid, esters of, cholinesterase inhibition by
Cholinesterase
Enzyme inhibition, temp. dependence of
Organophosphorus compds., cholinesterase inhibition by
Structure — Reactivity Relationship. The Azide Probe as a Measure of the Carbonium Ion Stability

D. Kocijančič-Kovačević

Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

The azide competition factors (k_{N_3} / k_{SO_3}) were used for studying the relative relationship between the structure and selectivity of the intermediates in the solvolytic reactions of benzhydryl bromide and chloride, 2-adamantyl tosylate, 2-methyl-2-adamantyl chloride, 1-adamantyl bromide, cyclohexyl, 3α-cholestanyl and 3α-cholestanyl brosylates.

The results obtained cannot be simply explained by a structure and selectivity relationship. Tertiary substrates, 2-methyl-2-adamantyl chloride and 1-adamantyl bromide, gave lower k_{N_3} / k_{SO_3} values than secondary ones, cyclohexyl and 3α-cholestanyl brosylates. This is opposite from what should be expected on the basis of the stability of respective carbonium ions, and could be explained by the reaction of azide ion and the ion pair(s) of secondary systems.

The competition factors do not depend only on the structure of the substrates but also upon other various parameters such as temp., solvent, ionic strength of the soln. and concn. of sodium azide.

Since the mechanism of solvolytic reactions where ion pairs are intermediates, is very complex and involves several steps, significant mechanistic conclusions cannot be obtained on the basis of competition factors.

A part of this work was published in *Tetrahedron* 28 (1972) 2469.

Examiners: Prof. D. Sunko, Dr. T. Cvitaš, and Dr. A. Deljac

Oral examination: July 14, 1972.

Thesis deposited at the Faculty of Science, University of Zagreb.

(126 pages, 19 tables, 11 figures, 92 references, original in Croatian)

D. KOCIJANČIĆ-KOVAČEVIĆ
<table>
<thead>
<tr>
<th>DCC-36</th>
<th>Azide probe Carbonium ion, stability of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Structure — Reactivity Relationship. The Azide Probe as a Measure of the Carbonium Ion Stability</td>
<td></td>
</tr>
<tr>
<td>I. Kocijančić-Kovačević D.</td>
<td></td>
</tr>
<tr>
<td>II. Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia</td>
<td></td>
</tr>
</tbody>
</table>
Site of Protonation of Some Substituted Phenols and Alkylphenyl Ethers in SbF$_5$/HSO$_3$F

M. Eckert-Maksic

Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

Protonation of a variety of substituted phenols and alkylphenyl ethers was studied in mixture of SbF$_5$ with HSO$_3$F (»magic acid«) by low temp. N.M.R. spectroscopy. The site of protonation was found to be strongly dependent upon the nature and the position of the substituents.

p-Alkyl substituted phenols and alkylphenyl ethers behave as ambident bases under exp. conditions used, protonating either on the oxygen atom or in the ortho position of the aromatic ring. The ratio of ring to oxygen protonation was found to be a sensitive function of: 1) the concn. of antimony pentafluoride in fluorosulfuric acid; 2) temp.; 3) substituent changes on both the ring and the oxygen atom; 4) the concn. of the base (e.g. SO$_2$ or H$_2$O).

The results indicate, that the ambident behaviour of the examd. bases is quite sensitive to their solvent environment. Thus, this system provides an opportunity to study the ability of different superacid systems to interact with various types of cations derived from a single parent molecule.

A part of this work was published in Tetrahedron Letters (1972) 1477.

Examiners: Prof. D. Sunko, Prof. J. W. Larsen, and Prof. D. Hadži.

Oral examination: September 13, 1972.

Thesis deposited at the Faculty of Science, University of Zagreb.

(131 pages, 8 tables, 40 figures, 85 references, original in Croatian with detailed summary in English)
1. Site of Protonation of Some Substituted Phenols and Alkylphenyl Ethers in SbF$_5$/H$_2$SO$_4$F

I. Eckert-Maksić M.

II. Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

N.M.R. spectroscopy, low temp. of alkylphenyl ethers of phenols, substituted Protonation, in super acids of alkylphenyl ethers of phenols, substituted Quenching, of ionic solns.
Conformational Analysis of Transition States in the Solvolysis of Cyclohexyl Derivatives. The Cholestanyl System

M. Tarle

Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

In the course of this work transition states geometries in reactions of cholestanyl and epicholestanyl arenesulfonates were investigated by means of secondary deuterium isotope effects and by product analyses.

Ample evidence was presented that both epimeric brosylates solvolyze through the »chair« conformation in the transition state. The results obtained from this work were compared with the data in the literature dealing with various substituted cyclohexyl esters. It was concluded that only one substituent at the six membered ring is not sufficient to ensure the conformational homogeneity during the solvolytic process.

From the measurement of the \(\beta \)-deuterium effects on epicholestanyl brosylate it was deduced that hydrogen participation occurs in the slow step of the reaction. Comparing the values of the \(\beta \)-isotope effects and the products of the reactions of both labeled and unlabeled cholestanyl and epicholestanyl brosylates the conclusion was made that elimination is not involved in the kinetic step of the reaction, but occurs after the stable reaction intermediates were formed.

Measurements of \(\alpha \)-deuterium effects confirmed the dependence of these effects on the degree of rehybridization of the reacting carbon atom in the rate determining step. In this way the reduced value of \(\alpha \)-effect caused by hydrogen participation in solvolysis of epicholestanyl arenesulfonates was explained. Here the degree of bridging in the transition state is not far advanced. The slightly reduced value of the \(\alpha \)-effect in the solvolysis of cholestanyl derivs. was attributed to the intimate ion-pair formation in the kinetic reaction step.

Examiners: Prof. S. Borčić, Prof. D. Sunko, and Dr. K. Humski

Oral examination: November 3, 1972

Thesis deposited at the Faculty of Pharmacy and Biochemistry, University of Zagreb

(172 pages, 31 tables, 72 figures, 139 references, original in Croatian)
<table>
<thead>
<tr>
<th>DCC-38</th>
<th>Cholestanyl derivs., solvolysis of Conformational analysis, in solvolysis Isotopic effect, secondary deuterium in solvolysis of cholestanyl derivs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conformational Analysis of Transition States in the Solvolysis of Cyclohexyl Derivatives. The Cholestanyl System</td>
<td></td>
</tr>
<tr>
<td>I. Tarle M.</td>
<td></td>
</tr>
<tr>
<td>II. Institute «Ruder Bošković», 41000 Zagreb, Croatia, Yugoslavia</td>
<td></td>
</tr>
</tbody>
</table>
Water Sorption and Storage Stability of Tomato Powder and Dry Tomato Soup Mixtures

M. Bošković

Laboratory for the Technology of Fruit and Vegetable Products, Department of Biotechnology, Faculty of Technology, University of Zagreb, Zagreb, Croatia, Yugoslavia

Optimum stability of foam-mat and freeze-dried tomato powder stored in air at 23°C was found at water activity (a_w) of 0.15, 0.20 (i.e., relative humidity 15-20%) and water content of 1.2-1.5%o. Shelf-life was 6.8 months.

Using humidostats, 4 water sorption isotherms (−12; 3; 26 and 40°C) of foam-mat dried tomato powder were measured. The product had low water capacity and B.E.T. monolayer value.

Heats of sorption — calculated from the isosteres covering an interval between 20 and 34 mg equilibrium sorbed water/g solid — ranged from -1.2 to -0.4 kcal/kg.

Cairie's method [J. Food Technol, 5 (1970) 301] for the deten. of optimum storage conditions to attain stability, involving a log-ln isotherm modification, was evaluated. Calculated values were found to be too high, and monolayer values too low to serve as the indicators of optimum a_w.

Colour changes of product were followed. Retention of the total liposoluble colour at various water activities (a_w-prophiles) was measured. Positions of the a_w-optima coincided with those for the overall product stability.

Colour retention was highest at 20°C and lowest at 30 and 40°C storage, respectively.

Results of liposoluble colour determinations were compared with the measurements of colour values with the photoelectric tristimulus colorimeter Hunterlab D 25 and with the visual observations. Different sensitivity was found toward colour changes caused by the various degradative processes (non-enzymatic browning, oxidative fading) but the results were congruent.

