The Precipitation and Hydrolysis of Zinc, Lead and Bismuth in Aqueous Solutions

B. Pokrić

Laboratory for Electrophoresis, Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

The pptn. of metal hydroxides, hydrolysis of metal ions, and influence of complexing agents on the formation of ppts. have been investigated in the systems: ZnCl₂-NaOH(HCl)-NaCl-H₂O; Pb(NO₃)₂-HAcac-NaOH(HClO₄)-NaClO₄-H₂O; PbCl₂-NaOH(HCl)-NaCl-H₂O; Bi(ClO₄)₃-NaOH(HClO₄)-NaClO₄-H₂O.

The investigations were done in the pH range from 0.5 to 13.5 and concns. range of metal ions from 1.0 × 10⁻⁴ M to 3.0 × 10⁻² M. The combination of tyndallometry, high voltage electrophoresis and adsorption chromatography on filter paper permits the detn. of regions of pH values and concns. of metal ions in which exist Zn²⁺ and Pb⁺⁺ ionic species, cationic and anionic hydrolytic species of zinc and lead, uncharged lead acetylacetone-Pb(Acac)²⁺, cationic, uncharged and anionic hydroxy-acetylacetone-complexes of lead, cationic chloro-hydroxo-complexes of lead, and cationic perchlorato- and hydroxo-perchlorato-complexes of bismuth.

Uncharged ionic pairs of the form [Na⁺ Zn(OH)⁺]⁺ were found to exist in the region of high pH values instead of the anionic hydroxo-complex Zn(OH)⁻. The same was found for lead, indicating that the free anionic hydroxo-complex of the form Pb(OH)⁻ does not exist in aq. solns.

At 20°C the following solv.consts. were found: for zinc hydroxide: log Kₛₒ = -20.2 and log Kₛₜ = -0.2; for lead hydroxide: log Kₛₒ = -19.3.

The new phenomenon of electrophoretic quasi mobilities characteristic for hydrolytic species in aq. solns. is described as a result of the formation of hydrogen bonds between the hydroxyl groups of metal hydrolytic species and the =CHOH groups of the amorphous part of the filter paper cellulose.

Examiners: Dr. Z. Pušar, Prof. H. Iveković, Prof. M. Mirnik

Dissertation deposited at the University Library, Zagreb, and Institute »Ruder Bošković«, Zagreb.

(85 pages, 34 figures, 100 references, original in Croatian)

B. POKRIC
DCC-30

1. The Precipitation and Hydrolysis of Zinc, Lead and Bismuth in Aqueous Solutions

I. Pokrić B.

II. Laboratory for Electrophoresis, Institute "Ruder Bošković", Zagreb, Croatia, Yugoslavia

Bismuth
—, hydrolysis and precipitation of
Electrophoresis, high voltage
—, of zinc, lead and bismuth
Hydrolysis
—, of zinc, lead and bismuth
Lead
—, hydrolysis and precipitation of
Mobility, quasi
new electrochromatographic phenomenon
2,4-Pentanedione
—, complexes with lead
Precipitation
—, of zinc, lead and bismuth
Zinc
—, hydrolysis and precipitation of
Electrochemical Study of Uranium(VI) Peroxo Complexes

V. Žutić

»Ruder Bošković« Institute, Zagreb, Croatia, Yugoslavia

Redox processes of uranium(VI) peroxo complexes in aq. alkali carbonate and hydroxide solns. were studied using polarographic techniques, cyclic voltammetry, and coulometry at mercury electrodes.

In the system U(VI)–H₂O–Me₂CO₅, uranyl peroxodicarbonate has been identified as the electroactive species, with the following parameters of the redn. process: (E₁/₂, E₂, n = 0.82 V/S.C.E., n = 3, a = 0.92, k₀ = 2.5 x 10⁻⁸ cm. sec⁻¹ and the charge of the electroactive species z = -2. The redn. product, uranium(V) tricarbonato complex, reduces the peroxy group of uranyl peroxodicarbonato complex; the homogenous rate const. has been detd. as k = 60 and 4 x 10⁻¹ mol⁻¹ at 10 and 40° C, respectively.

Depending on the H₂O₂/U ratio in the system U(VI)–H₂O₂–MeOH uranium(VI) hydroxo, monoperoxo and triperoxo complexes have been characterized as electroactive species. Electrochemical redn. of uranium (VI) hydroxo complex is a simple process with E₁/₂ = 0.88 V, a = 0.49, k₀ = 3.3 x 10⁻² cm. sec⁻¹ and z = -1. Redn. of the uranium(VI) monoperoxo complex gives two waves – quasi-reversible wave at -1.05 V and an irreversible one around -1.5 V. On the other hand, uranium(VI) triperoxo complex is reduced through a single seven-electron irreversible process with E₁/₂ = -1.45 V. In all cases the same uranium(V) hydroxo complex has been identified as the stable redn. product. The behavior is still complicated by the bulk recombination reaction between uranium(VI) triperoxo and hydroxo complex, and redox reactions between uranium(V) hydroxo complex and any species containing the peroxy group.

It has been concluded that the first step of the overall redn. process of the peroxo complexes studied is the one electron redn. of the uranyl group, the potential of which is detd. by the stability of uranyl-ligand bond. The following step shows the usual characteristics presented by the noncomplexed peroxy group.

Examiners: Prof. I. Filipović, Prof. B. Težak, and dr. M. Branica.

Dissertation deposited at the University Library, Zagreb.

(150 pages, 15 tables, 58 figures, 193 references, original in Croatian).

V. ŽUTIĆ
DCC-31

1. Electrochemical Study of Uranium(VI) Peroxo Complexes
I. Žutić V.
II. »Ruder Bošković« Institute, Zagreb, Croatia, Yugoslavia

<table>
<thead>
<tr>
<th>Electrochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>- of hydrogen peroxide-uranium</td>
</tr>
<tr>
<td>- of uranium hydroxo complexes</td>
</tr>
<tr>
<td>- of uranium peroxy complexes</td>
</tr>
<tr>
<td>Hydrogen peroxide-uranium</td>
</tr>
<tr>
<td>- electrochemistry of</td>
</tr>
<tr>
<td>Uranium hydroxo complexes</td>
</tr>
<tr>
<td>- electrochemistry of</td>
</tr>
<tr>
<td>Uranium peroxy complexes</td>
</tr>
<tr>
<td>- electrochemistry of</td>
</tr>
</tbody>
</table>
Analysis and Separation of Polarographic Waves

I. Ružić

Laboratory for Physico-Chemical Separations, Center for Marine Research, "Ruder Bošković" Institute, Zagreb, Croatia, Yugoslavia

Equations of current-potential curves for Kalousek commutator polarography, square-wave polarography, Fourier's technique, and radio-frequency polarography have been derived for reversible electrode reactions. The analysis of exp. current-potential curves for the mentioned techniques has been proposed, and the results were compared with those obtained by usual logarithmic analysis of d.c. polarograms. The general equation for such analysis has the form:

$$A (i - i_0)^x + (A + 1)(i - I) x + i - I^* = 0,$$

where $A = \exp \left(- \frac{nF A}{RT} \right)$, $x = \exp \left(- \frac{nF (E - E_{1/2})}{RT} \right)$, I^* is the residual current, I is a function of the peak current, i_0 is the limiting current, and $A E$ is the amplitude of the polarizing voltage. E, n, F, R, T and $E_{1/2}$ have their usual meaning. The procedure for the analysis of Kalousek's curves and square-wave polarograms has been applied for the analysis of normal pulse and derivative pulse (as well as a.c. and d.c. differential) polarograms respectively.

A new method for the analysis of quasi-reversible d.c. polarographic waves has been proposed, giving more accurate results than that of Koryta and Matsuda-Ayabe.

The methods for the analysis and separation of two (or more) overlapping d.c. waves as well as derivative curves have been proposed. In the first case the method can be applied for the analysis and separation of anodic-cathodic quasi-reversible d.c. waves, d.c. polarograms of a multistage polyelectronic electrode reaction, Kalousek's curves type I and II and their combinations.

Examiners: Dr. M. Branica, prof. I. Filipović and prof. R. Wolf.

Degree conferred: February 26, 1971.

