CCA-621

545.822:531.486 Original Scientific Paper

Spectrophotometric Determination of Stability Constants of Formato, Acetato, Propionato, Butyrato, Glycolato and Chloroacetato Complexes of Cobalt, Nickel and Copper

B. Grabarić and I. Filipović

Institute of Inorganic and Analytical Chemistry, University of Zagreb, and Laboratory of Inorganic Chemistry, Faculty of Technology, Zagreb, Croatia, Yugoslavia

Received February 26, 1970

Spectrophotometric investigations were performed in the visible spectral region of Co(II), Ni(II) and Cu(II) solutions in the presence of sodium salt of formic, acetic, propionic, butyric, glycolic and chloroacetic acid. On the ground of spectrophotometric data, applying the method of corresponding solutions after J. Bjerrum, the stability constants of present complexes were determined by Fronaeus' graphic method. On the basis of these values the values of stability constants were then calculated together with the corresponding error limits by means of a digital computer by applying the Gauss Z programme after R. S. Tobias.

In the systematic investigation of complexes of metal ions with the ions of unsubstituted and substituted monocarboxylic acids the polarographic method had been used¹⁻³. In order to be able to appreciate critically the values of stability constants obtained by the polarographic method, we applied essentially different methods from the polarographic one, and these are the spectrophotometric method, primarily, and then the potentiometric method of measuring the changes of pH of the buffer solution. This paper reports the results of investigations of monocarboxylato complexes of cobalt, nickel and copper by the spectrophotometric method.

Among numerous spectrophotometric methods^{4,5} the method of corresponding solution after J. Bjerrum⁶ was applied. This method proved to be a very suitable one for the investigated systems in the visible spectral region. The possibility of the application of K. B. Yatsimirskii's method⁷ was also investigated.

EXPERIMENTAL

The measurement of the extinction of investigated solutions was performed by means of a Universal VSU1 spectrophotometer (Carl Zeiss, Jena), equipped for work in the visible spectral region. All investigated systems had a constant ionic strength of 2 and a constant $pH = 4.1 \pm 0.1$, with the exception of chloroacetate, where $pH = 3.8 \pm 0.1$. The light absorption curves were recorded at room temperature (20-25°C), except for chloroacetato complexes which were recorded at 10°C (because of the hydrolysis of chloroacetate at higher temperatures). The reproducibility of the extinction measurement (at the extinction value of 0.4) was \pm 0.001 for the same solution, and within \pm 0.005 for repeatedly prepared solutions of the same kind. From the recorded light absorption curves in the visible spectral region (Figs. 1—3) wavelengths were chosen so as to achieve the greatest possible separation of absorption curves with respect to the change of concentration and the kind of ligand. Measurements of extinction were performed at following wavelengths: for copper 760 nm, for nickel 670 nm and for cobalt 520 nm.

Solutions for measurements were prepared from analytical pure chemicals. Cobalt and nickel pechlorate were prepared from the corresponding carbonates and copper perchlorate from oxide. Salts obtained by crystallization were twice recrystallized and then the stock solutions were prepared. Solutions of mono-carboxylic acids and their salts were prepared as described earlier^{1,3}. Buffer solutions of a constant acid to salt ratio were prepared, this ratio being 1:2 for formate and glycolate, 1:8 for chloroacetate, 5:1 for acetate, and 6:1 for propionate and acetate solutions. The ionic strength of buffer solutions of the metal ion was kept at a constant value of 2 by adding sodium perchlorate.

RESULTS

The applied method of corresponding solutions according to J. Bjerrum⁶ requires the extinction of the ligand (L) to be negligibly small in comparison with the extinction of the formed complex (ML_n) , that the ionic strength of solutions is constant, that no association and dissociation of system components occur and that Lambert-Beer's law is valid for single complex species. Then, the total extinction is equal to:

$$\mathbf{E} = \mathbf{d} \sum_{n=1}^{n=N} \varepsilon_n \left[\mathbf{ML}_n \right]$$

where d is the length of the optical path, ε_n is the molar extinction coefficient of the single complex species and $[ML_n]$ is its concentration. When two solutions with different total concentrations of metal ligand have the same extinction, they also have the same percentage share of single complex species. In other words, such solutions have the same average ligand number n and the same concentration of the free ligand [L]. Then:

$$\overline{\mathbf{n}} = \frac{\mathbf{C}_{\mathbf{L}}' - [\mathbf{L}]}{\mathbf{C}_{\mathbf{M}}'} = \frac{\mathbf{C}_{\mathbf{L}}' - [\mathbf{L}]}{\mathbf{C}_{\mathbf{M}}''}$$

where C_L is the total concentration of the ligand and C_M the total concentration of the metal ion. Therefrom:

$$\overline{\mathbf{n}} = \frac{\mathbf{C}_{\mathbf{L}}' - \mathbf{C}_{\mathbf{L}}''}{\mathbf{C}_{\mathbf{M}}' - \mathbf{C}_{\mathbf{M}}''}$$

and

$$[\mathbf{L}] = \frac{\mathbf{C}_{\mathbf{M}}' \mathbf{C}_{\mathbf{L}}' - \mathbf{C}_{\mathbf{M}}'' \mathbf{C}_{\mathbf{L}}'}{\mathbf{C}_{\mathbf{M}}' - \mathbf{C}_{\mathbf{M}}''}$$