Experimental dry soup mixture (tomato powder, dextrine, vegetable shortening, Na-glutaminate, sugar and salt) was generally unstable, with lower sorption capacity, inferior colour retention and shorter storage life. It is recommended to either pack tomato powder separately or compounded with the inert constituents only.

Examiners: Prof. T. Lovrić, Prof. P. Mildner, and Prof. M. Filajdić.

Degree conferred: May 26, 1972.

Thesis presented to and deposited at the Faculty of Technology, Univ. of Zagreb.

M. BOŠKOVIC
1. Water Sorption and Storage Stability of Tomato Powder and Dry Tomato Soup Mixtures

I. Bošković M.

II. Laboratory for the technology of fruit and vegetable products, Department of Biotechnology, Faculty of Technology, University of Zagreb, Zagreb, Croatia, Yugoslavia
Kinetics of the Hydrolysis of Glucuronic Esters and Glucuronic Ethers by β-Glucuronidase from Animal and Bacterial Sources

J. Tomasić

Tracer Laboratory, Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia

Comparative studies on the actions of β-glucuronidase from bovine liver and E. coli towards synthetic 1-O-acyl-β-D-glucopyranuronic acids (I) (acyl = benzoyl, veratroyl, indol-3-ylacetetyl, 4-ethylbutyryl) and glucuronic ethers (II) (aglycon = 3,4-dimethoxyphenol, 3,4-dimethoxybenzyl alcohol, p-nitrophenol, phenolphthalein) as substrates have been undertaken and kinetic data obtained have been correlated. The synthesis of hitherto undescribed I and II has been presented.

For direct detn. of glucuronic acid in the presence of labile glucosiduronic acids a new quant. method has been developed. The method is based on the colour reaction of glucuronic acid and benzidine in acetic acid, and the assay is carried out under mild conditions which do not affect the C-1 ester bond.

The enzyme activity has been examd. with respect to the pH of the medium and the substrate and enzyme concn. Comparison of the kinetic data (Km and Vmax) indicates: 1. Affinities of I and II for the enzyme are not primarily dependent on the type of sugar-aglycon linkage. 2. Relative activities of mammalian β-glucuronidase toward the eight substrates examd. do not parallel the activities of β-glucuronidase from E. coli; the latter was found to be much more effective in hydrolysing I than the former.

Dissertation deposited at the University Library, Zagreb, and Institute «Ruder Bošković», Zagreb.

(90 pages, 5 tables, 16 figures, 89 references, original in Croatian).

J. TOMASIC
1. Kinetics of the Hydrolysis of Glucuronic Esters and Glucuronic Ethers by β-Glucuronidase from Animal and Bacterial Sources

I. Tomašić J.,
II. Tracer Laboratory, Institute "Ruder Bošković", Zagreb, Croatia, Yugoslavia

Glucuronic acid, determination with benzidine
Glucuronic esters, chemical synthesis of,
—, enzymic hydrolysis of
Glucuronic ethers, chemical synthesis of,
—, enzymic hydrolysis of
β-Glucuronidase, of E. coli origin,
—, from bovine liver,
—, kinetic studies with
Study of the Sporulation of Bacillus thuringiensis var. thuringiensis

S. Rendić

Laboratory of Biochemistry, Technological Faculty, University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia

In the course of the submerged cultivation of bacteria Bacillus thuringiensis var. thuringiensis in medium contg. starch, molasses, yeast and inorg. salts in fermentors of 30, 300 and 3000 l. capacity, lysis occurred at the end of the exponential phase of growth. Lysis of the cells could not be detected during the cultivation in flasks contg. 300 ml of the medium. After lysis, new vegetative cells were formed which usually sporulated when the cells reached the exponential phase of growth.

It was found that the synthesis of proteases in bacteria begins at the end of the exponential phase of growth, i.e. at the beginning of the process of sporulation. The presence of rapidly metabolised growth substrate (particularly sol. sugars) at the end of the exponential phase of growth acts as a catabolic repressor on the synthesis of proteases and enzymes of the Krebs cycle; therefore, the lysis was followed by a drop of pH and accumulation of acetate in the medium. The cells were committed to sporulation without lysis when in the fermentation broth no free sol. sugars could be detected or when an anaerobic shock during the cultivation was applied.

The thesis was reported in part at 6th FEBS Meeting, Madrid, 1969.

Examiners: Prof. P. Milner, Prof. G. Tamburasev, Prof. S. Ban.

Oral examination: July, 9th 1970

Thesis deposited at the Technological Faculty, University of Zagreb.

(81 pages, 8 figures, 7 tables, 61 references, original in Croatian)

S. RENDIĆ

MCC-44 (Univ. Zagreb)
Master of Science Thesis

Croat. Chem. Acta CCACAA 44 (4) B17—B18 (1972)

Study of the Sporulation of Bacillus thuringiensis var. thuringiensis

S. Rendić

Laboratory of Biochemistry, Technological Faculty, University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia

In the course of the submerged cultivation of bacteria Bacillus thuringiensis var. thuringiensis in medium contg. starch, molasses, yeast and inorg. salts in fermentors of 30, 300 and 3000 l. capacity, lysis occurred at the end of the exponential phase of growth. Lysis of the cells could not be detected during the cultivation in flasks contg. 300 ml of the medium. After lysis, new vegetative cells were formed which usually sporulated when the cells reached the exponential phase of growth.

It was found that the synthesis of proteases in bacteria begins at the end of the exponential phase of growth, i.e. at the beginning of the process of sporulation. The presence of rapidly metabolised growth substrate (particularly sol. sugars) at the end of the exponential phase of growth acts as a catabolic repressor on the synthesis of proteases and enzymes of the Krebs cycle; therefore, the lysis was followed by a drop of pH and accumulation of acetate in the medium. The cells were committed to sporulation without lysis when in the fermentation broth no free sol. sugars could be detected or when an anaerobic shock during the cultivation was applied.

The thesis was reported in part at 6th FEBS Meeting, Madrid, 1969.

Examiners: Prof. P. Milner, Prof. G. Tamburasev, Prof. S. Ban.

Oral examination: July, 9th 1970

Thesis deposited at the Technological Faculty, University of Zagreb.

(81 pages, 8 figures, 7 tables, 61 references, original in Croatian)

S. RENDIĆ

* Present address: Research Department »Pliva«, Pharmaceutical and Chemical Works, Zagreb.
MCC-44

1. Study of the Sporulation of Bacillus thuringiensis var. thuringiensis

I. Rendić S.
II. Laboratory of Biochemistry, Technological Faculty, University of Zagreb, 41000 Zagreb, Croatia

Yugoslavia

Anaerobic shock
Bacillus thuringiensis var. thuringiensis
Lysis
Proteases, synthesis of Sporulation
MCC-45 (Univ. Zagreb)
Master of Science Thesis

Precipitation of Calcium Phosphates. Metastabile Equilibria and Kinetics
B. Purgarić

Institute »Ruder Boškovic«, 41000 Zagreb, Croatia, Yugoslavia

Pptn. of slightly soluble calcium phosphates, prepd. by direct mixing of the solns. of calcium chloride (2 \times 10^{-4} - 1.8 \times 10^{-1} M) and sodium phosphate (1.6 \times 10^{-2} - 1.5 \times 10^{-1} M, preadjusted to pH = 7.4) was studied at 37 °C. The pptn. boundary was detd. 24 hours after mixing and isolated ppts. were identified on the ground of morphology (light and electron microscopy), chem. anal., X-ray and electron diffraction, IR spectroscopy, and refractive indices.

The results show that over the widest range of reactant concns. calcium deficient apatites (DA) with molar Ca/P ratios between 1.42 and 1.52 were formed, while octacalcium phosphate (OCP) was detected only at the pptn. boundary. At relatively high concn. products (Ca_T \cdot P_5 > 10^{-4} M) mixtures of dicalcium phosphate dihydrate (DCPD) and apatites were obtained.

The kinetics of the transformation of the initially formed poorly cryst. calcium phosphate ppts. into DA was followed at 37°C both at constant pH = 7.4 and at a variable pH. In both cases pptn. occurred in at least two separate steps; the reaction was faster at constant pH.