(250 pages, 15 tables, 108 figures, 300 references, original in Croatian)

I. RUZIC
DCC-32

I. Analysis and Separation of Polarographic Waves

I. Ružić I.

II. Laboratory for Physico-Chemical Separations, Center for Marine Research, «Ruder Bošković» Institute, Zagreb, Croatia, Yugoslavia

Polarographic curves, analysis of
— for different d.c. and a.c. techniques
— for overlapping curves
— for quasireversible d.c. polarograms
BIBLIOGRAPHIA CHEMICA CROATICA

MCC-38 (Univ. Zagreb)
Master of Science Thesis

Preparation and Chelating Properties of Optically Active 1,2-diaminocyclopentane-N,N,N',N'-tetraacetic Acids

N. Paulić

Laboratory of Analytical and Physical Chemistry, Institute for Medical Research, Yugoslavia Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia

Starting from diethyladipate, 1,2-diaminocyclopentane-N,N,N',N'-tetraacetic acid was prepd. through five reaction steps. The racemic acid was resolved with brucine and the obtained optically active acids showed specific rotations: \([\alpha]_D = +58^\circ\) and \([\alpha]_D = -53^\circ\), resp. In this way it was proved that the trans isomer of the acid is the main product of the synthesis.

Both optically active acids were used for the prepn. of resp. cobalt(II) complexes. The ORD-spectra of Co(II)-(+-)-CPDTA and Co(II)-(--)-CPDTA systems are related as mirror images (within the limits of exptl. error). These spectra are anomalous and irregular so that the abs. configuration of these complexes could not be ascertained on the ground of analogy with similar EDTA or CDTA chelates. From UV and visible absorption spectra of these complexes it could be considered that a Jahn-Teller effect is involved, giving rise to a broad max. at 450–520 nm.

Stability consts. of all the complexes investigated, detd. by a potentiometric method using a mercury pool electrode, are not significantly different.

Examiners: Dr. D. Fleš, Dr. Vl. Simeon and Prof. K. Balenović.

Thesis deposited at the Institute for Medical Research, Zagreb and at the Institute of Organic Chemistry and Biochemistry, University of Zagreb.

(73 pages, 7 tables, 4 figures, 61 references, original in Croatian)

N. PAULIC
MCC-38

1. Preparation and Chelating Properties of Optically Active 1,2-diaminocyclopentane-\(N,N,N',N'\)-tetracetic Acids

I. Pauliž N.

II. Laboratory of Analytical and Physical Chemistry, Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia

Co(II)-complexes 1,2-diaminocyclopentane-\(N,N,N',N'\)-tetracetic acid, resolution of Optically active ligands, complexes with
Potentiometric Determination of Stability Constants of Formato,
Glycolato and Chloroacetato Complexes of Nickel, Cadmium
and Lead

T. Matusinović

Laboratory of Inorganic Chemistry, Faculty of Technology,
University of Zagreb, Zagreb, Croatia, Yugoslavia

Stability consts. of formato, glycolato and chloroacetato complexes of nickel, cadmium and lead have been detd. by the potentiometric method. The change of concn. of the hydrogen ions in the monocarboxylate buffer has been measured. Stability const. have been obtained graphically using Fronaeus' method and by means of a digital computer applying the Gauss Z programme devised by R. S. Tobias.

All measurements were performed at the temp. of 25 ± 0.1°C except those in chloroacetate buffers where it was 18 ± 0.1°C in order to avoid the hydrolysis of the chloroacetate. The ionic strength of investigated solutions was kept const. at 2 M.

From the values of the first stability const. it can be seen that the stability of the monoligand complexes increases for all investigated systems in the series:

Formato complexes: \(\text{Ni}^{2+} < \text{Cd}^{2+} < \text{Pb}^{2+} \)

Glycolato complexes: \(\text{Cd}^{2+} < \text{Ni}^{2+} < \text{Pb}^{2+} \)

Chloroacetato complexes: \(\text{Ni}^{2+} < \text{Cd}^{2+} < \text{Pb}^{2+} \)

The stability of monocarboxylato complexes of nickel, cadmium and lead, increasing in the order: \(\text{Ni} < \text{Cd} < \text{Pb} \) (with exception of glycolato complexes), is in agreement with their tendency to polarization (i.e. with the mobility of electrons), because \(H \) increases in the same order (\(6.7 \times 10^{-4}, 0.96 \) and 4.34 cm³).

With regard to the ligand component, for all investigated metal ions, except lead ion, the observed orders of complex stability are in agreement with the order of ligand basicity, with the exception of glycolato complexes. The highest stability of glycolato complexes, except those of lead, is due to the presence of the OH group in the glycolate ion which is bonded to the metal ion as well. In the lead glycolato complexes such a bond does not probably exist because the position of glycolato complexes in the above stability order corresponds to the basicity of the glycolate ion with regard to the other monocarboxylate ions. A markedly higher stability of the lead chloroacetato complexes is in contradiction with the basic properties of this ligand and the explanation of this phenomenon cannot be given as yet.

Examiners: Prof. I. Filipović, Prof. B. Lovreček and Prof. M. Herak.

Thesis deposited at the University Library, Zagreb and Faculty of Pharmacy and Biochemistry, University of Zagreb.

(138 pages, 36 tables, 37 figures, 61 references, original in Croatian).

T. MATUSINOVIĆ
MCC-39

1. Potentiometric Determination of Stability Constants of Formato, Glycolato and Chloroacetato Complexes of Nickel, Cadmium and Lead

I. Matusinović T.

II. Laboratory of Inorganic Chemistry, Faculty of Technology, University of Zagreb, Zagreb, Croatia, Yugoslavia

<table>
<thead>
<tr>
<th>Cadmium(II) complexes</th>
<th>Chloroacetate, metal complexes with Formate, metal complexes with Glycolate, metal complexes with Lead(II) complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel(II) complexes</td>
<td></td>
</tr>
</tbody>
</table>
Spectrophotometric Determination of Stability Constants of Formato, Acetato, Propionato, Butyrate, Glycolato and Chloroacetato Complexes of Cobalt, Nickel and Copper

B. Grabaric

Laboratory of Inorganic Chemistry, Faculty of Technology, University of Zagreb, Zagreb, Croatia, Yugoslavia

Stability constants of Co(II), Ni(II) and Cu(II) complexes with ligands: formate, acetate, propionate, butyrate and chloroacetate were detd. spectrophotometrically, using Bjerrum's method of corresponding solns. Investigations were performed in the visible spectral region and the absorbance was measured at following wavelengths: 520, 670 and 760 nm for cobalt, nickel and copper resp. All investigated systems had a constant ionic strength of 2 (NaClO4) and a following constant ratio carboxylic acid/salt = 1:2 for formate and glycolate, 1:8 for chloroacetate, 5:1 for acetate and 6:1 for propionate and butyrate solns. The absorbance was recorded at room temp. (20–25°C), except for chloroacetate which was recorded at 10°C (because of the hydrolysis of chloroacetate at higher temps.).

Stability constants of the complexes were evaluated using Fronaeus' graphical method and these values were then refined according to R. S. Tobias' computer programme (Inorg. Chem 2 (1963) 1307) for weighted non-linear least squares procedure.

From the values of the first stability constants, it can be seen that the stability of the monoligand complexes increases for all investigated systems in the series:

\[
\text{Co} < \text{Ni} < \text{Cu} < \text{ClAc} < \text{Form} < \text{Ac} \leq \text{But} < \text{Prop} < \text{Glyc}
\]

The first series is in agreement with the order established by H. Irving and R. J. P. Williams (J. Chem. Soc. 1933, 3192). The second series, with the exception of glycolate, is in agreement with the order of ligand basicities (measured by pKₐ value). The greater stability of glycolato complexes probably is due to the interaction metal ion-OH group. Chloroacetato complexes of nickel are so weak that their presence, under our expl. cond., could not be detected.

Examiners: Prof. I. Filipovic, Prof. K. Weber and Prof. M. Herak

Thesis deposited at the University Library, Zagreb and Faculty of Pharmacy and Biochemistry, University of Zagreb.

(133 pages, 56 tables, 54 figures, 49 references, original in Croatian)

B. GRABARIC
1. Spectrophotometric Determination of Stability Constants of Formate, Acetato, Propionato, Butyrate, Glycolato and Chloroacetato Complexes of Cobalt, Nickel and Copper

I. Grabarić B.

II. Laboratory of Inorganic Chemistry, Faculty of Technology, University of Zagreb, Zagreb, Croatia, Yugoslavia

Acetate, metal complexes with Butyrate, metal complexes with Chloroacetate, metal complexes with Cobalt(II) complexes Copper(II) complexes Formate, metal complexes with Glycolate, metal complexes with Nickel(II) complexes Propionate, metal complexes with
MCC-41 (Univ. Zagreb)
Master of Science Thesis

Thermochemistry of Rare-Earth Complexonates

N. Ivićić

Laboratory of Analytical and Physical Chemistry, Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia

An isoperibolic reaction calorimeter was tested with regard to its accuracy and precision. This instrument has been found to have a satisfactory precision (about 0.7%) and a small systematic error (about 1.4%) so that it was found suitable for studying the complex formation in soln.