Accordingly, for one series of solutions, maintaining a constant concentration of the metal ion $C'_{\mathbf{M}}$ and a constant optical path d', extinctions $(\mathbf{E})_{\lambda}$ were recorded at the determined wavelength, for different ligand concentrations $(C_{L})_n$ (n = 1, 2...j). Thus the $(E)_{\lambda} = f'(C_{L})_n$ curve was obtained. Then, at another metal ion concentration $C''_{\mathbf{M}}$ and another thickness of the cuvette d'', satisfying the condition that $C''_{\mathbf{M}} \times d'' = C'_{\mathbf{M}} \times d'$, extinctions for

different concentrations of the ligand $(C_L)_n$ were recorded. Thus the second $(E)_{\lambda} = f''(C_L)_n$ curve was obtained. The third $(E)_{\lambda} = f'''(C_L)_n$ curve was obtained analogously. From these three curves pairs of corresponding solutions were obtained, *i. e.* solutions of the same extinction with different C'_L , C'_M ; C''_L , C''_M , and C''_L , C''_M . If a linear dependence C_L on C_M is obtained for every group of corresponding solutions, of course within the experimental error, it can be concluded that there are no polynuclear complexes in the system, and in this case n and [L] can be obtained, namely [L] as the intercept on the ordinate and n as the slope of the straight line. n and [L] are evaluated numerically using the method of least squares. On the ground of these magnitudes stability constants were graphically determined⁹ by applying the method of S. Fronaeus⁸. This method enabled the assumption that there are several complexes in the system and then, by a more detailed analysis, it was established how many complex species were actually present.

Stability constants, estimated by the above mentioned graphical method, together with C_M , log [L] and n values, were treated using the Gauss Z programme devised by R. S. Tobias¹⁰ for non-linear least-squares refinement of equilibrium constants. The calculations were performed by a CAE 90-40 (SDS 930) digital computer in the Institute »Ruder Bošković«. The computer performed (according to the programme) 10 refinement cycles. Output data contained the stability constants and their standard errors as well as correlation matrix and calculated formation function. In some cases the above mentioned programme yielded results converging in a wrong direction. This happened most frequently when the correlation between the constants was strongly expressed or when graphically obtained stability constants differed greatly from the values that would best satisfy the experimental data. In the latter case the system was again treated by the graphical method, and — if necessary — a smaller number of existing complex species assumed, and then again treated on the digital computer. In these cases satisfactory refined values for the stability constants were obtained.

Extinction curves, as the functions of the total ligand concentration, were recorded for three different metal ion concentrations. When doing this, a constant product of the total metal concentration and the thickness of the cuvette was maintained in every series. During the change of the metal ion concentration (without the addition of the ligand) and the thickness of the cuvette Lambert-Beer's law was satisfied. Results of measurements are given in Tables I, III and V. From the curves obtained the corresponding solutions were determined, having the same extinction for the different total metal ion and total ligand concentrations. Data for such solutions are given in Tables II, IV and VI.

With copper ion solutions in the presence of acetate, propionate, butyrate and glycolate the measurement could not be performed at higher monocarboxylate concentrations because of the precipitation of a weakly soluble complex. Therefore, measurements in these systems could comprise only lower complex species present in the solution.

The values of stability constants of the investigated complexes, obtained by the graphical and computational methods are given in Table VII.

	F	ormate		A	Acetate		Pr	opionat	te
C _L mM			Extinc	tion		$\lambda = 520$) nm		
1111/1	1	2	3	1	2	3	1	2	3
20	0.352	0.347	0.343	0.355	0.349	0.343	0.355	0.352	0.345
40	0.361	0.353	0.347	0.363	0.356	0.351	0.366	0.358	0.351
60	0.371	0.361	0.352	0.373	0.363	0.353	0.375	0.365	0.355
80	0.380	0.368	0.359	0.383	0.371	0.360	0.385	0.373	0.362
100	0.387	0.375	0.364	0.392	0.379	0.365	0.397	0.381	0.366
130	0.400	0.386	0.370	0.403	0.389	0.371	0.409	0.392	0.375
170	0.413	0.396	0.381	0.416	0.401	0.381	0.425	0.407	0.385
200	0.422	0.407	0.387	0.427	0.412	0.388	0.437	0.418	0.393
250	0.436	0.419	0.398	0.445	0.425	0.399	0.455	0.433	0.40
300	0.448	0.432	0.410	0.459	0.435	0.412	0.474	0.452	0.419
350	0.461	0.445	0.419	0.475	0.454	0.422	0.493	0.469	0.432
400	0.475	0.455	0.428	0.489	0.468	0.433	0.508	0.482	0.445
450	0.485	0.466	0.435	0.502	0.480	0.444	0.524	0.498	0.460
500	0.494	0.475	0.443	0.513	0.493	0.454	0.540	0.515	0.472
550	0.506	0.484	0.449	0.524	0.504	0.465	0.555	0.531	0.483
600	. 19 19	0.494	0.455	0.535	0.512	0.475			0.498