The pptn. kinetics of DCPD from equimolar solns. of calcium chloride and sodium phosphate (2.3 \times 10^{-2} - 4 \times 10^{-2} M), which were obtained by direct mixing of the reactants, was followed quant. in 0.15 M sodium chloride solns. at constant pH (pH = 5) and temp. (23 ± °C). The concns. of all calcium and phosphate contg. ions and complex species which were present in soln. at any given reaction time were calcld. from exptl. data by a computer program. From these data the order and rate const. of the process of crystal growth of DCPD were detd. At initial reactants concns. 2.3 \times 10^{-2} M, 2.8 \times 10^{-2} M, and partly 2.7 \times 10^{-2} M, where agglomeration was negligible, the rate of the process was proportional to the square of the supersat. Values of the rate consts. varied between 10^7 and 10^8 M mol^{-3} min^{-1}.

Anal. of the exptl. data according to the Christansen-Nielsen theory shows that crystal growth of DCPD under the conditions given is most probably controlled by a fourth order process of surface nucleation through a polynuclear layer mechanism.

Examiners: Dr. H. Füredi-Milhofer, Prof. B. Težak, and Prof. R. Wolf.

Thesis deposited at the University Library and Institute »Ruder Boškovic«, Zagreb.

(171 pages, 13 tables, 34 figures, 159 references, original in Croatian)

B. PURGARIĆ
MCC-45

1. Precipitation of Calcium Phosphates, Metastable Equilibria and Kinetics
I. Purgarić B.
II. Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

Apatites
Calcium, di-, phosphate dihydrate
octa-, phosphate phosphates, pptn. of
Crystal growth
The Mechanism of the Formation and Transformation of Slightly Soluble Calcium Phosphates

Lj. Brečević

Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

Pptn. of calcium phosphates from aq. solns. of calcium chloride \((2.5 \times 10^{-4} - 9 \times 10^{-3} \text{ M})\) and sodium phosphate \((1 \times 10^{-3} - 6 \times 10^{-4} \text{ M})\; [\text{NaOH}] / [\text{H}_2\text{PO}_4] \approx 1.75; \text{pH} \approx 7.4\) was studied at 25°C. The pptn boundary, as observed 24 hours after mixing and the distribution of free and complexed calcium at this boundary were detd. Light and electron microscopy, X-ray and electron diffraction, chem. anal., refractive indices and IR spectroscopy were used to characterize the ppts.

Over the widest range of reactant concns. octacalcium phosphate (OCP) or slightly hydrolyzed OCP was formed. At low supersatns. (at the pptn. boundary) ppts. predominantly amorphous to electron diffraction were obtained. At relatively high concn. products \((\text{Ca}_\text{tot.}) \times [\text{P}_\text{tot.}] > 10^{-4}\) mixtures of dicalcium phosphate dihydrate (DCPD) and apatites were obtained.

The dependence of the characteristics of the ppts. and the »final« pH values on the initial concns. of the pptg. components has been demonstrated by means of pptn. diagrams.

The kinetics of formation and transformation of calcium phosphate ppts. obtained by mixing equal volumes of solns. \((6 \times 10^{-3} \text{ M} \text{ in total calcium and/or total phosphate})\) was investigated. Changes of pH, turbidity and the number of particles formed \((>5 \mu \text{m})\) were followed simultaneously as a function of time. Ppts. were isolated at various time intervals and characterized by the above mentioned methods. Initially a ppt. with a molar Ca/P ratio of 1.5, amorphous to X-ray and electron diffraction was formed. IR spectra indicated the presence of PO\(_4^{3-}\) and HPO\(_4^{2-}\) ions. After a period of metastability, pptn. of a cryst. material within and/or above the amorphous phase occurs. The cryst. ppt. showed the characteristics of OCP, while in the later stages hydrolysis into calcium deficient apatites (DA) was observed.

Parts of this thesis are published in: Calcif. Tiss. Res. 8 (1971) 142—153; ibid. 10 (1972) 82—90.

Examiners: Dr. H. Füredi-Milhofer, Prof. B. Težak, and Prof. M. Herak.

Thesis deposited at the Central Chemical Library, Zagreb and Institute »Ruder Bošković«, Zagreb.

(77 pages, 6 tables, 15 figures, 98 references, original in Croatian)
MCC-46

1. The Mechanism of the Formation and Transformation of Slightly Soluble Calcium Phosphates

I. Brečević Lj.
II. Institute »Ruder Bošković«,
41000 Zagreb, Croatia, Yugoslavia

Apalites
Calcium,
di-, phosphate dihydrate
octa-, phosphate
phosphates, pptn. of
Crystal growth
Investigations of Complex Reaction Mechanisms by Cyclic Chronopotentiometry

D. Ćukman

Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

Cyclic chronopotentiometry (CCP) has been proved as a suitable technique in studying complex electrochem.-chem. reaction mechanisms. It is useful both as a diagnostic and as a quant. measurement technique for distinguishing between various possible reaction path. Combined with numerical prediction based on digital simulation of various mechanism, CCP is capable of accurate detm. of rate coeff. of chem. reactions coupled to electron transfer.

Previously reported studies of the Uranium (VI)-(V)-(IV) system in acidic media take as confirmed that the reduction of U(VI) to U(V) is followed by the disproportionation reaction of U(V) to U(VI) and U(IV). Reported rate coeff. differ depending on the techniques used. Results of measurements of rates and diagnosis of mechanism of the reduction of uranium on mercury electrode in acidic (perchlorate and nitrate) media show complex behavior of that system.

To explain the expnl. results digital simulation of a number of possible mechanisms was attempted. In the range of pH from 0.5 to 1.5 the disproportionation reaction is certainly not the only chemical reaction path. Neither the formation of a complex between the U(V) and the U(VI) species nor the E-C-E mechanism scheme were supported by expnl. evidence. There is the possibility that some U(V) species, an intermediate in the reaction sequence, is specifically adsorbed on mercury electrode. However, no single, straightforward reaction scheme fits the expnl. data at all the concn. of U(VI) and pH studied.

Part of the work was reported at the 3rd Yugoslav Congress on Pure and Applied Chemistry, Ljubljana 1972, and 23rd Meeting of I.S.E., Stockholm 1972.

Examiners: Dr. V. Pravdić, Dr. M. Herak, and Dr. M. Branica

Thesis deposited at the Institute »Ruder Bošković«, Zagreb, and the Central Chemical Library of the Croatian Chemical Society, Zagreb,

(70 pages, 15 tables, 16 figures, 78 references, 2 computer programs, original in Croatian)

D. ĆUKMAN
<table>
<thead>
<tr>
<th>MCC-47</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Investigations of Complex Reaction Mechanism by Cyclic Chronopotentiometry</td>
</tr>
<tr>
<td>II. Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia</td>
</tr>
<tr>
<td>Chronopotentiometry, cyclic Digital computer simulation Disproportionation reactions of uranium Electrochemical study of uranium Uranium electrochemical study of</td>
</tr>
</tbody>
</table>
Solvolyses in Fluoroalcohols: Solvent and Structural Effects

I. Szele

Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia

The solvolysis rates of 7-methyl-norbornyl tosylate (MNBOTs) were found to be remarkably insensitive towards changes in the Grunwald-Winstein Y value in 2,2,2-trifluoroethanol (TFE)—water mixts.

The β-deuterium isotope effects for MNBOTs in TFE—water mixts. are exceptionally high, and have to be explained in terms of the unique structure of this substrate. The isotope effects are decreasing with increasing nucleophilicity of the solvent.

It was also found that 2-methyl-2-adamantyl p-nitrobenzoate showed in TFE—water mixts. the smallest as yet recorded m value for a tertiary substrate (0.040).

1-Methyl-anti-1-norbornenyl p-nitrobenzoate showed in the same solvent an m value of 0.213 which is consistent with the decreased solvent dependence in the solvolysis rates of anchimerically assisted substrates.

Since 1,1,1,3,3,3-hexafluoropropanol (HFIP) seemed to be another interesting solvolytic solvent Y values were detd. for HFIP—water mixts. Here, unexpectedly, the t-BuCl solvolysis rates did not change monotonously but manifest a minimum at 66.7 mole per cent of water. This result implies the existence of a dihydrate, the mixts. of which with either water or HFIP have to be considered as separate binary solvent system. The solvolysis rates of MNBOTs in HFIP—water mixts. decreased with increasing water content(!), but showed a sharp inflection in the log k vs. mole per cent water plot. The position of this inflection coincides with the minimum of t-BuCl solvolysis rate.

The β-deuterium isotope effects for MNBOTs in this solvent are, in accordance with its low nucleophilicity, the highest as yet observed effects for this substrate.