Co-ordination enthalpies of tripositive lanthanide ions (except Pm³⁺) with ligand trans-1,2-diaminocyclopentane-N,N,N',N'-tetraacetic acid (CPDTA) were detd. using above-mentioned calorimeter. From the experimental ΔHº data and the literature ΔGº values the co-ordination entropies were calcd. Besides the irregular dependence of either ΔHº or ΔSº on r⁻¹, very significant correlations of ΔSº with Sº(Ln³⁺) and ΔHº were observed and discussed.

Examiners: Dr. Vl. Simeon, Prof. B. Težak, and Prof. M. Herak
Oral examination: October 5, 1970.
Degree conferred: October 31, 1970.

Thesis deposited at the Central Chemical Library, Zagreb and Institute of Medical Research, Zagreb.

(75 pages, 9 tables, 10 figures, 58 references, original in Croatian)

N. IVIĆIĆ
MCC-41

1. Thermochemistry of Rare-Earth Complexonates
I. Ivicic N.
II. Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia

Calorimetry
Lanthanides, complexes of Polyaminopolycarboxylic acids trans-1,2-diaminocyclopentane-N,N,N',N'-tetraacetic acid
π-Participation and Secondary Deuterium Isotope Effects.
Cholesteryl System

M. Tarle

Institute »Ruder Boskovic«, Zagreb, Croatia, Yugoslavia

Solvolyis of cholesteryl derivs. is assisted by homoallylic participation which results in a 100 fold increase in reactivity with respect to the cholestanyl system.

α-Deuterium isotope effect of the cholesteryl-3α-d1 tosylate \(k_H/k_0 = 1.130 \) was of normal magnitude and equal to the effect measured on the satd. compd. This shows that α-effects are not a sensitive probe for the participation of neighboring double bond.

In the opposite sense the β-deuterium effect in the solvolysis of cholesteryl-4β-d1 tosylate was inverse \(k_H/k_0 = 0.989 \). This can be explained by a drastically reduced possibility for hyperconjugation in the transition state due to the formation of the mesomeric cation (and possibly by induction). The satd. analogue gave a normal β-isotope effect \(1.20 \).

The δ-effect in the solvolysis of cholesteryl-6δ-tosylate was inverse, \(k_H/k_0 = 0.937 \), indicating a change of the covalency at the carbon atom 6 in the transition state.

The α-effects of cholesteryl-3α-d1 tosylate \(1.13 \) and epicholesteryl-3β-d1 tosylate \(k_H/k_0 = 1.104 \) were compared. The solvolysis of the latter is presumably assisted by C–H bond participation. From the above comparison it can be concluded that the distance between the internal nucleophile and the reaction center, which dets. the degree of bridging in the transition state, influences the magnitude of α-effect regardless of the rate acceleration produced by the electrons of the participating group. The significance of these results has to be tested on the similar systems.

On the basis of these results it can be concluded that in heterolytic reactions secondary β-isotope effects are very sensitive towards participation, while δ-effects in such systems are significant for rehybridization which occurs on the top of the potential energy barrier.

Examiners: Prof. D. E. Sunko, Prof. S. Ašperger, and Prof. D. Fleš.

Thesis deposited at the University Library.

(89 pages, 16 tables, 49 figures, 104 references, original in Croatian).

M. TARLE
MCC-42

1. \(\pi \)-Participation and Secondary Deuterium Isotope Effects. Cholesteryl System

I. Tarle M.
II. Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia

<table>
<thead>
<tr>
<th>Compound</th>
<th>Deuterium Isotope Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>3(^{-})d-tosylate ester</td>
</tr>
<tr>
<td></td>
<td>4(^{+})d-tosylate ester</td>
</tr>
<tr>
<td></td>
<td>6(^{-})d-tosylate ester</td>
</tr>
<tr>
<td>Epicholesterol</td>
<td>3(^{+})d-tosylate ester</td>
</tr>
</tbody>
</table>

Isotopic effects by deuterium in solvolysis of cholesteryl tosylate in solvolysis of epicholesteryl tosylate
MCC-43 (Massachusetts Institute of Technology)
Master of Science Thesis
Sorption of Some Volatile Organic Compounds on Cellulose
M. Bošković
Dept. of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

A system for temp. control of saturators and column thermostat baths was designed, assembled and incorporated into an existing expzl. app. for measurement of vapor-solid sorption at low sorbate concns.

Surface areas of microcrystalline Whatman CC 31 cellulose were measured by phys. adsorption of nitrogen at liquid nitrogen temps. ("B-point method"). Nitrogen-specific B.E.T. surface areas for 0.4, 1.35, and 5.75 g. columns were 2.13, 4.83 and 2.30 m²/g. Incongruency of sorption isotherms measured with these columns was ascribed to differences in available surface areas, caused by packing procedures. Isotherms were measured for hexane, acetone and ethanol on microcrystalline cellulose at 23°C. At a const. activity of 10^{-4} the ratio of amts. of three vapors adsorbed were 1 : 6 : 7.8, indicating more interaction of acetone and ethanol with the sorbent surface.

Room temp. (23°C) sorption isotherms of ethanol vapors on the same sorbent were measured, in the partial pressure range 10 to 1500 mtorr and 1 to 1200 mtorr for 5.8 and 0.4 g columns, respectively. The corresponding activity range was 2×10^{-6} to 3×10^{-2}. Isotherm curves were concave to the pressure axis, their curvature decreasing with activity increase. Isotherm shape is consistent with both type II and type IV isotherms (after classification introduced by Brunauer et al., 1940), and suggests sorbate-sorbent interaction, possibly with surface hydroxyl groups of the sorbent. Amounts adsorbed were in the range of γ sorbate per g. sorbent. The frontal curves measured for ethanol at 0° and for hexanol at 23° and 0°C exhibited steps. A discussion of alcohol sorption on cellulose is included stressing the possibility of stepwise adsorption (type IV isotherm) as an operative mechanism.

Thesis Supervisor: Phillip Issenberg, Assoc. Prof. of Food Science, Dept. of Nutrition and Food Science, Massachusetts Institute of Technology

Thesis deposited at: M.I.T. Library, Dept. of Nutrition and Food Science at M.I.T., and at Faculty of Technology, Univ. of Zagreb

(ix + 187 pages, 9 tables, 13 figures, 102 references, original in English)

M. BOŠKOVIC

Present address: Fruit and Vegetable Laboratory, Dept. of Biotechnology, Faculty of Technology, Univ. of Zagreb, Zagreb Yugoslavia
MCC-43

<table>
<thead>
<tr>
<th>I. Sorption of Some Volatile Organic Compounds on Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Bošković M.</td>
</tr>
<tr>
<td>II. Fruit and Vegetable Laboratory, Dept. of Biotechnology,</td>
</tr>
<tr>
<td>Faculty of Technology, Univ. of Zagreb, Pierottijeva 6,</td>
</tr>
<tr>
<td>Zagreb, Croatia, Yugoslavia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
</tr>
<tr>
<td>Foods, Food Flavors</td>
</tr>
<tr>
<td>Sorption</td>
</tr>
<tr>
<td>Volatiles, Volatile Food Constituents</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHIA CHEMICA CROATICA

1968

BCC-852
K. Adamić
Zagreb (Yugoslavia)
ESR Study of Free Radical Transformation in Gamma-Irradiated Starch
Stärke 20 (1968) 3.

1969

BCC-853
K. Adamić, J. A. Howard, and K. U. Ingold
Division of Applied Chemistry, National Research Council of Canada, Ottawa, Canada
Absolute Rate Constants for Hydrocarbon Autoxidation. XVI. Reactions of Peroxy Radicals at Low Temperatures

BCC-854
A. Baric and M. Branica
Center for Marine Research, Institute »Ruder Bošković«, Zagreb, Yugoslavia
Behaviour of Indium in Sea Water

BCC-855
M. J. S. Dewar and N. Trinajstić
Department of Chemistry, University of Texas, Austin, Texas 78712, USA
Ground States of Conjugated Molecules. XIV. Redox Potentials of Quinones

BCC-856
M. J. S. Dewar, A. J. Harget, and N. Trinajstić
Department of Chemistry, University of Texas, Austin, Texas 78712, USA
Ground States of Conjugated Molecules. XV. Bond Localization and Resonance Energies in Compounds Containing Nitrogen or Oxygen

BCC-857
J. N. Herak and V. Galogaja
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Radical Transformation in Irradiated DNA and its Constituents

BCC-858
J. N. Herak, V. Galogaja, and A. Dulčić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Electron Spin Resonance of Hydrogen Addition Radicals in an Irradiated Single Crystal of Cytosine
BCC-859
J. A. Howard, K. Adamić, and K. U. Ingold
Division of Applied Chemistry, National Research Council of Canada, Ottawa, Canada
Absolute Rate Constants for Hydrocarbon Autoxidation.
XIV. Termination Rate Constants for Tertiary Peroxy Radicals