W. 1. 191	2	В	utyrat	е		G	lycolat	е	Chl	oroacet	ate
C _L		h nno	dui -	Extir	nctio	on		$\lambda = 52$	20 nm		
111111	10.0	1	2	3		1	2	3	1	2	3
1. 1.1.1	t in	ontine	nzś . pr						1	0.11	with m
20		0.348	0.349		1.1	0.405	0.361	0.352	0.342	0.342	0.342
40		0.355	0.354			0.458	0.393	0.370	0.345	0.345	0.344
60		0.367	0.366	0.361		0.510	0.421	0.383	0.348	0.347	0.346
80	3	0.375	0.373	0.364		0.555	0.447	0.400	0.351	0.350	0.348
100		0.385	0.381	0.369		0.592	0.477	0.412	0.354	0.353	0.351
130		0.402	0.393	0.376		0.642	0.515	0.439	0.358	0.356	0.354
170	1.	0.417	0.406	0.385		0.690	0.565	0.460	0.364	0.362	0.359
200		0.422	0.418	0.395	100	0.720	0.594	0.478	0.468	0.366	0.362
250		0.452	0.438	0.405		0.752	0.638	0.518	0.374	0.371	0.367
300	1.1.1.1	0.472	0.458	0.418	100	0.785	0.680	0.545	0.381	0.378	0.374
350		0.495	0.478	0.437		0.809	0.710	0.575	0.387	0.384	0.379
400		0.519	0.495	0.449		0.830	0.750	0.610	0.393	0.390	0.385
450	1 2 10	0.544	0.525	0.473	19.	0.852	0.775	0.640	0.398	0.395	0.390
500		0.564	0.542	0.489		0.865	0.800	0.662	0.403	0.400	0.394
550		0.497	0.568	0.504		0.875	0.816	0.695	0.408	0.405	0.399
600	1	0.622	0.595	0.520			0.830	0.720	0.412	0.409	0.403
r so n r									1.510		

1:36 mM Co²⁺; d = 2 cm 2:144 mM Co²⁺; d = 0.5 cm 3:360 mM Co²⁺; d = 0.2 cm

482

E	n atau]	Form	ate	1.00		Aceta	ite	2.11	Pı	ropior	nate	
$\lambda =$ = 520		(C _L n	nM		(C _L n	nM		C	L m	M	
nm		1	2	3		1	2	3		1	2	3	Ω.
0.375						67	92	139		55	85	134	
0.381										68	101	158	
0.387	1.00	104	137	194		97	125	191		81	117	182	
0.394	1.1			- <u>1</u> 27		112	145	216		95	134	204	
0.400		131	180	255	1.1	127	165	245	1.0	108	150	230	
0.406	1.2.4	150	201	285	1.2.1	144	186	273	2000	122	168	253	
0.412	A.	168	223	318		160	205	301		135	185	279	
0.419		188	244	353	1.2.41	178	226	329	1.5.30	150	203	303	
0.425	g sa d	209	269	389	1.1	196	248	357		165	220	327	
0.431		232	294	427	4.44	213	268	387	1.5	182	237	352	
0.437	468 1	255	320	468	in a state	231	290	414		198	256	375	
0.444	1.00	277	348	518	1	251	313	447	- 1	216	275	401	
0.450		303	378	558	andre gi	269	336	476		233	294	424	
0.456		328	408	603		290	359	504		250	314	448	
0.462	1.00					310	383	536	10.0	266	334	472	
0.469					-	332	408	569	13.5	284	352	495	
0.475		Taxing and				353	433	600		302	372	521	
0.481		become to be				375	460	634		319	392	545	
0.487		Basedown,				398	485	667		337	412	568	
0.494						421	512	702		374	453	616	
0.500	10278-0	<u></u>)			1. Section 1.	445	539	736		356	433	592	

TABLE II Cobalt Solutions

E]	Butyr	ate	E	C	Hycol	late	Е	Ch	loroa	cetate
$\lambda =$ = 520	(C _L n	nM	$\lambda =$ = 520	(C _L n	nM	$\lambda = 520$	1. S. J	C _L r	nM
nm	1	2	3	nm	1	2	3	nm	1	2	3
$\begin{array}{c} 0.360\\ 0.370\\ 0.380\\ 0.390\\ 0.400\\ 0.410\\ 0.420\\ 0.430\\ 0.440\\ 0.450\\ 0.440\\ 0.450\\ 0.460\\ 0.470\\ 0.480\\ 0.420\end{array}$	50 70 92 112 130 152 174 198 218 242 262 284 307	60 85 114 140 168 197 223 250 275 300 324 347 372	94 130 170 205 242 274 306 335 365 396 424 453 481 507	$\begin{array}{c} 0.460\\ 0.480\\ 0.500\\ 0.520\\ 0.540\\ 0.560\\ 0.580\\ 0.600\\ 0.620\\ 0.640\\ 0.660\\ 0.680\\ 0.700\\ 0.720\end{array}$	37 46 52 63 71 82 91 103 115 127 143 160 178 200	88 103 117 133 149 168 186 206 228 252 275 300 328 256	172 201 232 260 293 327 361 393 426 460 498 532 568	$\begin{array}{c} 0.355\\ 0.360\\ 0.365\\ 0.370\\ 0.375\\ 0.380\\ 0.385\\ 0.390\\ 0.395\\ 0.400\\ 0.405\\ 0.410\\ \end{array}$	107 144 180 219 256 295 336 378 422 467 515 570	$115 \\ 155 \\ 195 \\ 230 \\ 277 \\ 318 \\ 362 \\ 406 \\ 453 \\ 502 \\ 552 \\ 609 \\$	135 181 225 268 314 361 410 460 512 565 623 690
0.500 0.510 0.520 0.530 0.540 0.550 0.550 0.560 0.570	320 350 371 392 415 435 435 458 479 500	 339 418 441 464 486 509 530 552 573 	534 562 587 614 638 663 687 712	0.740 0.760 0.780 0.800 0.820	227 258 292 330 374	387 420 459 503 564	655 705 762 825 900		11		uf 65 : J