A structure for the HFIP \cdot H$_2$O complex is proposed. The kinetic results are discussed in terms of this structure and its possible interactions with the transition states of the investigated tertiary substrates.

A part of this work was published in Tetrahedron Letters (1972) 1827, 3617.

Examiners: Prof. D. Sunko, Dr. Z. Majerski, and Dr. T. Cvitaš

Oral examination: September 12, 1972

Thesis deposited at the University of Zagreb.

(77 pages, 9 tables, 8 figures, 68 references, original in Croatian)

I. SZELE
<table>
<thead>
<tr>
<th>MCC-48</th>
<th>Isotopic effect, secondary deuterium relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Solvolysis in Fluoroalcohols: Solvent and Structural Effects</td>
<td>Norbornane-7-yl-, 7-methyl-, tosylate Solvolysis in fluorinated alcohols</td>
</tr>
<tr>
<td>I. Szele I.</td>
<td></td>
</tr>
<tr>
<td>II. Institute «Ruder Bošković», 41000 Zagreb, Croatia, Yugoslavia</td>
<td></td>
</tr>
</tbody>
</table>
MCC-49 (Univ. Zagreb)
Master of Science Thesis
Croat. Chem. Acta
CCACAA 44 (4) B27–B28 (1972)

Synthesis and Solvolysis of Deuterated 7-Norbornenyl and 7-Norbornyl Derivatives

M. Tomic
»INA-Naftaplin«, Zagreb and Institute »Ruder Boškovic«, 41000 Zagreb, Croatia, Yugoslavia

The following compds. and their undeuterated analogues were prep'd.:
anti-7-norbornenyl-7-d, anti-7-norbornenyl-1,2,3,4-d,, 7-methyl-7-norbornyl,
7-methyl-7-norbornenyl-1,4-d, 7-methyl-7-norbornenyl-1,2-endo, 3-endo, 4-d, 7-
methyl-7-norbornenyl-1,2,3,3,4-d,, tosylates, and 7-methyl-1-d-anti-7-norbornenyl p-nitrobenzoate. Solvolysis rates were measured and the correspond-

The \(\alpha \)-deuteration effect with anti-7-norbornenyl-7-d tosylate was only
slightly reduced in magnitude (\(k_{11}/k_0 = 1.13 \)).
The solvolysis of 7-methyl-1-d-anti-7-norbornenyl p-nitrobenzoate showed
a markedly small \(\beta \)-deuteration effect (\(k_{12}/k_0 = 1.09 \)) compared to the
value for the corresponding satd. compd. (\(k_{12}/k_0 = 1.89 \)).

Deuterium on the double bond in the anti-7-norbornenyl-1,2,3,4-d tosylate gave a small inverse effect (about 2% per D) which is most
probable not only of inductive origin.
The results show that the neighboring double bond participates in

A part of this work was published in *Tetrahedron Lett.* (1972) 1327.

Examiners: Prof. D. Suneko, Dr. T. Cvitaš, and Prof. S. Borčić.

Thesis deposited at the Faculty of Science, University of Zagreb.

(127 pages, 12 tables, 14 figures, 85 references, original in Croatian)

M. TOMIĆ
<table>
<thead>
<tr>
<th>MCC-49</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Synthesis and Solvolysis of Deuterated 7-Norbornenyl and 7-Norbornyl Derivatives</td>
<td></td>
</tr>
<tr>
<td>I. Tomić M.</td>
<td></td>
</tr>
<tr>
<td>II. »INA-Naftaplin«, Zagreb</td>
<td></td>
</tr>
<tr>
<td>III. Institute »Ruder Bošković«, 41000 Zagreb, Croatia, Yugoslavia</td>
<td></td>
</tr>
<tr>
<td>Isotopic effects, deuterium, in solvolysis of 7-norbornyl, 7-methyl-, tosylate</td>
<td></td>
</tr>
<tr>
<td>of 2-norbornene-7-y1, anti, tosylate of 2-norbornene-7-y1, 7-methyl, anti-, p-nitrobenzoate</td>
<td></td>
</tr>
<tr>
<td>7-Norbornanol, 7-methyl-, tosylate</td>
<td></td>
</tr>
<tr>
<td>1.4-<sub>d</sub><sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>-1.2.2.3.4-<sub>d</sub><sub>4</sub></td>
<td></td>
</tr>
<tr>
<td>-1.2-end, 3-end, 4-<sub>d</sub><sub>4</sub></td>
<td></td>
</tr>
<tr>
<td>-methyl-<sub>d</sub><sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>2-Norbornene-7-ol, anti-, tosylate</td>
<td></td>
</tr>
<tr>
<td>-7-<sub>d</sub><sub>1</sub></td>
<td></td>
</tr>
<tr>
<td>1.2.3.4-<sub>d</sub><sub>4</sub></td>
<td></td>
</tr>
<tr>
<td>2-Norbornene-7-ol, 7-methyl-, anti- p-nitrobenzoate</td>
<td></td>
</tr>
<tr>
<td>-methyl-<sub>d</sub><sub>3</sub></td>
<td></td>
</tr>
</tbody>
</table>
BIBLIOGRAPHIA CHEMICA CROATICA

1970

BCC-1036
I. Jergović, I. Žužić, M. Fišer-Herman, and B. Straus
Institute of Medical Biochemistry Faculty of Pharmacy and Biochemistry, University of Zagreb (Yugoslavia)

A Simple Method for Serum Arginase Determination

BCC-1037
I. Kos and V. Vukčević-Kovačević
«Pliva», tvornica farmaceutskih i kemijskih proizvoda, Kontrolno analitički sektor i Zavod za farmaceutsku kemiju, Farmaceutsko-biokemijski fakultet, Sveučilište u Zagrebu

Determination of Noscapine in Mixture Containing 2-Ethoxybenzamide, p-Acetaminophenol, Phenobarbitone and 5-Phenyl-2-imino-4-oxo-4-oxazolidine

BCC-1038
M. Movrin
Zavod za farmaceutsku kemiju Farmaceutsko-biokemijskog fakulteta u Zagrebu

Priprema nekih kinolil-oksadiazol-tiona kao potencijalnih tuberkulostatika

BCC-1039
V. Pavdić
Department of Physical Chemistry Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Surface Charge Characterization of Sea Sediments

BCC-1040
B. Šreple
Zavod za farmaceutsku kemiju Farmaceutsko-biokemijskog fakulteta u Zagrebu

Prilog mikrochemijskoj analitici droga Fol. Belladonnae i Fol. Scopoliae cariolicae Jacq.

1971

BCC-1041
S. Asperger, D. Hegedić, D. Pavlović, and D. Stfanović
Department of Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb and Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

On the Mechanism of the Desulfonylation of Phenyl Sulfone in Molten Sulfur
A. Bakač and M. Orhanović
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
The Preparation and Kinetics of the Aquation of Pentaaquo-pyridinechromium (III) Ion

D. Bidjin, S. Popović, and B. Čelustka
Institute «Ruder Bošković», Zagreb
Some Electrical and Optical Properties of In₂Se₃

N. Blažević and F. Kajfež
Compagnia di Ricerca Chimica, S. A. Chiasso, Switzerland
A New Ring Closure Synthesis of 1,4-Benzodiazepines. II.

J. E. Bloor and Z. B. Maksić
Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37916, USA
Valence Shell Calculations on Polyatomic Molecules. V. Molecular Quadrupole Moments by CNDO/2D and SCC Methods

N. Bodor, E. Pop, and N. Trinajstić
Department of Chemistry, The University of Texas, Austin, Texas 78712
Valence-Shell and Pi-Electron SCF MO Calculations for the Isomerism of the 21-Benzylidene-20-oxo-pregnane Derivatives

N. Bodor, I. Schwartz, and N. Trinajstić
Chemical-Pharmaceutical Research Institute, Cluj, Romania, Medico-Pharmaceutical Institute, Catedra Chimie Fisica, Cluj, Romania and Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
SCF MO Study of the Tautomerism of Anilino-Thiazole and Related Compounds

L. Colombo et J. P. Mathieu
Département des Recherches Physiques Faculté des Sciences, Paris 5e
Vibrations externes des cristaux d’acénaphthéne

H. Čačković, R. Hosemann, and J. Loboda-Čačković
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin—Dahlem und »Ruder Bošković« Institute, Zagreb, (Jugoslawien)
Einfluss der mechanischen Vorbehandlung auf die Propfepolymerisation von Styrol in festem linearem Polyäthylen
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1050
B. Čelustka, D. Bidjin, and S. Popović
Institute »Ruder Bošković«, Zagreb
Conductivity and Some Photoelectrical Properties of Pressed In₂Se₃

BCC-1051
R. Despotović and Z. Grabarić
Department of Physical Chemistry, Institute »Ruder Bošković«, Zagreb, Yugoslavia
Systems Containing Surfactants. IX: The Sodium n-Dodecyl Sulphate/AgI System
Tenside Detergents 8 (1971) 313.