BCC-860
B. Kamenar and D. Grdenič
Laboratory of General and Inorganic Chemistry, Faculty of Science, The University, Zagreb, Yugoslavia
The Crystal Structure of Mercury(II) Acetamide

BCC-861
V. Katović, L. T. Taylor, and D. H. Busch
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
Application of the Coordination Template Effect to Prepare Five-Coordinate Nickel(II) and Copper(II) Complexes Containing a »Basket-Like« Polycyclic Ligand

BCC-862
A. Kornhauser and D. Keglević
Tracer Laboratory, Institute »Ruder Bošković«, Zagreb, Yugoslavia

BCC-863
J. Mašek, M. G. Bapat, B. Ćosović, and J. Dempire
J. Heyrovsky Institute of Polarography, Czechoslovak Academy of Sciences, Prague I
Polarographic Studies of Nitrosyl Compounds. IV. Reversibility and Kinetic Parameters of the Nitroprusside Ion Reduction

BCC-864
V. Mikuličić, K. Conki, and K. Weber
Zavod za sudsku medicinu i kriminalistiku Medicinskog fakulteta, Zagreb
Djelovanje soli teških kovina na kemiluminiscenciju luminola
Arhiv Hig. Rada Toksikol. 20 (1969) 275.

BCC-865
Z. Proso and Z. Pučar
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Preparation of Carrier-Free Radionuclides from Cyclotron Targets by Continuous Electrophoresis. I. Separation of 55Fe from Manganese, 54Mn and 58,57,56Co from Iron, 65Zn from Copper, and 109Cd from Silver Target

BCC-866
Z. Proso and Z. Pučar
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Preparation of Carrier-Free Radionuclides from Cyclotron Targets by Continuous Electrophoresis. II. Separation of 111,113In from Cadmium, 112Cd and 113,117Sn from Indium, 108Bi from Lead and 210Po from Bismuth Targets
BCC-867
P. Ströhali, S. Lulić, and O. Jelisavčić
Institute «Ruder Bošković», Rovinj, Yugoslavia
The Loss of Cerium, Cobalt, Manganese, Protactinium, Ruthenium and Zinc During Dry Ashing of Biological Material
Analyst 94 (1969) 678.

BCC-868
V. Škarić and B. Gašpert
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Hydropyrimidines. Part VIII. Reactions of Some Dihydropyrimidines and Their Thioderivatives with Nucleophiles

BCC-869
V. Škarić, L. Stuhne, Dj. Škarić, and V. Turjak-Zebić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
4,5,6,7-Tetrahydro-3-oxo-2H-Indazolecarboxylic Acids. Part V. Isomers and Their Dimerisations

BCC-870
M. Sljukić, B. Matković, B. Prodić, and D. Anderson
Institute «Ruder Bošković», Zagreb, and Washington State University, Pullman, Washington
The Crystal Structure of KZr₂(PO₄)₅

BCC-871
Z. Stefanac, M. Tomašković, and Z. Raković-Tresić
Institute for Organic Chemistry and Biochemistry, University of Zagreb, Yugoslavia
Spectrophotometric Method of Assaying Urease Activity

BBC-872
B. Tomažić, V. Žutić, and M. Branica
Department of Physical Chemistry, «Ruder Bošković» Institute, Zagreb, Croatia, Yugoslavia
Preipitation and Complex Solubility of Uranium(VI) in Lithium Hydroxide Solutions

BBC-873
M. Topić and B. Prodić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Ferroelectric Properties of NaU₂(PO₄)₃ Single Crystals

BBC-874
M. Topić, B. Prodić, and M. Sljukić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Sodium Dithorium Trisphosphate — A New Ferroelectric Substance

BBC-875
K. Voloder, B. Blažeković, and Vl. Simeon
Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb
On the Calcium Determination in Human Serum
Arhiv Hig. Rada Toksikol. 20 (1969) 259.
BCC-876
Institut za medicinska istraživanja i medicinu rada JAZU, Zagreb
Određivanje organofosfornih insekticida indolskom reakcijom

1970

BCC-877
K. Adamić, D. F. Bowman, and K. U. Ingold
Division of Chemistry, National Research Council of Canada, Ottawa 7, Canada
The Inhibition of Autoxidation by Aromatic Amines

BCC-878
K. Adamić, K. U. Ingold, and J. R. Morton
Division of Chemistry, National Research Council, Ottawa, Canada
Electron Spin Resonance Spectrum of Oxygen-17 Enriched t-Alkylperoxy Radicals

BCC-879
F. C. Anson and J. Čaja
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California
The Adsorption of Vanadium(III) on Mercury from Thio cyanate Solutions and its Electrochemical Consequences

BCC-880
N. Blažević and F. Kajfež
Compagnia di Ricerca Chimica SA. Chiasso and Faculty of Pharmacy and Biochemistry, University of Zagreb
A New Ring Closure of 1,4-Benzodiazepine

BCC-881
N. Bodor and N. Trinajstić
Chemical-Pharmaceutical Research Institute, Cluj, Romania and Department of Chemistry, University of Texas at Austin, Austin, Tex. 78712
Valence-Shell MO Calculations for Formamide and Related Compounds

BCC-882
O. Carević
Research Department »Pliva« Pharmaceutical and Chemical Works, Zagreb, Yugoslavia
Glycogen Degradation in Rabbit Liver Following Intraperitoneal Injection of Glucoamylase

BCC-883
T. Cvitaš and J. M. Hollas
Chemistry Department, The University, Reading, England
Rotational Band Contour Analysis in the 2710 Å System of p-Difluorobenzene
BCC-884
T. Cvitaš and J. M. Hollas
Chemistry Department, University of Reading, Reading, England
Rotational Band Contour Analysis in the 280 Å System of p-Dichlorobenzene

BCC-885
J. Čaja and H. B. Mark, Jr.
Department of Chemistry University of Cincinnati, Cincinnati, Ohio 45221

BCC-886
Č. Ćosović i V. Karas-Gašparec
Zavod za kemiju i biokemiju, Medicinski fakultet, Zagreb
Spektrofotometrijsko određivanje arsena. II.

BCC-887
R. Despotović, M. J. Herak, M. Mirnik, and Z. Selir
Department of Physical Chemistry, Institute «Ruder Bošković», Zagreb, Yugoslavia
Influence of Surface Active Substances and Preparation Conditions on the Properties of AgI
Tenside 7 (1970) 245.

BCC-888
Dj. Deur-Siftar and V. Švob
INA-Institute for Research and Development, Zagreb (Yugoslavia)
Characterization of Polypropylene by Pyrolysis Gas Chromatography

BCC-889
M. J. S. Dewar and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Triplet States of Aromatic Hydrocarbons

BCC-890
M. J. S. Dewar and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Resonance Energies of Some Compounds Containing Nitrogen or Oxygen

BCC-891
M. J. S. Dewar and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Quantum Chemical Data. I. SCF Molecular Orbitals for Benzenoid Hydrocarbons

BCC-892
M. J. S. Dewar and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Quantum Chemical Data. II. SCF Molecular Orbitals for Non-Benzenoid Hydrocarbons
BCC-893
M. J. S. Dewar and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Ground States of Conjugated Molecules. XVIII. Azepine and Oxepine

BCC-894
M. J. S. Dewar and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Ground States of Conjugated Molecules. XX. SCF MO Treatment of Compounds Containing Bivalent Sulphur

BCC-895
M. J. S. Dewar, A. J. Harget, N. Trinajstić, and S. D. Worley
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Ground States of Conjugated Molecules. XXI. Benzofurans and Benzopyrroles

BCC-896
M. J. S. Dewar, J. A. Hashmall, and N. Trinajstić
University of Texas, Department of Chemistry, Austin, Texas 78712, USA
Ground States of Conjugated Molecules. XXII. Polarographic Reduction Potentials of Hydrocarbons

BCC-897
Gj. Deželić
Department of Biocolloidal Chemistry, Andrija Stampar School of Public Health, Faculty of Medicine, University of Zagreb, and Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Light Scattering in Dense Media — its Theory and Practice

BCC-898
N. Deželić, J.J. Petres, and Gj. Deželić
Laboratory of Biocolloidal Chemistry, Andrija Stampar School of Public Health, Faculty of Medicine, University of Zagreb, and Institute »Ruder Bošković«, Zagreb, Croatia (Yugoslavia)
Preparation of Monodisperse Polystyrene Latices

BCC-899
M. Dikšić, P. Strohal, G. Peto, P. Bornemisza, I. Hunyadi, and J. Kerolyi
Institute »Ruder Bošković«, Zagreb, Yugoslavia
Contribution to (n, gamma) Reactions Studies at 3 MeV