1: 36 mM Co²⁺; d = 2 cm

 $2:144 \text{ mM Co}^{2+}; d = 0.5 \text{ cm}$ $3:360 \text{ mM Co}^{2+}; d = 0.2 \text{ cm}$

O DE		I	Format	e			Acetate	e		P	ropiona	ate
C _L mM				Extincti	ion			$\lambda = 670$	nm			05 e.
1111/1	8	1	2	3	12	1	2	3	1.25	1	2	3
	17 S.3				0.							
40	101	11.17								0.302	0.298	0.297
60	with the		****		1.00	0.302	0.299	0.297		0.309	0.304	0.300
80	152			- , , ((-	1	0.305	0.301	0.298		0.311	0.306	0.302
100	NET.	0.305	0.303	0.301	2.52	0.308	0.303	0.299	1.00	0.315	0.310	0.303
150	2.51	0.312	0.308	0.303		0.315	0.310	0.303		0.324	0.318	0.309
200		0.317	0.314	0.308	12 13	0.323	0.316	0.308		0.333	0.326	0.315
250		0.322	0.318	0.312		0.328	0.322	0.314	1.1	0.341	0.333	0.320
300		0.328	0.323	0.317	1	0.336	0.327	0.317	6	0.349	0.340	0.326
350	1.1	0.332	0.328	0.319	10	0.341	0.332	0.321		0.357	0.347	0.332
400	372	0.338	0.332	0.323		0.346	0.338	0.326		0.368	0.353	0.337
450	1	0.342	0.336	0.328		0.352	0.343	0.330		0.371	0.359	0.342
500	1.50	0.347	0.340	0.331		0.357	0.348	0.335		0.377	0.364	0.347
550	1	0.352	0.344	0.334	1.1	0.360	0.353	0.339				
600		0.356	0.348	0.337	e	0.365	0.357	0.344				0.356
700	0.7.2	0.361	0.354	0.344	0	·		-		`		
800	14.5	0.366	0.360	0.349	in the second			-				
	1000											

TABLE III

Nickel Solutions

	В	utyrat	e arri		G	lycolat	e		Chl	oroace	ate
C _L mM			Extinctio	on			$\lambda = 670$	nm			
C _L mM 40 60 80 100 150 200 250 300 350 400 450 550	1	2	3 010		1	2	3	lai,	1	2	3
40	0.299	0.297	0.295		0.377	0.342	0.321	7.5	<u> </u>		- 0
60	0.303	0.300	0.297		0.413	0.367	0.331		0.294	0.293	0.293
80	0.305	0.303	0.299	law.	0.444	0.392	0.347	1.1	0.294	0.293	0.293
100	0.310	0.306	0.301		0.476	0.415	0.358		0.294	0.293	0.293
150	0.318	0.312	0.307	8.1	0.543	0.467	0.390		0.294	0.293	0.293
200	0.328	0.319	0.312	60	0.594	0.514	0.423	92.1	0.294	0.293	0.293
250	0.338	0.328	0.317		0.633	0.555	0.449		0.294	0.293	0.293
300	0.347	0.335	0.323	08	0.662	0.595	0.484		0.294	0.294	0.293
350	0.356	0.342	0.330	12	0.685	0.625	0.509	100	0.294	0.294	0.293
400	0.366	0.351	0.336	86.	0.705	0.648	0.537		0.294	0.294	0.293
450	0.375	0.359	0.343	93	0.722	0.675	0.567	11.1	0.294	0.294	0.293
500	0.385	0.368	0.350	dU.	0.740	0.692	0.586		0.295	0.294	0.293
550	0.397	0.377	0.358	1	0.753	0.708	0.609	1.4	0.295	0.294	0.293
600		A A	0.368		0.762	0.722	0.635	865	0.295	0.295	0.293
700		<u></u>	0.383		0.778	0.747	0.666	124	0.297	0.294	0.293
800		0.0			0.788	0.772	0.690	1.1	0.297	0.295	0.293