BCC-1052
M. J. S. Dewar, M. C. Kohn, and N. Trinajstić
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712
Cyclobutadiene and Diphenylcyclobutadiene

BCC-1053
G. Deželić, N. Deželić, and Z. Telišman
Zavod za kemiju Biokoloida, Škola Narodnog Zdravlja »Andrija Štampar«, Zagreb and Institute »Ruder Bošković«, Zagreb
Binding of Human Albumin by Monodisperse Polystyrene Latex Particles

BCC-1054
H. Füredi-Milhofer, B. Purgarić, Lj. Brečević, and N. Pavković
Department of Physical Chemistry, Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Precipitation of Calcium Phosphates from Electrolyte Solutions. I. A Study of the Precipitates in the Physiological pH Region
Calcium Tissue Res. 8 (1971) 142.

BCC-1055
A. Gertner, D. Pavišić, D. Kodrnja, and V. Grdinić
Zavod za kemiju, Farmaceutsko-biokemijski fakultet, Zagreb
Određivanje mikro- i ultramikro-količina nekih metalnih iona kolorimetrijom prstenova s pomoću zajedničke Fe (III) modrinatne standardne skale

BCC-1056
H. Güsten and L. Klasing
Institut für Strahlenchemie, Kernforschungszentrum Karlsruhe, 75 Karlsruhe, Germany
The Mechanism of Hydrogen Randomization in the Stilbene Molecular Ion

BCC-1057
J. N. Herak and G. Schoffa
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia and Lehrgebiet Biophysik an der Universität Karlsruhe, Germany
E. P. R. Spectroscopy of the Radicals Formed in a Single Crystal of 6-Azathymine by Irradiation
On the Dehydration of Bicyclo[2.2.1]-2-heptanols in the Mass Spectrometer

σ-π Conjugation of Carbon-Metal Bonds. Dehydrometalation of Alkylnetal Compounds

Synthesis of 1-O-(Indol-3-ylacetyl)-α-D-glucopyranose and its Rearrangement into 2-O-(Indol-3-ylacetyl)-α-D-glucopyranose

Empfindlichkeitssteigerung von Röntgenfilmen durch physikalische Nachentwicklung

Furan and Thiophene Analogs of Phenanthrene. A Theoretical Study of the Absorption Spectra of Benzodifurans, Benzodithiophenes and Thi nobenzofurans

Über die Lichtempfindlichkeit der Tetracycline

Electrochemical Study of Uranium (VI) in Aqueous Solution of Tri-n-butyl Phosphate

Electrophilic Opening of the Thiazolidine Ring in Penicillins

BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1066
S. Kukolja
The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206

A Stereoselective Synthesis of 6-Phthalimido-5-epipenicillanates

BCC-1067
B. Ladešić and D. Keglević
Tracer Laboratory, Institute »Ruder Bošković«, Zagreb Yugoslavia

The Chemical Synthesis of N-Malonyl-(2-14C)-D-methionine,
a Metabolite of D-Methionine in Higher Plants
Radioisotopy 12 (1971) 535.

BCC-1068
B. Ladešić, M. Pokorný, and D. Keglević
Tracer Laboratory, Institute »Ruder Bošković«, Zagreb, Yugoslavia

Comparative Studies of L- and D-Amino Acid Metabolism in Plants. Metabolic Patterns of L- and D-Serine in Higher and Lower Plants
Phytochemistry 10 (1971) 3085.

BCC-1069
J. Loboda-Čačković, R. Hosemann,
and H. Čačković
Fritz-Haber Institut der Max-Planck-Gesellschaft, Berlin—Dahlem und
»Ruder Bošković« Institute, Zagreb (Yugoslavia)

Superstructure Variations with Annealing in Linear Polyethylene

BCC-1070
B. Lovreček und N. Petrić
Institut für Elektrochemie und elektrochemischen Technologie der
Technischen Fakultät, Universität Zagreb und Institut für anorganischen
Technologie der Chemisch-technischen Fakultät, Split, Universität Zagreb

Die passivierende Wirkung von SiO₂ auf Zink
Werkstoffe Korrosion 22 (1971) 1019.

BCC-1071
D. Maljković and M. Branić
»Ruder Bošković« Institute, Zagreb, Croatia, (Yugoslavia)

Polarography of Seawater. II. Complex Formation of Cadmium
with EDTA

BCC-1072
Z. B. Maksić
Institute »Ruder Bošković«, 41000 Zagreb, Yugoslavia

Calculation of J (C—H) and J (C—C) Coupling Constants in Hydrocarbons by the Maximum Overlap Method

BCC-1073
M. Milun, Z. Sobotka, and N. Trinajstić
Institute »Ruder Bošković«, 41000 Zagreb, Yugoslavia

Hückel Molecular Orbital Calculations of the Index of Aromatic
Stabilization of Poly cyclic Conjugated Molecules
BCC-1074
R. A. A. Muzzarelli and L. Sipos
"G. Ciamician» Chemical Institute, University of Bologna, Via Selmi 2, Bologna 40126, Italy and "Ruder Bošković", Institute, Center for Marine Research, Rovinj, Yugoslavia
Chitosan for the Collection from Seawater of Naturally Occuring Zinc, Cadmium, Lead and Copper
Talanta 18 (1971) 853.

BCC-1075
S. Popović
Institute "Ruder Bošković", Zagreb, Croatia, Yugoslavia
An X-Ray Diffraction Method for Lattice Parameter Measurements from Corresponding Kα and Kβ Reflections

BCC-1076
S. Popović, B. Čelustka, and D. Bidjin
Institute "Ruder Bošković", Zagreb
X-Ray Diffraction Measurement of Lattice Parameters of In₂Se₃

BCC-1077
S. Popović and D. E. Passoja
Institute "Ruder Bošković", Bijenička 54, Zagreb, Yugoslavia and Metallurgy Department, University of Manchester, England
Precipitation Phenomena in Al—Ag—Zn Alloys

BCC-1078
S. Popović and M. Tudja
Institute "Ruder Bošković", POB 1016, Croatia, Yugoslavia
A Remark on the Paper »Une varieté cubique d'oxysulfure d'uranium«

BCC-1079
L. Rabadija, E. Koren, and B. Pende
Laboratory for Experimental Medicine, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb and Institute of Immunology, Zagreb, Yugoslavia
Studies on the Composition of Extracellular Fluid from Calf Costal Cartilage

BCC-1080
M. Randić, A. Rubčić, and L. Klasinc
Institute "Ruder Bošković", Zagreb, Croatia, Yugoslavia
Hybridization in Highly Strained Small Ring Hydrocarbons. III. Unsaturated Spiro-Compounds

BCC-1081
M. Randić and M. Vučelić
Institute "Ruder Bošković", Zagreb, Yugoslavia
Ligand-Field Splitting in Eight-Coordinate Complexes of Dodecahedral Structure
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1082
B. Ribar, B. Mathović, M. Sljukić, and F. Gabela
Physikalisch Institut der Naturwissenschaftlich-Mathematischen Fakultät, Sarajevo and Institute «Ruder Bošković», Zagreb
Die Kristallstruktur von Hg(OH)NO₃

BCC-1083
M. Šaden-Krehula, M. Tajić, and D. Kolbah
Department of Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, and Division of Endocrinology, Department of Medicine, University Hospital Rebro, Zagreb, Croatia, Yugoslavia
Testosterone, Epitestosterone and Androstendione in the Pollen of Scotch Pine P. Silvestris L.