BCC-900
C. Djordjević and V. Katović
Institute »Ruder Bošković«, and Laboratory of Analytical Chemistry, Faculty of Sciences, The University, Zagreb, Yugoslavia
Co-ordination Complexes of Niobium and Tantalum. VIII Complexes of Niobium(IV), Niobium(V), and Tantalum(V) with Mixed Oxo, Halogens, Alkoxy, and 2,2'-Bipyridyl Ligands
BCC-901
A. Gertner and V. Grdinić
Zavod za kemiju Farmaceutsko-biokemijskog fakulteta, Zagreb,
Kompleksometrijsko ultramikro-određivanje aluminijuma

BCC-902
A. Gertner, V. Grdinić, and M. Parag
Zavod za kemiju Farmaceutsko-biokemijskog fakulteta, Zagreb,
Kompleksometrijsko određivanje kisika u vodenim otopinama

BCC-903
V. Grdinić and A. Gertner
Institut für Chemie, Fakultät für Pharmazie und Biochemie, Zagreb
Eine Apparatur für die kontinuierliche Extraktion von extrem kleinen Proben und der ringförmigen Zonen auf dem Filterpapier

BCC-904
Lj. Grlić
Yugoslav Lexicographical Institute, Zagreb
Differentiation combinée au spectrophotomètre de cannabis de types chimiques divers

BCC-905
Lj. Grlić
Jugoslovenski leksikografski zavod, Zagreb
Suvremene laboratorijske metode za otkrivanje toksikomanija

BCC-906
Lj. Grlić
Laboratory for Addictive Drugs, Office of Chief Medical Examiner,
New York City, U.S.A.
A Highly Sensitive Chromatographic Detection of Cannabis Constituents by Means of Silica Gel Sheets Treated with Silver Nitrate

BCC-907
Lj. Grlić
Laboratory for Addictive Drugs, Addiction Services Agency,
New York City, N. Y. (U.S.A.)
A Simple Thin-Layer Chromatography of Cannabinoids by Means of Silica Gel Sheets Treated with Amines

BCC-908
Lj. Grlić
Laboratory for Addictive Drugs, Office of Chief Medical Examiner,
New York City, USA
A Highly Sensitive Chromatographic Detection of Cannabis Constituents by Means of Silica Gel Sheets Treated with Silver Nitrate

BCC-909
Lj. Grlić
Yugoslav Lexicographical Institute, Zagreb
Some New Possibilities of Separation of Cannabinoids by Means of Thin Layer Chromatography on Silica Gel Precoated Plastic Sheets
O. Hadžija
Tracer Laboratory, Institute »Ruder Bošković«, Zagreb, Yugoslavia
Lead Dioxide in Simultaneous Microdetermination of Carbon, Hydrogen and Halogens or Sulphur

J. N. Herak
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Radiation-Induced Conformation Changes of the Pyrimidine Ring in a Single Crystal of Dihydrothymine

M. Herceg and R. Weiss
Institute »Ruder Bošković«, Zagreb (Yugoslavia) and Laboratoire de Cristallographie, Institut de Chimie, B.P. 296 / RS, Strasbourg, France
The Structure of a Macrocyclic Copper(II) Complex; Dichloro(1,7,10,16-Tetraoxa-4,13-Diazacyclooctadecane) Copper(II)

B. Hrastnik, I. Basar, M. Dikšič, K. Ilačovac, V. Kos, and A. Ljubičić
Institute »Ruder Bošković«, Zagreb, Yugoslavia
Directional Correlation Studies in the Decay of 177mLu

K. Humski, R. Malojčić, S. Borčić, and D. E. Sunko
Institute »Ruder Bošković«, Zagreb, Yugoslavia
Thermodynamic and Kinetic Secondary Isotope Effects in the Cope Rearrangement

B. Kamenar and C. K. Prout
Laboratory of General and Inorganic Chemistry, Faculty of Science, The University, P. O. Box 90, Zagreb, Yugoslavia and Chemical Crystallography Laboratory, South Parks Road, Oxford, England
Crystal and Molecular Structures of Dichloro(oxo)-2,2'-Bipyridylethoxyniobium(V) and Tetraphenylarsonium Oxopentathiocyanatoniobate(V)

A. Kornhauser and D. Keglević
Tracer Laboratory, Institute »Ruder Bošković«, Zagreb, Yugoslavia
Studies of the Recemization of the Amino Acid Moiety

B. Kunst and S. Sourirajan
Division of Chemistry, National Research Council of Canada, Ottawa, Canada
Evaporation Rate and Equilibrium Phase Separation Data in Relation to Casting Conditions and Performance of Porous Cellulose Acetate Reverse Osmosis Membranes
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-918
B. Ladešić, M. Pokorny, and D. Keglević
Tracer Laboratory, Institute «Ruder Bošković», Zagreb, Yugoslavia

Evidence for p-Configuration of N-Malonylmethionine, the Metabolite of p-Methionine in Nicotiana Rustica

BCC-919
B. Lovreček and S. Lipanović
Institute of Electrochemistry and Electrochemical Technology, Zagreb, Yugoslavia

Investigation of Anodic Passivity of Ni

BCC-920
T. Lovrić, Z. Sablek, and M. Bošković
Institute for Processing Techniques, Zagreb, Yugoslavia

Cis-Trans Isomerisation of Lycopene and Colour Stability of Foam-Mat Dried Tomato Powder During Storage

BCC-921
Z. Majerski, S. H. Liggero, P. R. Schleyer, and A. P. Wolf
Department of Chemistry, Princeton University, Princeton, New Jersey 08540

The Degenerate Isomerization of adamantane

BCC-922
Z. Majerski, S. Borčić, and D. E. Sunko
Institute «Ruder Bošković», Zagreb, Yugoslavia

BCC-923
Z. Majerski, P. von R. Schleyer, and A. P. Wolf
Department of Chemistry, Princeton University, Princeton, New Jersey 08540 and Department of Chemistry, Brookhaven National Laboratory, Upton, New York

Stereochemical Inhibition of Intramolecular 1,2-Shifts. Mechanistic Evidence for Skeletal Rearrangement During Apparent 1,2-Methyl Shifts of Adamantane

BCC-924
Z. Majerski and N. Trinajstić
University of Princeton, Department of Chemistry, Princeton, New Jersey 08540, USA and University of Texas, Department of Chemistry, Austin, Texas 78712, USA

Tautomerism of Phenols; A Theoretical Study

BCC-925
M. Makovec and Z. Ban
Institute «Ruder Bošković», Zagreb and Institute for Inorganic and Analytical Chemistry, Zagreb, (Yugoslavia)

The Crystal Structure of Thorium Carbohydrides. Part II. Hexagonal Thorium Carbohydride

The Crystal Structure of a New Ferroelectric Compound
\(\text{NaTh}_2(\text{PO}_4)_3 \)

Dielectric Behaviour of Adsorbed Water Films on the \(\alpha\text{-Fe}_2\text{O}_3 \) Surface

Magnetic Susceptibilities of ThM\(_2\)X\(_2\) Compounds (M = Cr, Mn, Fe, Co, Ni and Cu; X = Si and Ge)

Breakdown of Ribosomal RNA Caused by Ionizing or Ultra-Violet Irradiation of Several Bacterial Strains

Comparative Studies of \(\text{L} \)- and \(\text{D} \)-Methionine Metabolism in Lower and Higher Plants

X-Ray Studies in the System Ti-Zn-Mg

The Effect of the Type of Polyethylene on the Grafting of Styrene on Polyethylene. I. Direct Radiation Grafting and Grafting by Pre-Irradiation in Vacuo

The Effect of the Type of Polyethylene on the Grafting of Styrene on Polyethylene. II. Grafting Initiated by Pre-Irradiation in Air and by Chemical Initiators
B. Ribar, W. Nowacki, M. Sljukić, F. Gabela, and B. Matković
Abteilung für Kristallographie und Strukturllehre der Universität Bern und Physikalisches Institut der naturwissenschaftlich-mathematischen Fakultät, Sarajevo und Institut »Ruder Bošković«, Zagreb

Die Kristallstruktur von Zn(NO₃)₂ • 4 H₂O

J. M. Roberts, Z. Katović, and A. M. Eastham
Division of Applied Chemistry, National Research Council of Canada, Ottawa 7, Canada

Catalysis of Olefin Isomerizations by Boron Trifluoride

A. Šakić, D. Rakin, et Z. J. Binenfeld
Institut de Chimie, Technologie et Métallurgie, Njegoševa 12, Belgrade, Yougoslavie

Utilisation des chlorures métalliques in statu nascendi comme catalyseurs de sulfu action. Sulfures d’halogéno-aryles