1 : 80 mM Ni²⁺; d = 2 cm

 $2:160 \text{ m}M \text{ Ni}^{2+}; \text{ d} = 1 \text{ cm}$

 $3:320 \text{ m}M \text{ Ni}^{2+}; \text{ d} = 0.5 \text{ cm}$

 10.1
 10.1
 10.2
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 10.4
 <th

484

STABILITY CONSTANTS

Э	(G)0311	F	'orma	te		92 GJA	ρ <u>β</u>	Aceta	te		11	Pr	opior	nate	
$\lambda = 670$		С	L m	M		11 (12) 14 (12)	C	C_L m	$\mathbf{n} \boldsymbol{M}$			C	C _L n	n M	
nm		1	2	3	8	5.5	1	2	3			1	2	nate 11M 3 	
0.300		54	67	93			<u></u>	<u>.</u>	<u>.</u>					1	
0.305		94	116	158		10	1 <u>- 1</u>	<u>, 11</u>	<u> () (</u>			1.1.1.1.			
0.308		116	140	193		- 14 -							0.000		
0.310		137	163	225			113	150	218	1.4				. () <u> </u>	
0.313		160	190	256				1				<u> </u>		· · · <u> </u>	
0.315		180	215	288		110	146	190	272			95	129	202	
0.318		252	293	387			163	212	299		~	112	145	225	
0.320		227	266	355			180	234	327			123	161	245	
0.323		251	293	389			198	256	355			140	178	268	
0.325		274	320	422		i dest	218	278	380	36		150	195	290	
0.328		298	350	456		81	238	300	408	6.1		167	212	314	
0.330		322	380	493		1.1	255	323	438			178	229	336	
0.333		346	409	528		1.11	275	347	468	255		195	246	358	
0.335		371	440	566			294	372	500			207	264	383	
0.338		395	470	603			318	395	530	67		225	282	408	
0.340		423	499	643			337	420	560			239	300	432	
0.343		450	530	680			360	445	588			256	320	457	
0.345		476	562	720			380	470	625			270	338	482	
0.348		503	595	768								288	358	508	
0.350						012.2	2.4.2					303	377	534	
0.353			1.1	СТ. <u> —</u>		a 192			March			320	397	560	
0.355												337	417	590	

TABLE IV Nickel Solutions

- 	В	utyra	ate	0.1.0	E I	G	lycol	ate	
$\lambda = 670$	08 C	L m	M		$\lambda = 670$	C	Ln	\mathbf{M}	
nm	1	2	3	31	nm -	1	2	3	545. U 1. u m
0.300	44	60	85		0.375	40	67	130	
0.305	75	97	135		0.425	68	110	210	
0.310	104	132	183		0.450	82	133	252	
0.315	133	168	227		0.475	100	156	291	
0.320	162	202	273		0.500	114	185	338	
0.325	190	235	315		0.525	135	213	377	
0.330	218	268	356		0.550	155	244	424	
0.335	244	300	395		0.575	180	275	470	
0.340	272	333	433		0.600	207	310	525	
0.345	298	364	467		0.625	240	350	590	
0.350	324	395	500		0.650	280	400	660	
0.355	350	425	534		0.675	325	450	795	
0.360	375	455	565		0.700	390	520	825	
0.365	399	483	595		0.725	460	605	920	
0.370	423	512	626						
0.375	448	540	655						
0.380	470	568	685						

1 : 80 mM Ni²⁺; d = 2 cm 2 : 160 mM Ni²⁺; d = 1 cm

 $3:320 \text{ m}M \text{ Ni}^{2+}; \text{ d} = 0.5 \text{ cm}$

TABLE V

Copper Solutions

	E E	Format	e		1	Acetate	9		Pr	opiona	te
C_L	Ez	ctinctio	on,	CL	Ex	tinctio	n,	CL	Ex	tinctio	n,
mM	λ =	= 760 r	ım	mM	λ =	= 760 r	nm	mM	λ =	= 760 r.	m
	1	2	3		1	2	3		1	2	3
10	0.914	0 109	0 167	F	0.904	0 171		10		0 100	0.174
10	0.214	0.104	0.107	0	0.204	0.171		10		0.190	0.174
20	0.237	0.204	0.177	10	0.236	0.187		20	0.294	0.237	0.184
40	0.282	0.248	0.206	15	0.269	0.207	0.170	30	0.333	0.274	0.208
60	0.320	0.286	0.234	20	0.293	0.229	0.178	40	0.365	0.307	0.230
80	0.347	0.313	0.257	25	0.313	0.251	0.190	50	0.385	0.335	0.255
100	0.367	0.338	0.282	30	0.327	0.268	0.204	60	0.409	0.365	0.278
130	0.393	0.366	0.313	40	0.356	0.298	0.225	80	0.440	0.413	0.321
170	0.418	0.393	0.345	50	0.379	0.327	0.246	100	0.463	0.458	0.367
200	0.430	0.410	0.364	60	0.398	0.350	0.264				
250	0.450	0.435	0.388	80	0.426	0.385	0.304				
300	0.465	0.450	0.413	100	0.445	0.416	0.340				
350	0.473	0.462	0.432	130	0.469	0.454	0.385				
400	0.485	0.472	0.446	170	0.489	0.490	0.440				
450	0.495	0.486	0.455	23							
500	0.503	0.496	0.465					offer and			

	E	Butyrat	e		G	lycolat	e		Chl	oroace	tate
C_L	Ex	tinctio	n,	C_{L}	Ex	tinctio	n,	C_{L}	Ex	tinctio	on,
mN	λ =	= 760 n	ım	mM	λ =	= 760 r	nm	mM	λ =	= 760 1	ım
	1	2	3	-	1	2	3		1	2	3
5	0.205	0 179	0 171	5	0.917	0 177	0 170	10	0 100		
10	0.205	0.110	0.175	10	0.217	0.100	0.176	10	0.190	0 100	0 170
10	0.235	0.189	0.175	10	0.250	0.189	0.170	20	0.201	0.192	0.178
15	0.268	0.217	0.182	15	0.283	0.205	0.181	40	0.230	0.214	0.195
20	0.295	0.236	0.190	20	0.298	0.220	0.186	60	0.259	0.237	0.215
25	0.313	0.255	0.201	30	0.324	0.250	0.198	80	0.277	0.260	0.230
30	0.343	0.277	0.211	40	0.337	0.273	0.212	100	0.301	0.276	0.247
40	0.372	0.316	0.233	50	0.352	0.293	0.228	130	0.325	0.299	0.270
50	0.407	0.359	0.263	60	0.362	0.315	0.240	170	0.352	0.328	0.294
				80	0.375	0.340	0.266	200	0.371	0.343	0.312
				100	0.387	0.360	0.289	250	0.392	0.367	0.333
				120	0.398	0.374	0.310	300	0.409	0.389	0.360
				140	0.408	0.385	0.329	350	0.425	0.405	0.375
				160	0.412	0.393	0.344	400	0.437	0.420	0.390
				180	0.418	0.400	0.358	450	0.448	0.429	0.405
				200	0.423	0.406	0.372	500	0.457	0.440	0.414