BCC-1084
M. Siroki and C. Djordjević
Laboratory of Analytical Chemistry and Institute of Inorganic and Analytical Chemistry, The University, Zagreb (Yugoslavia) and College of William and Mary, Williamsburg, Va. 23185 (U.S.A.)
Spectrophotometric Determination of Vanadium with 4-(2-Pyridylazo)resorcinol by Extraction of Tetraphenylphosphonium and Arsonium Salts

BCC-1085
Z. Šoljić and V. Marjanović
Institute of Inorganic and Analytical Chemistry, University of Zagreb, Yugoslavia
Separation of Cu, Pb, Ag, Mg, In, Cd, Sn and Zn by Thin-Layer Chromatography on Cellulose

BCC-1086
Z. Šoljić and S. Turina
Institute for Inorganic and Analytical Chemistry University of Zagreb, Yugoslavia
Separation of Al, Ti, In, Fe and Ga by Thin-Layer Chromatography on Cellulose

BCC-1087
N. Trinajstić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
The Spin Density Distribution in the Benzyl Radical

BCC-1088
N. Trinajstić
Institute «Ruder Bašković», Zagreb, Croatia, Yugoslavia
Molecular Orbital Calculations of Aromatic Stabilization of Polycyclic Conjugated Molecules
Record Chem. Progr. 32 (1971) 85.

BCC-1089
N. Trinajstić
Institute «Ruder Bošković», Zagreb, Yugoslavia
An SCF MO Treatment of Tropone Radical Anion
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1090

N. Zambelli and N. Trinajstić
Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia, Yugoslavia
Mass Spectrometric Investigations with α-α'-Bis-acetylenic Ketones

1972

BCC-1091

S. Asperger, D. Hegedić, D. Pavlović, and S. Borčić
Department of Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia, Yugoslavia
Deuterium and Sulfur-34 Isotope Effects in the Thermal Decomposition of Some Cyclic Sulfones

BCC-1092

N. Blažević, F. Kajfež, V. Šunjić, and D. Kolbah
CRC-Compagnia di Ricerca Chimica S.A., Chiasso, Switzerland i Zavod za farmaceutsku kemiju, Farmaceutsko-biokemijski fakultet, Zagreb
1,4-Benzodiazepini. I. Pregled farmakoloških ispitivanja i primjena u medicini
Farm. Glasnik 28 (1972) 239.

BCC-1093

N. Blažević, V. Šunjić, I. Crvelin, D. Kolbah, and F. Kajfež
Compagnia di Ricerca Chimica S.A., Chiasso, Switzerland, and Institute of Organic Chemistry and Biochemistry and Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Yugoslavia
1,4-Benzodiazepines III. Cyclization Paths of Hexaminium Salts of 2-Chloroacetamido-5-chlorobenzophenone and its N-Methyl Derivative
J. Heterocycl. Chem. 9 (1972) 531.

BCC-1094

A. Bleier, E. Matijević, J. McGuire, and J. O. Wear
Institute of Colloid and Surface Science and Department of Chemistry, Clarkson College, Potsdam, New York and Central Research Instrument Program, Veterans Administration, Little Rock, Arkansas
Coagulation of Silver Halide Sols by Uranyl Complexes
J. Colloid Interface Sci. 38 (1972) 647.

BCC-1095

J. M. Bockris, B. T. Rubin, A. Despić, and B. Lovreček
The Electrochemistry Laboratory, The University of Pennsylvania, Philadelphia 19104, USA
Electro Dissolution of Copper-Nickel Alloys

BCC-1096

V. Bonačić and J. Koutecký
Department of Chemistry, The John Hopkins University, Baltimore, Maryland 21218 and Belfer Graduate School of Science, Yeshiva University, New York, New York 10033 and Institute für Physikalische Chemie der Johann Wolfgang Goethe-Universität zu Frankfurt am Main, Germany
Consequences of the Nonlinearity of the Hartree-Fock Approach Pariser-Parr-Pople Demonstrated on the Example of the Model for Closed Shell Alternant Hydrocarbons
BCC-1097
S. Bosanac and M. Randić
Institute «Ruder Bošković», Zagreb, Yugoslavia
Analytical Evaluation of Three-Center Nuclear-Attraction Integrals with Slater-Type Atomic Orbitals

BCC-1098
Lj. Brečević and H. Füredi-Milhofer
Department of Physical Chemistry, «Ruder Bošković» Institute, Zagreb, Croatia, Yugoslavia
Precipitation of Calcium Phosphates from Electrolyte Solutions. II. The Formation and Transformation of the Precipitates
Calcium Tissue Res. 10 (1972) 82.

BCC-1099
I. Bregovac and T. Jakovčić
Chemisches Laboratorium, Naturwissenschaftliche Fakultät, Universität Zagreb (Strossmayerov trg 14), Jugoslawien
The Synthesis of 1-Aminocyclopropane-1-carboxylic Acid

BCC-1100
A. Deljac, W. D. McKay, C. S. J. Pan, K. J. Wiesner and K. Wiesner
Natural Products Research Center, University of New Brunswick, Fredericton, New Brunswick
A Synthetic Study in the Tricyclovetivene Series

BCC-1101
Z. Devidé and N. Ljubešić
Institute «Ruder Bošković», Zagreb, Yugoslavia
Plastid Transformations in Pumpkin Fruits
Naturwissenschaften 59 (1972) 39.

BCC-1102
S. W. Feldberg and Lj. Jeftić
Brookhaven National Laboratory, Upton, New York, 11973, and «Ruder Bošković» Institute, Zagreb, Yugoslavia
Nuances of the ECE Mechanism. IV. Theory of Cyclic Voltammetry and Chronoamperometry and the Electrochemical Reduction of Hexacyanochromate (III)

BCC-1103
H. Füredi-Milhofer, Z. Despotović, Z. Devidé, and M. Wrischer
Institute «Ruder Bošković», Zagreb, Yugoslavia
Precipitation and Hydrolysis of Uranium (VI) in Aqueous Systems. VIII. A Study of the Precipitates Formed in the Systems Uranyl Nitrate—Sodium Carbonate—Alkaline Earth Chlorides

BCC-1104
V. Galasso and N. Trinajstić
Istituto di Chimica, Universita di Trieste, 34127-Trieste, Italy, and Institute «Ruder Bošković», P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia
Conformational Analysis and Electronic Structure of Phenylthiazoles and their Protonated Forms
Tetrahedron 28 (1972) 2799.
BCC-1105
V. Galasso and N. Trinajstić
Istituto di Chimica, Universita di Trieste, 34127-Trieste, Italy and
Institute »Ruder Bošković«, P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia
A Quantum Mechanical Study on the Stereochemistry of the
Isomeric Bipyrroles, Bifurans, Bithiophenes, Thiénylfurans
and Biselenophenes
Tetrahedron 28 (1972) 4417.

BCC-1106
A. Gertner und V. Grdinić
Institut für Chemie, Fakultät für Pharmazie und Biochemie, Zagreb, Yugoslavia
Beiträge zur Ringeofentechnik. VIII. Die Anwendung von
MN-Polygram-Fertigfolien

BCC-1107
A. Graovac, I. Gutman, N. Trinajstić, and T. Živković
Institute »Ruder Bošković«, POB 1016, 41001 Zagreb, Croatia, Yugoslavia
Graph Theory and Molecular Orbitals. Application of Sachs
Theorem

BCC-1108
V. Grdinić
Institut für Chemie, Fakultät für Pharmazie und Biochemie, Zagreb, Yugoslavia
Beiträge zur Ringeofentechnik. IX. Die komplexometrische
Aktivitätsbestimmung von Radionucliden auf Grund ringförmiger
Autoradiogramme

BCC-1109
V. Grdinić and A. Gertner
Institut für Chemie, Fakultät für Pharmazie und Biochemie, Zagreb, Yugoslavia
Beiträge zur Ringeofentechnik. X. Die quantitative Bestimmung
eines inhomogen verteilten Radionuclides auf dem Kapillarträger.
Ihre Anwendung in der Chromatographie

BCC-1110
G. Guastalla, J. Halpern, and M. Pribanić
Department of Chemistry, The University of Chicago, Chicago, Ill. 60637
Carbonylation of Hydridopentacyanocobaltate (III)
J. Am. Chem. Soc. 94 (1972) 1575.

BCC-1111
H. Güsten, L. Klasinc, J. Marsel, and D. Milivojević
Institut für Strahlenchemie, Kernforschungszentrum Karlsruhe,
75 Karlsruhe, Germany and Institute »Ruder Bošković«, Zagreb, Yugoslavia and Institute »Jožef Stefan«, Ljubljana, Slovenia
Comparative Study of the Mass Spectra of Stibene and Fluorene
Org. Mass Spectrom. 6 (1972) 175.