V. Škarić, B. Gašpert, and M. Hohnjec
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Thio-Analogues of 5,6-Dihydrouridine

M. Sljukić, B. Ribar, F. Gabela, T. Ribar, M. Glavaš, and B. Matković
Physics and Chemical Institute, Sarajevo and Institute »Ruder Bošković«, Zagreb

Crystal Data for ZnCl₂ • 2 CH₃CON(CH₃)₂, ZnCl₂ • 2 HCON(CH₃)₂ and ZnCl₂ • 4 (CH₃)₂SO

B. Tomazić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Extraction of Traces of Cerium, Europium, Terbium and Lutetium from Uranium(VI) Solutions with Di-2-Ethylhexyl Phosphoric Acid

B. Tomazić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Extraction of Traces of Rare-Earth Elements from Aqueous Solutions of Nitric Acid with Toluene Solutions of Di-2-Ethylhexyl Phosphoric Acid 0.02 M in Uranium(VI)

M. Topić, B. Kojić-Prodij, and S. Popović
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

AgTh₂(PO₄)₃ — a New Case of the Non-Hydrogen Bonded Phosphate Ferroelectric
A. Velenik, T. Zivković, W. H. de Jen, and J. N. Murrell
School of Molecular Sciences, University Sussex, Brighton
The Hydrogen Atom in the Presence of the Fermicontact Interaction

M. Vlatković and E. Willard
Department of Chemistry, University of Wisconsin, Madison, Wisconsin
Radiation Chemistry of 129I Produced by the 127I (n,γ) 129I Process from Alkyl Iodides in Hydrocarbons

K. Weber, Z. Gašparec, and P. Spasić
Institut für klinisch-medizinische Forschung und Institut für gerichtliche Medizin der Medizinischen Fakultät in Zagreb
Die Wirkung des Myoglobins auf die Chemilumineszenz des Luminols

K. Weber i Z. Gašparec
Zavod za sudsku medicinu Medicinskog fakulteta u Zagrebu
O fluorescenciји berberina u otopinama i adsorbatima

F. M. Zado and J. Fabečić
Institute »Ruder Bošković«, Zagreb, Yugoslavia
The Physico-chemical Fundamentals of Gas Chromatographic Retention on porous Polymer Columns: Porapak Q and T

V. Zutić and M. Branica
Center for Marine Research, Institute »Ruder Bošković« Zagreb, Yugoslavia
Polarographic Study of Uranium(VI) in Aqueous Solutions of Lithium Hydroxide

Division of Chemistry, National Research Council, Ottawa 7, Canada
Kinetic Applications of Electron Paramagnetic Resonance Spectroscopy. I. Self-Reactions of Diethyl Nitroxide Radicals

L. H. Allen, E. Matijević, and L. Meites
Institute of Colloid and Surface Science and Department of Chemistry, Clarkson College of Technology, Potsdam, N.Y. 13676.
Exchange of Na+ for the Silanolic Protons of Silica
BCC-950
V. C. Armstrong, Z. Katović, and A. M. Eastham
National Research Council of Canada, Ottawa, Canada
Surface Effects in Cationic Polymerizations

BCC-951
N. Avdalović, and G. Sachs
Department of Physiology, Faculty of Medicine, University of Zagreb, Zagreb (Yugoslavia) and Division of Gastroenterology, Department of Medicine, University of Alabama in Birmingham, Ala. 35233 (U.S.A.)
(Na⁺—K⁺)-ATPase in the Kidney of Normal and Castrated Mice

BCC-952
I. Baćić, N. Radaković, and P. Strohal
Faculty of Pharmacy and Biochemistry, University of Zagreb and Institute »Ruder Bošković«, Zagreb (Yugoslavia)
Concentration of Cr, Mn, Fe, Zn and Ru Traces by Aluminium and Strontium Phosphates

BCC-953
T. Bičan-Fišer
Institute for the Control of Drugs, Zagreb (Yugoslavia)
Quantitative Analysis of Tropane Alkaloids in Pharmaceutical Preparations

BCC-954
H. Bilinski, B. Pokrić, and Z. Pučar
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Studies of the System Zirconyl Chloride—Ammonium Oxalate in Aqueous Solution

BCC-955
Z. Binenfeld, A. Šakić, D. Rakin, and A. Damanski
Institut de Chimie de Technologie et de Métallurgie, Beograd, Jugoslavie
Utilisation des chlorures métalliques in statu nascendi, comme catalyseurs de sulfuration dans la synthèse des polysulfures fluoréniques et carbazoliques

BCC-956
Z. Binenfeld, B. Bošković, D. Rakin, and M. Ćosić
Institute of Technical and Medical Protection, Belgrade
Phenacyloximes as Antidotes in Organo-phosphorus Poisoning

BCC-957
V. Bonačić and M. Randić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Ligand Field Splitting in Square Planar, Trigonal Bipyramidal and Octahedral Structures by the Diffuse Charge Model

BCC-958
Lj. Brečević and H. Füredi-Milhofer
Department of Physical Chemistry, Ruder Bošković Institute, Zagreb, Croatia, Yugoslavia
Some Physicochemical Aspects of the Role of Citrate in Tissue Mineralization
BCC-959
N. Brničević and C. Djordjević
Institute »Ruder Bošković«, Zagreb (Yugoslavia) and College William and Mary, Williamsburg
Co-ordination Complexes of Niobium and Tantalum. XI.
Crystalline Malato Complexes of Niobium(V)

BCC-960
N. Brničević and C. Djordjević
Institute »Ruder Bošković«, Zagreb (Yugoslavia) and College of William and Mary, Williamsburg, Va. 23185 (U.S.A.)
Co-ordination Complexes of Niobium and Tantalum. XII.
Preparation and Properties of Oxy-Hydroxy-bis-Oxalato Niobic Acid and its Salts

BCC-961
T. Cvitaš and L. M. Hollas
Chemistry Department, University of Reading, Reading, England
A Partial Analysis of Rotational Structure in the 2710 Å System of p-Fluorotoluene

BCC-962
J. Čaja and H. B. Mark, Jr.
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
Method of Determination of pH Values of Certain Low Solubility Organic Amines

BCC-963
M. J. S. Dewar, D. H. Lo, D. B. Patterson, N. Trinajstić and G. E. Peterson
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 and Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07971
MINDO/2 Calculations of Nuclear Quadrupole Coupling Constants of the Chlorobenzenes

BCC-964
M. J. S. Dewar and N. Trinajstić
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712
Cyclobutadiene and Diphenylcyclobutadiene

BCC-965
M. J. S. Dewar and N. Trinajstić
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.
Semiempirical SCF-MO Treatment of Excited States of Aromatic Compounds

BCC-966
Gj. Deželić, N. Deželić, N. Muić, and B. Pende
Zavod za kemiju biokoloida, Škola narodnog zdravlja »Andrija Stampar« Medicinskog fakulteta Sveučilišta u Zagrebu i Immunološki zavod, Zagreb
Latex Particle Agglutination in the Immunochemical System Human Serum Albumin-Anti-Human Serum Albumin Rabbit Serum
BCC-967
N. Deželić, H. Bilinski, and R. H. H. Wolf
Department of Biocolloidal Chemistry, «Andrija Stampar» School of Public Health, Faculty of Medicine, Zagreb, Yugoslavia, Department of Physical Chemistry, Institute «Ruder Bošković», Zagreb, Yugoslavia, Laboratory of Physical Chemistry, Faculty of Science, University of Zagreb, Zagreb, Yugoslavia
Precipitation and Hydrolysis of Metallic Ions. IV. Studies on the Solubility of Aluminium Hydroxide in Aqueous Solution

BCC-968
A. Dulčić and J. N. Herak
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Crystal Structure Dependence of Radiation—Induced Radicals in Thymine: an ESR Study

BCC-969
M. Eckert-Maksić, Z. Majerski, S. Borčić and D. E. Sunko
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Competitive Reactions of Nucleophiles-II

BCC-970
N. Galešić, B. Matković, M. Herveg, and M. Šljukić
Institute «Ruder Bošković», Zagreb (Yugoslavia) and Faculty of Science, The University of Sarajevo (Yugoslavia)
On the Crystal Structure of Oxohydroxobisoxalato Niobic Acid Pentahydrate, \(H_2[\text{NbO(OH)}(\text{C}_2\text{O}_4)_2\text{H}_2\text{O}4\text{H}_2\text{O} \]

BCC-971
A. Gertner, D. Kodrnja, D. Pavišić, and V. Grdić
Zavod za kemiju Farmaceutskog fakulteta, Zagreb
Mogućnosti dokazivanja nekih metalnih iona reakcijom fluorescencije s morinom na kružnoj peći

BCC-972
Lj. Grlić
Jugoslavenski leksikografski zavod, Zagreb
Halucinogena sredstva

BCC-973
Lj. Grlić
Jugoslavenski leksikografski zavod, Zagreb
Suvremene laboratorijske metode za otkrivanje toksikomanija
Farm. Glasnik 27 (1971) 139.