1: $5 \text{ mM } \text{Cu}^{2+}$; d = 3 cm 2: $30 \text{ mM } \text{Cu}^{2+}$; d = 0.5 cm 3: $75 \text{ mM } \text{Cu}^{2+}$; d = 0.2 cm

TABLE VI

Copper Solutions

F		Form	ate	я	A	cetat	9	E	Pr	opion	ate
$\lambda = 760$	CI	j m	M	$\lambda = 760$	C	L m	M	$\lambda = 760$	С	L m	M
nm	1	2	3	nm	1	2	3	nm	1	2	3
$\begin{array}{c} 0.280\\ 0.290\\ 0.300\\ 0.310\\ 0.320\\ 0.330\\ 0.340\\ 0.350\\ 0.360\\ 0.370\\ 0.380\\ 0.390\\ 0.400\\ 0.410\\ 0.420\\ 0.430\\ 0.440\\ \end{array}$	$\begin{array}{c} 39\\ 43\\ 49\\ 54\\ 60\\ 67\\ 74\\ 82\\ 93\\ 104\\ 115\\ 129\\ 142\\ 158\\ 176\\ 199\\ 225 \end{array}$	59 65 71 78 94 102 113 124 137 150 165 182 201 220 243 272	99 108 117 128 138 150 162 177 193 210 230 251 273 297 320 348 380	$\begin{array}{c} 0.210\\ 0.220\\ 0.230\\ 0.240\\ 0.250\\ 0.260\\ 0.270\\ 0.280\\ 0.290\\ 0.300\\ 0.310\\ 0.320\\ 0.330\\ 0.340\\ 0.350\\ 0.360\\ 0.370\\ 0.380\\ 0.390\\ 0.400 \end{array}$	$\begin{array}{c} 6.5\\ 7.5\\ 9.0\\ 11.0\\ 12.5\\ 14.5\\ 16.5\\ 18.0\\ 20.5\\ 22.5\\ 25.0\\ 28.0\\ 30.5\\ 34.5\\ 38.5\\ 42.5\\ 47.0\\ 52.5\\ 62.5\\ \end{array}$	$\begin{array}{c} 16.0\\ 18.5\\ 21.5\\ 23.5\\ 26.0\\ 29.0\\ 32.0\\ 35.0\\ 38.5\\ 41.5\\ 45.0\\ 48.5\\ 52.5\\ 57.5\\ 62.0\\ 66.5\\ 73.0\\ 79.0\\ 85.0\\ 91.5\\ \end{array}$	$\begin{array}{c} 32.5\\ 37.0\\ 42.5\\ 47.5\\ 52.5\\ 57.5\\ 63.0\\ 68.5\\ 73.5\\ 78.5\\ 84.0\\ 90.0\\ 95.0\\ 101.0\\ 107.5\\ 113.5\\ 120.5\\ 120.5\\ 120.5\\ 124.0\\ 134.0\\ 141.5 \end{array}$	$\begin{array}{c} 0.230\\ 0.240\\ 0.250\\ 0.260\\ 0.270\\ 0.280\\ 0.300\\ 0.310\\ 0.320\\ 0.330\\ 0.330\\ 0.330\\ 0.350\\ 0.360\\ 0.370\\ 0.380 \end{array}$	$\begin{array}{c} 9.5\\ 10.0\\ 11.5\\ 13.0\\ 15.0\\ 16.5\\ 21.0\\ 23.0\\ 23.0\\ 29.0\\ 31.5\\ 35.0\\ 38.5\\ 42.0\\ 46.5\end{array}$	$\begin{array}{c} 19.0\\ 21.5\\ 24.0\\ 27.0\\ 32.5\\ 32.5\\ 35.0\\ 38.0\\ 41.0\\ 44.5\\ 52.5\\ 55.5\\ 55.5\\ 59.0\\ 63.0\\ 66.5\\ \end{array}$	40.0 44.5 48.0 53.0 57.5 62.0 67.0 71.5 75.5 80.0 84.5 89.0 93.0 93.0 98.0 102.0