BCC-1112
I. Gutman, N. Trinajstić, and T. Živković
Institute »Ruder Bošković«, P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia
Comments on the PMO Method
BCC-1113
J. Halpern and M. Pribanić
Department of Chemistry, The University of Chicago, Chicago, Ill. 60637
The Reaction of Hydridopentacyanocobaltate (III) with Ferricyanide

BCC-1114
V. Hankonyi, V. Ondrušek and V. Karas-Gašparec
Zavod za kemiju i biokemiju, Medicinski fakultet, Zagreb
Spektrofotometrijsko određivanje piridinium aldoksima s akvono-pentacyanoferatom (II) ionima

BCC-1115
J. N. Herak and M. Hudomalj
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Conformation of the Dihydouracil-6-yl Radical in the Lattice

BCC-1116
M. J. Herak and M. Janko
Laboratory of Analytical Chemistry, Faculty of Science, and Institute of Inorganic and Analytical Chemistry, University of Zagreb, Zagreb, Croatia, Yugoslavia
Extraction and Separation of Thorium (IV) and Protactinium (V) by 2-Carbethoxy-5-hydroxy-1-(4-tolyl)-4-pyridone

BCC-1117
J. Higgins, C. S. Menon, and Z. Janović
Department of Chemistry, Illinois State University, Normal, Ill. 61761
Synthesis of Bis-α-tetralones

BCC-1118
V. Jagodić and Lj. Tušek
Ruder Bošković Institute, 41000 Zagreb, Croatia, Yugoslavia
Synthesis of Some Benzeneazo Derivatives of Phosphonic Acid Monoesters

BCC-1119
M. Janko and M. J. Herak
Institute of Inorganic and Analytical Chemistry, University of Zagreb, Zagreb, Croatia, Yugoslavia
Solvent Extraction and Separation of Zirconium, Niobium, and Tantalum by 2-Carbethoxy-5-hydroxy-1-(4-tolyl)-4-pyridone

BCC-1120
V. Karas-Gašparec, Z. Smerić, and V. Ondrušek
Zavod za kemiju i biokemiju, Medicinski fakultet, Zagreb
Spektrofotometrijsko određivanje pilokarpina s akvono-pentacyanoferatom (II)
BCC-1121
V. Katović, L. T. Taylor, F. L. Urbach, W. H. White and D. H. Busch
Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210 and the Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24064
Chemically Reduced Derivatives of the Nickel (II) and Copper (II) Complexes of the Cyclotetrameric Schiff Base of o-Aminobenzaldehyde
Inorg. Chem. 11 (1972) 479.

BCC-1122
D. Keglević, A. Kornhauser, and S. Valentekové
Tracer Laboratory, Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Glycosyl Esters of Amino Acids. IV. Synthesis of 1-O-(Acylaminoacyl)-2,3,4,6-tetra-O-benzyl-D-glucopyranoses by the Imidazole-promoted Active Esters and Dicyclohexylcarbodiimide Methods

BCC-1123
L. Klasic, E. Pop, N. Trinajstić, and J. V. Knop
Institute »Ruder Bošković«, P.O.B. 1016, 41001 Zagreb, Yugoslavia and Institute of Physical Chemistry, University of Düsseldorf, Germany
Theoretical Studies of Positional Isomers Obtained by Annelation of Benzene and 5-Membered Ring Heterocycles Containing Nitrogen, Oxygen, or Sulphur
Tetrahedron 28 (1972) 3465.

BCC-1124
B. Kojić-Prodić, S. Čavničar, R. Liminga, and M. Šljukić
Institute »Ruder Bošković«, Zagreb and Institute of Chemistry, University of Uppsala, Uppsala, Sweden
The Crystal Structure of Trihydrazinium Hexafluorochromate, (N₂H₃)₃CrF₆

BCC-1125
D. Kovačević, Z. Majerski, S. Borčić, and D. Sunko
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Competitive Reactions of Nucleophiles. III. The Azide Probe
Tetrahedron 28 (1972) 2469.

BCC-1126
M. Kraml, D. Dvornik, and L. Cosyns
Department of Biochemistry, Ayerst Research Laboratories, Montreal, Quebec, Canada
Colorimetric Determination of C-10 Hydroxylated Metabolites of Cyheptamide: Application to Absorption and Enzyme Induction Studies in the Rat
J. Pharm. Sci. 61 (1972) 408.

BCC-1127
Z. Kučan, H. P. Waits, and R. W. Chambers
Department of Biochemistry, New York University School of Medicine, New York, New York 10016
Acetone-Sensitized Photochemistry of Some Pyrimidine Dinucleoside Phosphates
Biochemistry 11 (1972) 3290.
D. Kuštrak i J. Petričić
Institut za kontrolu i ispitivanje lijekova SRH, Zagreb

Tinkture u Ph. Jug. III

BCC-1129

J. W. Larsen and M. Eckert-Maksić
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916

p-Methylanisole as an Ambient Base-Effect of Acid Strength on the Position of Protonation

BCC-1130

R. V. Lauzon and E. Matijević
Institute of Colloid and Surface Science, Clarkson College of Technology, Potsdam

The Stability of Silver Iodide Sols in Methanol-water Media in the Presence of HFCl;

BCC-1131

R. V. Lauzon and E. Matijević
Institute of Colloid and Surface Science and Department of Chemistry, Clarkson College of Technology, Potsdam, N. Y. 13676

Stability of Polyvinyl Chloride Latex. I. Adsorption of Metal Chelates
J. Colloid Interface Sci. **38** (1972) 440.

BCC-1132

L. F. Lindoy, V. Katović, and D. H. Busch
The Ohio State University, Columbus, Ohio 43210

A Variable-Temperature Faraday Magnetic Balance

BCC-1133

B. Lavreček and I. Mekjavić
Institute of Electrochemistry and Electrochemical Technology, Zagreb, University of Zagreb, and Institute of Physical Chemistry, Faculty of Chemical Technology, Split, University of Zagreb, Yugoslavia

Electrode Kinetics of Bi in the Presence of Hydroquinone

BCC-1134

B. Lovrečak and J. Sefaja
Institute of Electrochemistry and Electrochemical Technology, Faculty of Technology, Zagreb, University of Zagreb, Yugoslavia

Semiconducting Aspects of the Passive Layer on Chromium

BCC-1135

Z. Majerski and C. S. Redvanly
«Ruder Bošković» Institute, 41001 Zagreb, Yugoslavia and Brookhaven National Laboratory, Upton, Long Island, New York 11973

Mechanism of the Wolff Rearrangement of α-Diazohomo-adamantanone: Evidence Against Oxiron Participation
BCC-1136
Z. B. Maksić and J. E. Bloor
Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37916, USA
The Diamagnetic Susceptibility of Hydrocarbons

BCC-1137
Z. B. Maksić, Z. Meić, and M. Randić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Correlation Between C-H Stretching Frequencies and Hybridization in Hydrocarbons
J. Mol. Struct. 12 (1972) 482.

BCC-1138
Z. B. Maksić, M. Randić, and M. Vučelić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Hybridization in Eight Coordinated Square Antiprism Complexes

BCC-1139
R. Malojčić and D. Stefanović
Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia, Yugoslavia and Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Electron-Impact Induced Fragmentation of Dimethanonaphthalene Type Compounds
Org. Mass Spectrom. 6 (1972) 1039.

BCC-1140
F. J. Mangravite, Jr., E. A. Cassell, and E. Matijević
Institute of Colloid and Surface Science and Department of Chemistry and Civil Engineering, Clarkson College of Technology, Potsdam, New York 13676
The Microflotation of Silica
J. Colloid Interface Sci. 39 (1972) 357.

BCC-1141
E. Matijević and L. J. Stryker
Institute of Colloid and Surface Science and Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676
An Answer to the Comments on »A Method for the Determination of Surface Areas of Hydrophobic Colloids«
J. Colloid Interface Sci. 39 (1972) 430.