BCC-974
J. Halpern and M. Pribanić
Department of Chemistry, The University of Chicago, Chicago, Ill. 60637
Carbonylation of Pentacyanocobaltate(III)

BCC-975
M. J. Herak, M. Dikšić, and P. Strohal
Institute «Ruder Bošković», Zagreb, Yugoslavia
Studies on Precipitation and Co-Precipitation of Tantalum and Niobium from Potassium Fluoride Solutions
BCC-976
N. Ivičić and V. Simeon
Laboratory of Analytical and Physical Chemistry, Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia

Thermodynamics of Formation of Lanthanide Complexes with 1,2-Diaminocyclopentane-\(N,N',N'N'\)-Tetra Acetic Acid

BCC-977
V. Jagodić and M. J. Herak
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia

Solvent Extraction Study of Manganese (II) and Iron (III) by Aminophosphonic Acids

BCC-978
V. Jagodić, M. J. Herak, B. Šipalo, and J. Radosević
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia

Solvent Extraction Study of Lanthanum and Europium by Acidic Esters of Aminophosphonic Acids

BCC-979
Lj. Jefić and S. W. Feldberg
Brookhaven National Laboratory, Upton, New York 11973

Chromium (II)-Catalysed Aquation of Hexacyanochromate (III) to Pentacyanomonohydroxychromate (III)

BCC-980
D. Jušić and B. Perde
Imunološki zavod, Zagreb

Kvantitativno mjerenje imunoglobulina tehnikom radijalne monodifuzije. I. Standardizacija imunoglobulina G i hiperimunog anti-IgG seruma kunića

BCC-981
V. Katović, L. T. Taylor, and D. H. Busch
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia, Department of Chemistry, Virginia Polytechnic Institute and Department of Chemistry, The Ohio State University

Nickel (II) and Copper (II) Complexes Containing New Monocyclic and Polycyclic Ligands Derived from the Cyclotetrameric Schiff Base of \(o\)-Aminobenzaldehyde

BCC-982
M. Keler-Bačoka, A. Stojanovski-Bubanj, and K. Blažević
Klinika za unutarnje bolesti Medicinskog fakulteta, Zagreb

Kritički osvrt na vrijednosti glukoze u krvi određene s pomoću redukcijskog i enzimatskog GOD-ABTS (GOD-Perid) principa

BCC-983
L. Klasin and N. Trinajstić
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia

Theoretical Study of Iso-Condensed Thienopyrroles

BIBLIOGRAPHIA CHEMICA CROATICA

BCC-984
M. Kljačić, M. Weinert, and M. Proštenik
Zavod za kemiju i blokemiju Medicinskog fakulteta i Institut za organsku kemiju i blokemiju Sveučilišta u Zagrebu
Studies in the Sphingolipids Series. XXXI. Preparation and Column Separation of Ceramide Mixtures from Bovine and Horse Brain Cerebrosides

BCC-985
B. Kojić-Prodić, B. Matković, and S. Šćavničar
Institute »Ruder Bošković«, Zagreb, Yugoslavia
The Crystal Structure of Hydrazinium (+2) Hexafluorotitanate (IV), \(\text{N}_2\text{H}_6\text{TiF}_6 \)

BCC-986
B. Kojić-Prodić, S. Šćavničar, and B. Matković
Institute »Ruder Bošković«, Zagreb, Yugoslavia
The Crystal Structure of Hydrazinium (+2) Hexafluoro-zirconate (IV), \(\text{N}_2\text{H}_6\text{ZrF}_6 \)

BCC-987
Z. Kućan, J. N. Herak, and I. Pečevsky-Kućan
Institute »Ruder Bošković«, Zagreb, Yugoslavia
Functional Inactivation and Appearance of Breaks in RNA Chains Caused by Gamma-Irradiation of Escherichia Coli Ribosomes

BCC-988
O. Lahodny-Šarc and J. L. White
Institute of Physical Chemistry, Technological Department, University of Zagreb, Zagreb Yugoslavia and Department of Agronomy, Purdue University, Lafayette, Indiana 47907
Infrared Study of Aluminium -Deficient Zeolites in the Region 1300 to 200 cm\(^{-1}\)

BCC-989
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
Preparation of Ring Labelled Adamantane Derivatives. 2-Adamantanone-2-carbon-14, Adamantane-2-carbon-14 and 1-Methyl adamantane-2- or 4-carbon-14
J. Label. Comp. 7 (1971) 3.

BCC-990
B. Lovreček, Z. Vajtner, and J. Hranilović
Institute of Electrochemistry and Electrochemical Technology, Faculty of Technology, University of Zagreb, and Pliva, Pharmaceutical and Chemical Works, Zagreb
The Electrochemical Reduction of 2-Nitrobutanol (1)

BCC-991
B. Lovreček and O. Korelić
Institute of Electrochemistry and Electrochemical Technology, Faculty of Technology, University of Zagreb, Zagreb, Savska c. 16/1, Yugoslavia
Investigation of Barrier Layers on Aluminium
BCC-992
V. Magnus, S. Iskrić, and S. Kveder
Institute »Ruder Bošković«, Zagreb, Yugoslavia
Indole-3-methanol. Metabolite of Indole-3-acetic Acid in Pea Seedlings

BCC-993
V. Mahalec and M. Orhanović
Institute »Ruder Bošković, PO Box 1016, Zagreb, Croatia, Yugoslavia
The Kinetics of the Mercury (II)-Catalysed Aquation of the Azidopentaaquochromium (III) Ion

BCC-994
Z. Majerski and P. von R. Schleyer
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
The Stereochemistry of Cyclopropylcarbinyl Rearrangements. Synthesis and Solvolysis of Cyclopropylcarbinyl-1,1',1"-trans-2,3,3-d6 Methanesulfonate

BCC-995
Z. Maksić, M. Eckert-Maksić, and M. Randić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Correlation Between C—H and C—C Spin-Spin Coupling Constants and s Character of Hybrids Calculated by the Maximum Overlap Method

BCC-996
R. Mason, L. Randaccio, and M. Randić
Department of Chemistry, University of Sheffield, Sheffield S3 7HF
Hybridisation, Centroids of Overlap Density and the Lengths of Certain Carbon-Hydrogen Bonds

BCC-997
E. Matijević, F. J. Mangravite, Jr., and E. A. Cassell
Institute of Colloid and Surface Science and Department of Chemistry and Civil Engineering, Clarkson College of Technology, Potsdam, N. Y. 13699
Stability of Colloidal Silica. IV. The Silica-Alumina System
J. Colloid Interface Sci. 35 (1971) 560.

BCC-998
E. Matijević, A. D. Lindsay, S. Kratoňvíl, M. E. Jones, R. J. Larson, and N. W. Cayey
Institute of Colloid and Surface Science, Clarkson College of Technology, Potsdam, N. Y. 13699
Characterization and Stability of Chromium Hydroxide Sol of Narrow Size Distributions
J. Colloid Interface Sci. 36 (1971) 273.

BCC-999
Z. Meić and M. Randić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia
Infrared Spectra of Gaseous Methyl Mercuric Halides
BCC-1000
H. Meider-Gorićan
Department of Physical Chemistry, Institute «Ruder Bošković», Zagreb, Yugoslavia

Solvent Extraction of Zirconium and Hafnium — I. Extraction with Di-\(n\)-butylmethylenebisphosphonic Acid

BCC-1001
I. Medjačić and B. Lovreček
Institute of Physical Chemistry, Faculty of Chemical Technology, Split, University of Zagreb, and Institute of Electrochemistry and Electrochemical Technology, Faculty of Technology, Zagreb, University of Zagreb, Yugoslavia

Adsorption of Phenol and Kinetics of Electrode Processes on the Bi Amalgam Electrode

BCC-1002
R. Nemeth and E. Matijević
Institute of Colloid and Surface Science and Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676 (U.S.A.)