E	Вι	ıtyrat	е	E	(Glycola	ite	ज	Chlo	roace	tate
$\lambda = 760$	$C_{\rm L}$	ml	M	$\lambda = 760$	(C _L m	M	$\lambda = 760$	CI	m	\mathbf{M}
nm	1	2	3	nm	1	2	3	nm	1	2	3
0.100	2.0	0.0	90 F	0.000	10	10 5	00 5	0.950	= 17	79	104
0.190	3.0	9.0	20.5	0.200	4.0	13.5	29.5	0.250	57	13	104
0.200	4.5	12.0	26.0	0.210	4.5	16.5	36.0	0.260	63	84	118
0.210	6.0	14.0	31.0	0.220	6.0	20.0	43.0	0.270	72	93	130
0.220	7.5	16.5	35.0	0.230	7.5	23.0	51.0	0.280	81	105	145
0.230	8.5	18.5	39.5	0.240	9.0	27.0	58.5	0.300	100	129	178
0.240	10.5	21.0	43.0	0.250	10.5	30.0	66.0	0.310	111	144	197
0.250	12.0	23.5	47.0	0.260	11.0	34.5	76.0	0.320	122	158	215
0.260	14.0	26.0	50.5	0.270	13.0	39.0	83.5	0.330	135	173	237
0.270	15.5	28.5	53.5	0.280	15.0	43.0	91.5	0.340	149	190	260
0.280	17.5	31.0	57.0	0.290	17.5	47.5	100.0	0.350	164	208	285
				0.300	20.5	52.5	110.0	0.360	181	229	312
				0.310	24.0	57.5	120.0	0.370	199	252	340
				0.320	28.5	63.5	132.0	0.380	219	276	370
				0.330	34.0	70.5	144.0	0.390	242	304	403
5 B				0.340	40.5	80.0	157.0	0.400	270	335	437
1212 122				0.350	50.0	89.0	170.0	0.100	210	000	101
				0.360	60.0	100.0	184.0	2			
				0.370	72.0	114.0	102.0	037155 - 2515			
States 1				0.380	88.0	120.0	214.0	C III III III			
A . 81 61				0.300	00.0	190.0	214.0	the second			

1: 5 mM Cu²⁺; d = 3 cm 2: 30 mM Cu²⁺; d = 0.5 cm 3: 75 mM Cu²⁺; d = 0.2 cm

Ligand	Metal Ion	β_1		β_2		β ₃	
		graph.	comp.	graph.	comp.	graph.	comp.
	C0 ²⁺	2.9	2.5 ± 0.3	6.2	8.3 ± 1.0		
Formate	Ni ²⁺	3.8	2.5 ± 0.4	6.9	7.2 ± 1.5		
	Cu ²⁺	45	45 ± 6	515	355 ± 62	1270	2100 ± 300
Acetate	Co ²⁺	4.5	4.1 ± 0.1	2.2	4.1 ± 0.5	6.367	1102 D
	Ni ²⁺	6.5	6.6 ± 0.3	9.9	9.8 ± 0.7		
	Cu ²⁺	155	129 ± 3	880	730 ± 30		0
	Co ²⁺	6.3	6.0 ± 0.2	1.2	1.3 ± 0.1		(18) (1 5-2, (1
Propionate	Ni^{2+}	7.5	7.2 ± 0.6	16	18 ± 2	<u>98</u>	010 0 015 0
	Cu ²⁺	139	145 \pm 3		660 <u>0-</u> 0856 3760-00	<u></u>	0 <u>111</u> 10 (18111)
Butyrate	Co ²⁺	4.2	4.1 ± 0.1				0,340
	Ni ²⁺	6.5	6.5 ± 0.7	6.5	6.3 ± 2.6		-
	Cu^{2+}	120	$121~\pm~5$, —
Glycolate	Co ²⁺	20	20 ± 1	120	115 ± 3		
	Ni ²⁺	51	42 ± 6	508	$503~\pm~43$		<u> </u>
	Cu ²⁺	200	171 \pm 10	17 000	$17\ 400\ \pm\ 400$		$\frac{d^{2}}{d^{2}} = \frac{1}{d}$
Chloroacetate	Co ²⁺	0.9	1.0 ± 0.1	taid j			0
	Cu ²⁺	18	18 ± 8	40	38 ± 24	603	831 ± 169

 TABLE VII

 Stability Constants (± standard errors)

DISCUSSION

Literature data about the spectrophotometric determination of stability constants of monocarboxylato complexes which were the subject of our investigations are very scarce¹¹. Besides, the published values of stability constants for the same complex differ greatly. Thus, the values 42 (S. Fronaeus) and 155 (W. D. Bale *et al.*) are given for β_1 of the copper acetato complexes, and the values 13 (S. K. Siddhanta and S. N. Banerjee) and 45 (G. Watelle-Morion) of the nickel acetato complexes. The value 105 was quoted for β_1 of the copper formato complex (W. D. Bale *et al.*) and 270 (S. Fronaeus) of the glycolato complexes. These literature data do not agree with the values given in Table VII. One of the reasons for this is the difference in the composition of the medium, and most probably, the difference in the treatment of results. A comparison of the obtained values of stability constants with the values obtained by the polarographic^{1,3} and potentiometric method, as well as a discussion of the compared results will be given in another paper. From the values of the first stability constant (β_1) it can be seen (Table VII) that the stability of the monoligand complex increases for all investigated systems in the series:

$C_0 < N_i < C_u$

ClAc < Form < Ac, But < Prop < Glycol

The first series is in agreement with the natural order established by Irving and Williams¹². Considerably higher stability of copper complexes is attributed to the additional Jahn-Teller stabilization effect and, partially to the relatively stronger acceptor properties of the basic state of the copper(II) ion¹³⁻¹⁵.