BCC-1142
Z. Meić and M. Randić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Force Constant Calculations of Methyl Mercuric Chloride and Methyl-d₃ Mercuric Chloride

BCC-1143
Š. Mesarić
Department of Physical Chemistry, »Ruder Bošković« Institute, Zagreb, Yugoslavia
Indirect Spectro Photometric Determination of Palladium Using 1,10-Phenanthroline as Reagent
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1144
D. Mikac-Dević and C. Tomanić
Medical Faculty, University of Zagreb, Hospital »Dr. M. Stojanović«, Zagreb, (Yugoslavia)

Determination of 4-Pyridoxic Acid in Urine by a Fluorimetric Method

BCC-1145
Institute of Forensic Medicine and Criminalistics, Faculty of Medicine, Zagreb

Effect of Major Cannabinoids on the Chemiluminescence Luminol

BCC-1146
K. Moslavac, B. Lovreček, and R. Radeka
Institute of Electrochemistry and Electrochemical Technology, Faculty of Technology, University of Zagreb, Zagreb, Yugoslavia

Kinetics of Anodic Layer Formation on Gold

BCC-1147
G. Nicolaon, M. Kerker, D. D. Cooke, and E. Matijević
Department of Chemistry and Institute of Colloid and Surface Science, Clarkson College of Technology, Potsdam, New York 13699

Brownian Coagulation in a Submicron Aerosol: Comparison of Experiment with Theory
J. Colloid Interface Sci. 38 (1972) 460.

BCC-1148
N. Petrić and B. Lovreček
Institute for Inorganic Technology, Faculty of Chemical Technology, Split, University of Zagreb, Yugoslavia and Institute for Electrochemistry and Electrochemical Technology, Faculty of Technology, University of Zagreb, Zagreb, Yugoslavia

Impedance Measurements of the Passive Zinc-Electrolyte System
Werkstoffe Korrosion 23 (1972) 270.

BCC-1149
J. Petričić i N. Drnovšek-Hlavka
Zavod za farmakognoziju, Farmaceutsko-biokemijskog fakulteta, Zagreb

Osvrt na farmokognoški dio Ph. Jug. III
Farm. Glasnik 28 (1972) 1.

BCC-1150
M. Randić
Department of Physics, University of Utah, Salt Lake City, Utah 84112

Investigation of Certain Auxiliary Functions Occuring in the Study of Molecular Integrals

BCC-1151
M. Randić and Z. B. Maksić
Institute »Ruder Bošković«, 41001 Zagreb, P.O.B. 1016, Croatia, Yugoslavia

Hybridization by the Maximum Overlap Method
Chem. Rev. 72 (1972) 43.
BCC-1152
M. Randić, Z. Meić, and A. Rubčić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
J (C13-H) Spin-Spin Coupling Constants of Several Unsaturated Hydrocarbons Calculated by the Maximum Overlap Method

BCC-1153
M. Randić and A. Rubčić
Faculty of Science and Mathematics, Departments of Chemistry and Physics, University of Zagreb, Zagreb, Marulićev trg 19, Croatia (Yugoslavia)
Hybridization in Some Macrocyclic Polyacetylenes

BCC-1154
B. Ribar, B. Matković, and M. Šljukić
Physikalisches Institut der Naturwissenschaftlich-Mathematischen Fakultät, Sarajevo and Institute Rudor Bošković, Zagreb, Yugoslavia
Die Kristallstruktur von Strontiumnitrat-Tetrahydrat,
Sr(NO₃)₂·4H₂O
Z. Kristallogr. 135 (1972) 137.

BCC-1155
I. Ružić
Center for Marine Research, Institute «Ruder Bošković», Zagreb, Yugoslavia
Two-Compartment Model of Radionuclide Accumulation into Marine Organisms. I. Accumulation from a Medium of Constant Activity

BCC-1156
I. Ružić
Center for Marine Research, Institute «Ruder Bošković», Zagreb, Yugoslavia
On the Theory of Kalousek Commentator, Square-Wave and Related Techniques

BCC-1157
I. Ružić
Center for Marine Research, Institute «Ruder Bošković», Zagreb, Yugoslavia
Logarithmic Analysis of the Two Overlapping DC Polarographic Waves. Quasireversible Electrode Processes

BCC-1158
D. Sevdic, V. Ivosević und H. Meider-Goričan
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Die Extraktion und Trennung von Mikromengen Quecksilber (II), Zink (II) und Cadmium (II) mit organischen Thiophosphorverbindungen

BCC-1159
D. Sevdic and H. Meider-Goričan
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Solvent Extraction of Niobium and Tantalum. VIII. Extraction with Some Bidentate Phosphorus Compounds from Sulfate Solutions
J. Less-Common Metals 27 (1972) 403.
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1160

D. Sevdić and H. Meider-Goričan
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Solvent Extraction of Mercury (II) with Thiophosphorus Compounds

BCC-1161

Vl. Simeon, N. Ivčić, and M. Tkalčec
Laboratory of Analytical and Physical Chemistry, Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, and Laboratory of Physical Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia, Yugoslavia

Construction of a Simple Reaction Calorimeter and Heats of Some Standard Reactions at 20°C

BCC-1162

D. E. Sunko and I. Szeli
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Solvolyis in Fluorocarbons. II. Anomalous Behavior of tert-Butyl Chloride and 7-Methyl-7-norbornyl Tosylate in Hexafluoropropionaprole-Water Mixtures

BCC-1163

D. E. Sunko, I. Szeli, and M. Tomić
Ruder Bošković Institute, Zagreb, and INA-NAFTAPLIN, Zagreb, Yugoslavia

Solvolyis Rates of 7-Methyl and 7-Methyl-δ₃-7-norbornyl Tosylates in Trifluoroethanol. A Case of an Apparent Breakdown of the mY Relationship

BCC-1164

Z. Soljić, S. Turina, and V. Marjanović
Institute of Inorganic and Analytical Chemistry, University of Zagreb, Yugoslavia

Separation and Detection of Cu, Pb, Bi, Cd, Hg, As, Sb and Sn by Thin-Layer Chromatography on Cellulose

BCC-1165

V. Šunjić, F. Kajfež, D. Kolbah, and N. Blažević
Compagnia di Ricerca Chimica S. A., Chiasso Switzerland and Pharmazeutisch-Biochemisches Fakultät der Universität Zagreb, Yugoslavia

Physicochemical Properties and Anti-Trichomonal Action of 2-, 4-, and 5-Nitro Imidazoles

Pharmazie 27 (1972) 131.

BCC-1166

V. Šunjić, V. Šunjić i F. Kajfež
»CRC«-Compagnia di Ricerca Chimica SA., Chiasso, Switzerland

Prostaglandin

Farm. Glasnik 28 (1972) 239.

BCC-1167

B. Tomažič and M. Branica
Center for Marine Research, »Ruder Bošković« Institute, Zagreb, Croatia, Yugoslavia

Precipitation and Hydrolysis of Uranium(VI) in Aqueous Solutions. VII. Boundary Conditions for Precipitation from Solutions of UO₂(NO₃)₂—KOH—K, Ba, La and Eu Nitrate

BCC-1168
J. Tomasić and D. Keglević
Tracer Laboratory, Institute «Ruder Bošković», Zagreb, Yugoslavia
Direct Spectrophotometric Assay of Glucuronic Acid in the Presence of Labile Glucosiduronic Acids
Anal. Biochem. 45 (1972) 164.

BCC-1169
M. Topić, M. Napijalo, S. Popović, and Z. Zeljić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Temperature Dependence of Some Properties of NaTh₂(PO₄)₃ Ferroelectric Crystals

BCC-1170
T. G. Traylor, H. J. Berwin, J. Jerkunica, and M. L. Hale
Chemistry Department, Revelle College, University of California, San Diego, La Jolla, California
σ-π-Conjugation Occurrence and Magnitude
Pure Appl. Chem. 30 (1972) 599.

BCC-1171
Microbiological Assay Branch, National Center for Antibiotic Analysis, Food and Drug Administration, Washington, D.C. 20204.
Assay of Official Injections of Amine Salts
J. Pharm. Sci. 61 (1972) 448.

BCC-1172
S. Turina and V. Jaminicki
Institute for Material Investigations, University of Zagreb, D. Salaja 1, Zagreb, Yugoslavia
Principles of Hot Plate Chromatography
Anal. Chem. 44 (1972) 1892.

BCC-1173
K. Weber and J. Monforte
Institute of Forensic Medicine and Criminalistics, Faculty of Medicine, Zagreb
Fluorescence of Complexes of Morphine-Type Alkaloids

BCC-1174
R. Weisz-Maleček i B. Pende
Imunološki zavod, Zagreb
Aktivna i pasivna zaštita protiv variole: vakcine i specifični antivakcinija gama-globulini