Precipitation and Electron Microscopy of Calcium- and Barium-Oleate Sol

BCC-1003
E. Osawa, Z. Majerski, and P. von R. Schleyer
Department of Chemistry, Princeton, University, Princeton, New Jersey 08540

Preparation of Bridgehead Alkyl Derivatives by Grignard Coupling

BCC-1004
V. Paić and M. Paić
Institute of Physics of the University of Zagreb, Yugoslavia

Directional Dependence of Exposure Measurements and the Evaluation of Effective Energies of Medium Energy X-Rays by Film Badges

BCC-1005
N. Paulić, Vl. Simeon, B. Bernik, and B. Švijigir
Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Yugoslavia

Stability and Stereochemistry of Cobalt(II) Complexes with Stereoisomeric, 1,2-Diaminocyclopentane Tetraacetic Acids

BCC-1006
M. Petek, T. E. Neal, and R. W. Murray
Department of Chemistry, University of North Carolina, Chapel Hill, N. C. 27514

Spectroelectrochemistry. Application of Optically Transparent Minigrid Electrodes under Semi-Infinite Diffusion Conditions

BCC-1007
D. Petranović, I. Pečevsky-Kućan, and Z. Kućan
Institute «Ruder Bošković», Zagreb, Yugoslavia

Comparison of the Direct Effect of Gamma Rays on Escherichia Coli Ribosomes and Bacteriophage

BCC-1008

B. Pkrić and Z. Pučar
Laboratory of Electrophoresis, Institute »Ruder Bošković«, Zagreb, Yugoslavia

Electrophoresis and Tyndallometric Studies on the Hydrolysis of Zinc in Aqueous Solutions

BCC-1009

M. Popović
Institut za kemiju i biokemiiju Medicinskog fakulteta, Sveučilišta, Zagreb

Biochemie der Kohlenwasserstoffe. II. Ein Beitrag zur Kenntnis der Xantholipide

BCC-1010

N. Pravdić and H. G. Fletcher, Jr.
Department of Organic Chemistry and Biochemistry, »Ruder Bošković« Institute, Zagreb (Yugoslavia) and National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Public Health Service, U.S. Department of Health, Education and Welfare, Bethesda, Maryland 20014 (U.S.A.)

The Oxidation of 2-Acetamido-2-deoxyaldoses with Aqueous Bromine. Two Diastereoisomeric 2-Acetamido-2,3-dideoxyhex-2-enono-1,4-lactones from 2-Acetamido-2-deoxy-D-glucose, -D-mannose, and -D-galactose

BCC-1011

N. Pravdić and H. G. Fletcher, Jr.
Department of Organic Chemistry and Biochemistry, »Ruder Bošković« Institute, Zagreb (Yugoslavia) and National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Public Health Service, U.S. Department of Health, Education and Welfare, Bethesda, Maryland 20014 (U.S.A.)

The Oxidation of Partially Substituted 2-Acetamido-2-deoxyaldoses with Methyl sulfoxide-Acetic anhydride. Some 2-Acetamido-2-deoxyaldonic Acid Derivatives

BCC-1012

M. Randić and Z. Maksić
Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Hybridization in Fused Strained Rings by the Maximum-Overlap Method. I. Biphenylene and Benzol [1,2 : 4,5] dicyclobutane

BCC-1013

I. Ružić
Center for Marine Research, Institute »Ruder Bošković«, Zagreb, Croatia (Yugoslavia)

Logarithmic Analysis of two Overlapping D.C. Polarographic Waves. III. Very Close Waves with Equal Slopes

BCC-1014

I. Ružić, A. Barić, and M. Branić
Center for Marine Research, Institute »Ruder Bošković«, Croatia (Yugoslavia)

Determination of Electrode Reaction Parameters ($E^{\infty}_{1/2}$ and αn) of the Quasi-Reversible D.C. Polarographic Waves
BIBLIOGRAPHIA CHEMICA CROATICA

BCC-1015
Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule, Zürich, Schweiz, und Institut für medizinische Forschung, Zagreb
Ionenselektive Sensoren
Angew. Chem. 82 (1971) 433.

BCC-1016
L. Sipos and Z. Galus
Center for Marine Research, Institute »Ruder Bošković« Zagreb, Croatia, Yugoslavia and Institute of Fundamental Problems of Chemistry, University of Warsaw, Warsaw, Poland
Redox Processes of Uranium (VI), (V), (IV) and (III) in Acetate Buffers

BCC-1017
L. Sipos, Lj. Jeftić, M. Branka, and Z. Galus
Center for Marine Research, Institute »Ruder Bošković« Zagreb, Croatia, Yugoslavia and Institute of Fundamental Problems of Chemistry, University of Warsaw, Warsaw, Poland
Electrochemical Redox Mechanism of Uranium in Acidic Perchlorate Solutions

BCC-1018
Z. Slepčević and Z. Štefanac
Institut za istraživanje i razvoj INA, Zagreb and Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb Yugoslavia
Improved Technique of Direct Oxygen Microdetermination by Static Flash Combustion Pyrolysis

BCC-1019
A. Sakić, D. Rakin, M. Orlov and Z. Binefeld
Institute de Chimie, Technologie et Métallurgie, Belgrade, Yugoslavia et Kemijski Kombinat, Chromos-Katran-Kutrilin, Zagreb, Yugoslavia
Utilisation des chlorures métalliques in statu nascendi comme catalyseurs de sulfuration. Hexaméthyltriphenyllétasulfures

BCC-1020
M. Široki and C. Djordjević
Laboratory of Analytical Chemistry, Faculty of Science, Institute for Inorganic and Analytical Chemistry, The University of Zagreb, Yugoslavia
Spectrophotometric Determination of Niobium with 4-(2-Pyridylazo) Resorcinol and Colored Complexes Separated from Oxallic and Tartaric Acid Systems

BCC-1021
M. Široki and C. Djordjević
Laboratory of Analytical Chemistry, Faculty of Science, University of Zagreb, Zagreb (Yugoslavia)
Vanadium and Niobium Complexes with 4-(2-Pyridylazo) Resorcinol (PAR)

BCC-1022
Z. Štefanac, M. Tomašković, and I. Bregovac
Chemical Laboratory, Faculty of Science, University of Zagreb, Zagreb, Yugoslavia
Microdetermination of Organic Selenoxides
BCC-1023
L. Tomic, Z. Majerski, M. Tomic, and D. E. Sunko
Institute »Ruder Boškovic«, Zagreb, Yugoslavia
Temperature and Concentration Dependence of the Paramagnetic Induced Shifts in Proton Magnetic Spectroscopy

BCC-1024
N. Trinajstić
Institute »Ruder Boškovic«, Zagreb, Croatia, Yugoslavia
The Spin Density Distribution in the Hydrocarbon Radical Anions

BCC-1025
N. Trinajstić
Institute »Ruder Boškovic«, Zagreb, Croatia, Yugoslavia
Eight pi-Electron Ring Systems

BCC-1026
Z. Veksli, J. N. Herak, P. Hedvig, and J. Dobo
Institute »Ruder Boškovic«, Zagreb, Yugoslavia, Research Institute for Plastics, Budapest, Hungary
Nuclear Magnetic Resonance Study of Graft Copolymers: System Polytetrafluoroethylene-Styrene

BCC-1027
K. Voloder, N. Ivičić, and B. Švigir
Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia
Determination of Lead in a Minute Blood Sample by the Spectrophotometric Method

BCC-1028
Lj. Vujisić and Z. B. Maksić
Institute »Ruder Boškovic«, Zagreb, Croatia, Yugoslavia
Hybridization in 2,5-Dimethyl-7,7-dicyanonorcaradiene by the Maximum Overlap Approximation

BCC-1029
K. Weber
Zavod za sudsku medicinu Medicinskog fakulteta, Zagreb
Suvremene optičke metode u detekciji i identifikaciji otrova

BCC-1030
O. A. Weber and Vl. Simeon
Division of Protein Chemistry, CSIRO, Parkville (Melbourne), Victoria 3052 (Australia) and Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia
Chelation of Some Bivalent Metal Ions by Racemic and Enantiomeric Forms of Tyrosine and Tryptophan

BCC-1031
O. A. Weber and Vl. Simeon
Institute for Medical Research, Yugoslav Academy of Sciences and Arts, Zagreb, Croatia, Yugoslavia
Tryptamine, 5-Hydroxytryptamine and 5-Hydroxytryptophan Complexes of Proton and Some Divalent Metal Ions
BCC-1032
N. Zambeli and D. Kolbah
Department of Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb
Acetylation of Some 2-(Alkyl)thio-4-amino-6-hydroxy-pyrimidines

BCC-1033
M. Zebec, N. Deželić, Gj. Deželić, and J. Kratošvil
Department of Applied Biochemistry, Andrija Stampar School of Public Health, Faculty of Medicine, Zagreb
Molecular Weight Distribution of Clinical Samples of Dextran

BCC-1034
T. Živković
Institute «Ruder Bošković», Zagreb, Croatia, Yugoslavia
Transformation Properties of Hermite-Gaussian Functions

BCC-1035
T. Živković and J. N. Murrell
School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, England
Finite Analytical Expressions for Two-Centre Exchange Integrals Between Slater Orbitals Having the Same Exponents