The second series, with the exception of glycolate, is in agreement with the increase of the basicity of the electron donor ligand¹¹. The position of glycolate in the order is due to the presence of the OH group in the ligand so that the ligand is also bonded with the metal ion over the OH group¹⁶. Chloroacetato complexes of cobalt and nickel are so weak that their presence

Fig. 1. Light absorption curves of Co(II) solutions.

Fig. 2. Light absorption curves of Ni(II) solutions.

in the investigated solutions could not, practically, be revealed by the change of extinction (especially for nickel).

On the base of the recorded absorption curves (Figs. 1—3) and literature data^{17–19} it can be concluded that investigated metal ions in the absence of the monocarboxylate ion occur in the solution in the form of $[M(H_2O)_6]^{2+}$ complexes of octahedral structure. In the presence of the monocarboxylate ion no shift of absorption maximum occurs with Co(II) and Ni(II), only an increase of light absorption band taking place. It is also valid for Cu(II) except in the presence of the glycolate ion, when a shift of the absorption maximum also takes place. Accordingly, in all investigated monocarboxylato complexes, except in the copper glycolato complexes, no appreciable change in structure occurs on bonding to the monocarboxylate ion. For glycolato complexes of Cu(II) the shift of the absorption maximum is probably due to the direct bonding of the OH group to the central metal ion¹⁶ (chelation), this leading to the distortion of octahedral structure. No analogous phenomenon takes place for glycolato complexes of Co(II) and Ni(II), as chelation occurs through the water molecules¹⁶.

Fig. 3. Light absorption curves of Cu(II) solutions.

Acknowledgement. The authors gratefully acknowledge the financial help of the Federal Fund for Scientific Work enabling these investigations. The authors wish to express a special gratitude to Dr. VI. Simeon for the assistance in the mathematical treatment of the results by computer.

REFERENCES

- I. Filipović, I. Piljac, A. Medved, J. Savić, A. Bujak, B. Bach-Dragutinović, and B. Mayer, Croat. Chem. Acta 40 (1968) 131.
- B. Topuzovski and I. Filipović, Croat. Chem. Acta 40 (1968) 257.
 I. Filipović, A. Bujak, and V. Vukičević, Croat. Chem. Acta 42 (1970) 493.
- 4. H. L. Schläfer, Komplexbildung in Lösung, Springer Verlag, Berlin-Göttingen-Heidelberg, 1961.
- 5. F. J. C. Rossotti and H. Rossotti, The Determination of Stability Constants, Mc. Graw-Hill, New York-Toronto-London, 1961.
- 6. J. Bjerrum, Kgl. Danske Videnskab. Selskab. math.-fys. medd. 21, No. 4 (1944)
- 7. K. B. Yatsimirkii, Zhur. Neorg. Khim. 1 (1956) 2306.
- 8. S. Fronaeus, Acta Chem. Scand. 4 (1950) 72.
- 9. B. Grabarić, Master of Science Thesis, Zagreb, 1969.
- 10. R. S. Tobias and M. Yasuda, J. Inorg. Chem. 2 (1963) 1307.

- 11. Stability Constants, Compiled by L. G. Sillén and A. F. Martell, The
- Stability Constants, Complied by L. G. Sillen and A. F. Maftell, The Chemical Society, London, 1964.
 H. Irving, and R. J. P. Williams, J. Chem. Soc. 1953, 3192.
 F. J. C. Rossotti, Thermodynamics of Metal Ion Complex Formation in Solution, in J. Lewis and R. G. Wilkins, Modern Coordination Chemistry, Interscience Publishers Inc., New York, 1960.
 J. S. Griffith and L. E. Orgel, Quart. Rev. Chem. Soc. London 11 (1957)
- 381.
- 15. L. E. Sutton, J. Inorg. Nucl. Chem. 9 (1959) 23.
- 16. B. Larsson, Acta Chem. Scand. 19 (1965) 783.
- 17. T. M. Dunn, The Visible and Ultra-violet Spectra of Complex Compounds. in J. Lewis and R. G. Wilkins, Modern Coordination Chemistry, Interscience Publishers Inc., New York, 1960.
- 18. R. L. Carlin, Electronic Structure and Stereochemistry of Cobalt (II), in R. L. Carlin, Transition Metal Chemistry, Dekker Inc., New York, 1965.
- 19. W. Manch and W. C. Fernelius, J. Chem. Educ. 38 (1961) 192.

IZVOD

Spektrofotometrijsko određivanje konstanata stabilnosti formijato, acetato, propionato, butirato, glikolato i kloroacetato-kompleksa kobalta, nikla i bakra

B. Grabarić i I. Filipović

Izvršena su spektrofotometrijska istraživanja u vidljivom spektralnom području otopina Co(II), Ni(II) i Cu(II) u prisutnosti natrium-formijata, acetata, propionata, butirata, glikolata i kloroacetata. Iz spektrofotometrijskih podataka određene su konstante stabilnosti prisutnih kompleksa primjenom metode korespon-dirajućih otopina J. Bjerruma. Konstante stabilnosti izračunate su pomoću elektroničkog računala primjenom programa Gauss Z od R. S. Tobiasa.

INSTITUT ZA ANORGANSKU I ANALITIČKU KEMIJU SVEUČILIŠTA U ZAGREBU i

Primljeno 26. veljače 1970.

ZAVOD ZA ANORGANSKU KEMIJU TEHNOLOŠKOG FAKULTETA U ZAGREBU